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WHAT IS INCOMPLETENESS?

The most striking results in mathematical logic have, 
historically, been in Incompleteness. These have been 
the results of the greatest general intellectual 
interest. 

Incompleteness in mathematical logic started in the 
early 1930s with Kurt Gödel. 

In these two lectures, I will give an account of 
Incompleteness, where the details of mathematical 
logic are black boxed.   

Incompleteness refers to the fact that certain 
propositions can neither be proved nor refuted within 
the usual axiomatization for mathematics - or at least 
within a substantial fragment of the usual 
axiomatization for mathematics.  



ANCIENT INCOMPLETENESS 

Mathematics Before Fractions 

Ordered Ring Axioms. +,-,⋄,<,0,1,=.

Does there exists x such that 2x = 1? Neither provable 
nor refutable. (?)

Mathematics Before Real Numbers

Ordered Field Axioms. +,-,⋄,-1,<,0,1,=.

Does there exists x such that x2 = 2? Neither provable 
nor refutable. (?). 

Euclidean Geometry

Euclid's Axioms (clarified by Hilbert, and also by 
Tarski). 

Is there at most one line parallel to a given line 
passing through any given point off of the given line? 
(Playfair’s form). Neither provable nor refutable. 
(Beltrami 1868).



FUTURE OF INCOMPLETENESS

As mathematics has evolved, full mathematical 
Incompleteness has evolved. 

But it is still completely unclear exactly which kinds 
of mathematical questions are neither provable nor 
refutable within the usual axiomatization of 
mathematics, or substantial fragments thereof. 

We believe that interesting and informative information 
will be eventually obtained in every branch of 
mathematics by going beyond the usual axiomatization for 
mathematics - that cannot be obtained within the usual 
axiomatization for mathematics. 

This will be a very productive form of Incompleteness. 

Only time will tell.  

But before we get to Incompleteness, we first need to 
talk about the usual foundation for mathematics.



FOUNDATIONS OF MATHEMATICS
FROM 1800

By 1800, many leading mathematicians strongly believed 
that mathematics had a special kind of certainty 
beyond other subjects, but realized that there was no 
unified account as to what constitutes a valid 
mathematical proof.  

Over the course of the 1800s, several mathematicians 
including Cauchy, Cantor, and Dedekind, and the 
mathematical philosopher Frege, contributed greatly to 
our understanding of what a valid mathematical proof 
is. This was followed by work of mathematicians 
Zermelo and Frankel in the early 1900s, culminating 
with the presently accepted general purpose foundation 
for mathematics. 



KEY INGREDIENTS
1. Division of mathematics into a purely logical part, 
and a purely mathematical part.

2. The logic part involves ∀, ∃, ¬, ∧, ∨, ➞, ↔, =, 
variables, and symbols for primitive relationships 
between objects. 

3. The mathematical part involves definite objects, 
normally viewed as having objective meaning. 

4. Axioms and rules of inference for the purely 
logical part.

GÖDEL COMPLETENESS: If A cannot be refuted by the 
usual axioms and rules of logic, then A has a model. 

5. Development of the ∈/δ methodology for convergence, 
continuity, etc. 

6. Grand Unification of the math systems (number 
systems, spaces, etc.), into a single kind of object 
with a single relationship (sets and membership). 

7. Axioms about sets that, when combined with 2, are 
easily sufficient to support the Grand Unification.



ZFC
THE GOLD STANDARD

This series of events culminated with a symbolic 
system called ZFC = Zermelo Frankel set theory with 
the Axiom of Choice. This is the gold standard for 
general purpose foundations of mathematics. 

ZFC consists of 

A. Axioms and rules of inference of logic, with the 
primitive relations ∈,=. There is no commitment as to 
the meaning of ∈, or the nature of the objects 
represented by variables. However = is viewed as 
having a definite meaning.

B. Axioms about sets. These allegedly correspond to an 
alleged fixed reality of sets, or at least an 
allegedly clear mental picture of sets.  



GENERAL FORMAL SYSTEMS

Let's first discuss the purely logical part. By a formal 
system, we commonly mean simply the axioms and rules of 
inference of logic, with various primitive relations, = 
usually included, and various nonlogical axioms. 

We say that a formal system T is consistent iff there 
is no sentence A (in its language) such that T proves 
both A and ¬A. 

We say that a formal system T is complete iff for all 
sentences A (in its language), T proves A or T proves 
¬A. 

Formal systems T that are consistent and complete are 
highly desirable. 



GOOD NEWS BAD NEWS

GOOD NEWS: there are some nice consistent and complete 
formal systems based on important mathematical 
structures (Presburger, Tarski). 

BAD NEWS: once a remarkably small dose of arithmetic 
or finite set theory is present, consistency/
completeness cannot be achieved by a reasonable formal 
system (Gödel, R. Robinson). 

What is reasonable? Finitely many axioms is more than 
reasonable. We merely want the set of axioms to be 
computer generated. 

The Good News is even better. A complete 
axiomatization T of a mathematical structure M is a 
formal system in the language of M such that a 
sentence is true in M iff it is provable in T. 



HILBERT’S PROGRAM

THEOREM. There are computer generated complete 
axiomatizations for (R,Q,Z.<,+), (R,<,+,⋄), and 
(C,R,+,⋄). (Presburger, ?, Tarski). 

Most people interpret Hilbert's Program as trying to 

1. Give a computer generated complete axiomatization 
for all of mathematics.
2. Prove that mathematics is consistent using only 
very minimal concrete mathematical principles. 

The above Good News is just the kind of thing Hilbert 
was looking for. But Hilbert wanted such thingss for 
all of mathematics.

Most people consider Hilbert's Program as having been 
utterly demolished by Gödel's First and Second 
Incompleteness Theorems.  



FIRST INCOMPLETENESS THEOREM

ROBINSON ARITHMETIC. 0,S,+,⋄. 

Sx ≠ 0.
Sx = Sy ➞ x = y.
x ≠ 0 ➞ (∃y)(x = Sy).
x+0 = x, x+Sy = S(x+y).
x⋄0 = 0, x⋄Sy = x⋄y + x.

RUDIMENTARY SET THEORY.

Empty set exists.
Every x ∪ {y} exists. 

FIRST INCOMPLETENESS THEOREM. Every consistent 
computer generated extension of RA is incomplete. 
Every consistent computer generated extension of RST 
is incomplete. (Gödel, R. Robinson).



SECOND INCOMPLETENESS THEOREM
HILBERT DEMOLISHED BY GÖDEL 

We can robustly discuss the consistency of any 
computer generated formal system, provided that we 
have a certain amount of arithmetic or finite set 
theory at our disposal. For this, we need somewhat 
more than RA or RST. 

Let us call a computer generated formal system 
containing this modest amount of critical stuff 
ADEQUATE. 

SECOND INCOMPLETENESS THEOREM. No consistent adequate 
formal system proves its own consistency. 

Gödel’s First and Second Incompleteness Theorems are 
widely considered to have utterly demolished Hilbert’s 
Program in the foundations of mathematics. 



FINITE SET THEORETIC UNIVERSE 

Now to ZFC. ZFC can properly be viewed as an 
extrapolation of obvious facts about the FINITE set 
theoretic universe, to the INFINITE set theoretic 
universe. I.e., ZFC takes these obvious facts about 
the finite set theoretic universe, and adjoins the 
Axiom of Infinity. 

The finite set theoretic universe is defined 
inductively as follows. 

V(0) is the empty set. V(n+1) is the set of all 
subsets of V(n). 

V(ω), the entire finite set theoretic universe, is the 
union of the V(n)'s. 

This definition is read in the usual way as a piece of 
finite mathematics. 



PROVABLE FACTS ABOUT THE FINITE SET 
THEORETIC UNIVERSE 

AXIOMS USING ∈,=
provable facts about the finite set theoretic universe

1. Extensionality. a = b iff a,b have the same 
elements.
2. Pairing. {a,b} exists.
3. Union. The set of all elements of elements of x 
exists.
4. Power set. {x: x ⊆ a} exists.
5. Foundation. Every nonempty set has an epsilon 
minimal element.
6. Choice. For any set x of pairwise disjoint nonempty 
sets, there is a set having exactly one element in 
common with each element of x.  
7. Separation. {x ∈ y: P(x)} exists, where P is any 
property formulated in the language. 
8. Replacement. Suppose (∀x ∈ a)(∃!y)(P(x,y)). Then 
(∃z)(∀x ∈ a)(∃y ∈ z)(Q(x,y)), where Q is any property 
formulated in the language.

1-8 are PROVED to hold in (V(ω),∈) by ordinary 
mathematical induction. 



THE ZFC AXIOMS
THE GOLD STANDARD 

ZFC

1-8.
9. Infinity. There is a set x containing (as an 
element) the empty set, and each y ∪ {y} for y ∈ x. 
10. Axioms and rules of logic for ∈,=. 

ZFC is way more than enough for normal mathematical 
purposes. In fact, ZC = ZFC without Replacement, is 
quite sufficient. 

Yet there are exceptions. In the second lecture, we 
will discuss a Borel measurable selection theorem 
which can be proved in ZFC, but not in ZC. 

The Axiom of Choice wasn't always accepted as an 
axiom. Hence the historic interest in ZF = ZFC without 
the Axiom of Choice. 



ABSTRACT SET THEORETIC INCOMPLETENESS 

THEOREM. If ZF is consistent then ZF does not refute 
the Axiom of Choice. (Gödel 1940).

THEOREM. If ZF is consistent then ZF does not prove 
the Axiom of Choice. (Cohen 1963).

Cantor (founder of set theory), emphasized two open 
problems in set theory. One was the Axiom of Choice. 
The other was the Continuum Hypothesis: 

EVERY INFINITE SET OF REAL NUMBERS IS IN ONE-ONE 
CORRESPONDENCE WITH THE SET OF ALL INTEGERS OR THE SET 
OF ALL REAL NUMBERS.

This is a particularly direct way to say that there is 
no cardinality strictly between the integers and the 
reals. 



THE CONTINUUM HYPOTHESIS -
GENERAL, AND BOREL FORMS

THEOREM. If ZF is consistent then ZFC does not refute 
the Continuum Hypothesis. (Gödel 1940).

THEOREM. If ZF is consistent then ZFC does not prove 
the Continuum Hypothesis. (Cohen 1963). 

The existence, or possible existence, of pathological 
objects is what is behind the unprovability and 
unrefutability of the Continuum Hypothesis in ZFC. 
Witness its Borel measurable form:

EVERY BOREL MEASURABLE INFINITE SET OF REAL NUMBERS IS 
IN BOREL MEASURABLE ONE-ONE CORRESPONDENCE WITH THE 
SET OF ALL INTEGERS OF THE SET OF ALL REAL NUMBERS.

This is a well known theorem of Hausdorff. 

The study of Borel measurable sets and functions in 
complete separable metric spaces is called Descriptive 
Set Theory. 



GODEL AND COHEN METHODS
INNER MODELS AND OUTER MODELS 

The techniques used by Gödel and Cohen for their 
results on the Axiom of Choice and the Continuum 
Hypothesis are very different. 

Both start with a countable model M of ZF. This you 
can get from the consistency of ZF using Gödel 
Completeness (mentioned earlier). 

Gödel manages to cut back to an inner model of M, 
where there is a lot of definite structure not 
generally present in M. Gödel uses this structure to 
show that the Axiom of Choice and the Continuum 
Hypothesis hold in his submodel - called the 
Constructible Sets. 

Cohen starts with a countable model M of ZF, which, by 
Gödel, can be assumed to be a model of ZFC. Then Cohen 
manages to extend M to M# by adding new elements. In 
one form of his so called forcing construction, he 
obtains a model of ZF in which the Axiom of Choice 
fails. In another form of his forcing construction, he 
obtains a model of ZFC in which the Continuum 
Hypothesis fails. These are called generic extensions.



EXTREME FAILURE OF THE 
AXIOM OF CHOICE

Later developments (A. Levy) have shown just how badly 
the Axiom of Choice can fail in a model of ZF. 

There is a model of ZF in which the entire real line 
can be partitioned into a countable number of 
countable sets. (Assuming ZF is consistent).

I.e., ZF does not suffice to prove that 

the reals cannot be partitioned into a 
countable union of countable sets. 



LEBESGUE MEASURABILITY
The Axiom of Choice has long been accepted as a 
legitimate axiom. Consequently, Incompleteness in ZFC 
has long been considered more interesting than 
Incompleteness in ZF. 

THEOREM. The statement “all definable sets of real 
numbers is Lebesgue measurable” is neither provable nor 
refutable in ZFC (assuming ZFC is consistent). (Solovay 
1970).

There is a slight problem with defining “definable sets 
of real numbers” within ZFC that can be corrected in 
several ways. For example, 

THEOREM. The statement “all sets of real numbers 
definable using at most 1000 quantifiers is Lebesgue 
measurable” is neither provable nor refutable in ZFC 
(assuming ZFC is consistent). (Solovay 1970).

That should be enough quantifiers for anybody!

The same results hold for the Baire Property. X ⊆ R has 
the Baire Property iff its symmetric difference from 
some open set is meager (countable union of nowhere 
dense sets). Again, Solovay 1970.


