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1. First Incompleteness Theorem.
2. First Incompleteness Theorem in (¬,<,0,1,+,•). (!!!)
3. Second Incompleteness Theorem.
4. Is there any real logical strength?
5. Strict Reverse Mathematics.

It is not yet clear just what the most illuminating ways of
rigorously stating the Incompleteness Theorems are. This is
particularly true of the Second. Also I believe that there
are more illuminating proofs of the Second that have yet to
be uncovered.

NOTE: See “Formal Statements of Godel’s Second
Incompleteness Theorem”, http://www.math.ohio-
state.edu/%7Efriedman/

There is also a very interesting viscously anti
foundational argument which suggests that mathematics can
be developed in a way that can be proved to be free of
contradiction in Peano Arithmetic, or even in weak
fragments such as Exponential Function Arithmetic = EFA =
IS0(exp) – thereby suggesting that the Incompleteness
Theorems are an irrelevant and misleading distraction.

Refutation of this mind numbing heresy is ongoing and leads
to some very interesting formal work, called Strict Reverse
Mathematics.

NOTE: See “The Inevitability of Logical Strength”,
February, 2007, recently submitted for publication.
http://www.math.ohio-state.edu/%7Efriedman/

1. FIRST INCOMPLETENESS THEOREM.

R.M. Robinson’s Q. L(Q) = 0,S,+,•, with =, and
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1. Sx ≠ 0.
2. Sx = Sy Æ x = y.
3. x ≠ 0 Æ ($y)(x = Sy).
4. x+0 = x.
5. x+Sy = S(x+y).
6. x•0 = 0.
7. x•Sy = (x•y)+x.

THEOREM 1.1. Let T be a consistent many sorted theory with
finitely many axioms, and p be an interpretation of Q in T.
Then there is a sentence j of L(Q) such that p(j) is neither
provable nor refutable in T.

Note that Theorem 1.1 is extremely clean and fully
rigorously stated. There is an important extension that is
not so clean.

THEOREM 1.2. Let T be a consistent many sorted theory, and p
be an interpretation of Q into T. Assume that the set of
axioms of T is recursively enumerable. Then there is a
sentence j of L(Q) such that p(j) is neither provable nor
refutable in T.

Now the statement involves Gödel numberings of syntax.
Questions of robustness occur, which are nowadays
considered trivial.

Here is a well known clarifying result that makes Theorem
1.2 an immediate consequence of Theorem 1.1, at least for
finite languages.

THEOREM 1.3. Let T be a many sorted theory in a finite
language. Then T has a recursively enumerable
axiomatization if and only if T has a finitely axiomatized
conservative extension in a finite language.

Q is a particularly clear and natural system of arithmetic
that can be used for Theorems 1,2. What is the “simplest”
system of arithmetic that can be used?

There are some very interesting alternatives that can be
used, that are not arithmetics, and are considerably
simpler. What is the “simplest” system that can be used?

($x)("y)(ÿy Œ x).
($z)("w)(w Œ z ´ w Œ x ⁄ w = y).
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This system interprets Q, and so can be used.

NOTE: A proof that Q is interpetable in this system was
given in A.Mancini, F. Montagna, “A minimal predicative set
theory”, Notre Dame J. of Formal Logic 35 (1994) 186-203,
where the authors give credit to Jan Krajicek for an
earlier proof of the result (unpublished and unknown to the
authors before completion of their work).

How logically simple can these independent statements be?
We will stick to the cleanest formulations.

THEOREM 1.4. Let T be a consistent many sorted theory with
finitely many axioms, and p be an interpretation of Q in T.
Then there is a false existentially quantified equation, j,
in L(Q), such that p(j) is not refutable in T.

THEOREM 1.5. Let T be a consistent many sorted theory with
finitely many axioms, and p be an interpretation of IS0 in
T. Then there is a false existentially quantified equation,
j, in L(Q), such that p(j) is neither provable nor refutable
in T.

The above uses the MRDP solution to Hilbert’s 10th problem.
For MRDP, we can fix the number of variables and the degree
in various ways. This means that we can do so for Theorem
1.4. What is the relationship between these two situations
with regard to fixing the number of variables and the
degree?

2. FIRST INCOMPLETENESS THEOREM IN (¬,<,0,1,+,•). (!!!)

I originated the study of finite forms of the
Incompleteness Theorems in

H. Friedman, On the consistency, completeness, and
correctness problems, Ohio State University, 1979,
unpublished.

This concerns Gödel’s Second Incompleteness only: in order
to prove that there is no inconsistency of length n, one
needs length f(n). Lower bounds on f(n) are of the form ne.
This topic was later developed further in

P. Pudlak, On the length of proofs of finitistic
consistency statements in first order theories, in Logic
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Colloquium ’84, Eds. J.B. Paris, A.j. Wilkie, and G.M.
Wilmers, North-Holland, 1986, pp. 165-196.

P. Pudlak, Impoved bounds to the length of proofs of
finitistic consistency statements, Contemporary
Mathematics, Logic and Combinatorics, volume 65, ed. S.
Simpson, 1987, pp. 309-332.

A fully systematic development of these ideas would include
going back to the First Incompleteness theorem.

I can’t get into this underdeveloped area here. But I do
want to discuss length of proof issues in the context of
the field of real numbers.

To begin with, the field of real numbers has a complete
axiomatization – in fact, several kinds of very nice ones.
Here are two, based on <,0,1,+,-,•.

1. Ordered field axioms, every positive element has a
square root, every polynomial of odd degree with leading
coefficient 1 has a root.

2. Ordered field axioms, the least upper bound principle
for all first order formulas in <,0,1,+,-,•.

What can we say about the relationship between lengths of
proofs in 1 and 2? It is clear that 2 is more “powerful”
than 1, and should very significantly shorten proofs over
1.

It is well known that the first order theory of
(¬,<,0,1,+,-,•) is nondeterministic exponential hard, and
exponential space easy.

We write #(j) for the number of symbols occurring in j.
COROLLARY 2.1. For n ≥ 1, there exists infinitely many
sentences j true in (¬,<,0,1,+,-,•), such that every proof
in 1 (2) above uses at least #(j)n symbols.

CONJECTURE 2.2. For n ≥ 1, there exists infinitely many
existential closures of equations, j, true in (¬,<,0,1,+,-
,•), such that every proof in 1 (2) above uses at least
#(j)n symbols.

This cannot be proved in the same way as Corollary 2.1
without solving some notorious computer science problems.
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However, using some nontrivial algebra, it might be
possible to prove this.

3. SECOND INCOMPLETENESS THEOREM.

The usual statement of the Second is very clean, but far
from rigorous.

THEOREM 3.1. If T is a reasonable system containing a
reasonable amount of arithmetic, then T cannot prove its
own consistency.

i. What is a reasonable system?
ii. What is a reasonable amount of arithmetic?
iii. What is the statement Con(T)?

Modern research on weak systems reveals that we can get
away with IS0.

THEOREM 3.1’. Let T be a consistent many sorted theory with
finitely many axioms, and p be an interpretation of IS0 in
T. Then T does not prove p(Con(T)).

The remaining problem is: what is Con(T)?  Here are the
current approaches.

a. Give a version of Con(T) explicitly. This involves
giving a version of formalized predicate calculus using the
Gödel numbering. This is horribly ugly and ad hoc. This
situation can aruguably be improved, by adhering to set
theories only, where one can treat syntactic objects as
sets.

b. Define what we mean by “adequate treatment of predicate
calculus”, and then take Con(T) to be the canon-ical
statement relative to this treatment. Feferman’s,
“Arithmetization of Metamathematics”.

c. Avoid b (as much as possible), but instead isolate
crucial properties of “provability in T” that are used in
the proof. A highlight is the condition “it can be proved
in T that if a sentence is provable in T then it is
provable that it is provable in T”. Hilbert and Bernays
“derivability conditions”.

There are problems with all of these approaches. It turns
out that b is very complicated, and c is still too
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complicated and subtle to be satisfactory. I am not fully
able to articulate complaints about c, but I certainly
believe that there is a much better way to do this.

I am still thinking about a better way, but there is an
approach that avoids this issue entirely, and is in full
consonance with Hilbert’s idea that consistency and
existence should be identified, at least in certain
contexts.

The idea is to focus on interpretability.

THEOREM 3.2. Let T be a consistent many sorted theory with
finitely many axioms. Let p be an interpretation of IS0 in
T. There exists a true sentence j in L(IS0) such that T+p(j)
is not interpretable in T.

The only way I know how to prove Theorem 3.2 is to use
Second Incompleteness or some variant thereof.

Of course, any T is interpretable in T. But modest
desirable extensions of T may not be interpretable in T.

THEOREM 3.3. Let T be a consistent many sorted theory with
finitely many axioms. Let p be an interpretation of IS0 in
T. Then T + IND(L(T),p) is not interpretable in T. In fact,
T plus some single instance of IND(L(T),p) is not
interpretable in T.

COROLLARY 3.4. ZF\P cannot be interpreted into PA. ACA0
cannot be interpreted in PA. Con(PA) cannot be proved in
PA.

There are quite a number of interesting variants of Theorem
3.3, asserting that T + y is not interpretable in T.
involving different kinds of y - and also involving a sort
being added to T.

4. IS THERE ANY REAL LOGICAL STRENGTH?

See “The Inevitability of Logical Strength”, February,
2007, recently submitted for publication.
http://www.math.ohio-state.edu/%7Efriedman/

5. STRICT REVERSE MATHEMATICS.
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We view “The Inevitability of Logical Strength” as the
foundations of Strict Reverse Mathematics, where all
statements, even in the base theory, must be strictly
mathematical. Some initial development of this is can be
found on my website under downloadable manuscripts.


