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KURT GÖDEL

Kurt Gödel (1906-1978) is responsible for the most celebrated 
results in mathematical logic of the 20th century. 

He had a singular ability to identify and focus on the central 
issues in logic.

He combined powerful mathematical thinking with philosophical 
insights to transform logic into a highly sophisticated 
mathematical subject of great general intellectual interest.

His doctoral dissertation (Habilitationsschrift) was accepted 
by the University of Vienna in 1932. 

He came to the USA in 1933 as a Visiting Professor at the 
Institute for Advanced Studies in Princeton, New Jersey, where 
he remained as a Professor until his death in 1978.

 



GÖDEL’S BLESSING: COMPLETENESS

Gödel’s Blessing is Completeness. Gödel’s Curse is 
Incompleteness. 

We have already encountered completeness theorems in the 
first two lectures. We won’t be relying on the first two 
lectures. 

The most relevant completeness theorem goes back to Gödel in 
his dissertation, and was discussed in general terms in the 
second lecture. 

We do need to give a high level review of Gödel’s famous 
COMPLETENESS THEOREM FOR PREDICATE CALCULUS in order to set 
the stage for the main business of this lecture. 



REVIEW OF PREDICATE CALCULUS -
COMPLETENESS THEOREM 

In predicate calculus, we have assertions (formulas) and 
mathematical structures (models). The assertions and the 
structures are required to be of a specific kind which we will 
review in the next two slides. 

Formulas are true or false only relative to structures. Thus we 
speak of a given formula as being true in a given structure. 

PREDICATE CALCULUS COMPLETENESS THEOREM (Gödel 1928). There is 
a basic finite set of axioms and rules of inference, operating 
on the formulas, such that the following holds. A formula is 
true in all structures iff it is provable in this system. 

You DON’T NEED TO UNDERSTAND this brief review of predicate 
calculus to take advantage of the remainder of this lecture.



REVIEW OF PREDICATE CALCULUS -
FORMULAS 

From Lecture 2: Formulas in predicate calculus use 

i. Variables. v1,v2,... 

ii. Connectives. ¬,∧,∨,➞,↔
iii. Quantifiers. ∀,∃
iv. Constant symbols. c1,c2,... 
v. Relation symbols. Rnm, n,m ≥ 1
vi. Function symbols. Fnm, n,m ≥ 1
vii. Equality. = 

Example from Lecture 2 of a formula of predicate calculus:

(∀x)(¬R(x,y) ➞ (∃z)(F(z,H(y),c) = d ∨ ¬S(z,c)))
x,y,z, variables; c,d, constant symbols; R,S, 2-ary relation 
symbols; H, 1-ary function symbol, F, 3-ary function symbol.  



REVIEW OF PREDICATE CALCULUS -
STRUCTURES

From Lecture 2: Structures in the predicate calculus take 
the form 

(D,=,dn,fnm,rnm)

where D is a nonempty set (the domain), cn is interpreted by 
the element dn of D, Fnm is interpreted by the function fnm:Dn 
➞ D, and Rnm is interpreted by the relation rnm ⊆ Dn. In 
particular applications, only certain constant, function, 
and relation symbols are actually used. 

Usually = is left out, while allowing = in formulas as we 
do. Thus you see 

(D,dn,fnm,rnm)



COMPLETENESS THEOREM FOR PREDICATE 
CALCULUS - AGAIN

In predicate calculus, we have assertions (formulas) and 
structures. The assertions and the structures are required to 
be of a specific kind which we have just reviewed. 

Formulas are true or false only relative to models. Thus we 
speak of a given formula as being true in a given model. 

PREDICATE CALCULUS COMPLETENESS THEOREM (Gödel 1928). There is 
a basic finite set of axioms and rules of inference, operating 
on the formulas, such that the following holds. A formula is 
true in all structures if and only if it is provable in this 
system. 



RELATIVE COMPLETENESS THEOREM FOR 
PREDICATE CALCULUS

PREDICATE CALCULUS COMPLETENESS THEOREM (Gödel 1928). There is a basic finite set 
of axioms and rules of inference, operating on the formulas, such that the 
following holds. A formula is true in all structures if and only if it is provable 
in this system. 

The completeness theorem is not quite in the form that we 
want. Here is the really useful Corollary.

RELATIVE COMPLETENESS THEOREM. There is a basic finite set of 
axioms and rules of inference, operating on the formulas, such 
that the following holds. Let T be a set of formulas and A be 
a formula. A is true in all structures satisfying T if and 
only if A is provable from T in the system.

From now, we will use the relative completeness theorem, and 
speak of “the axioms and rules of predicate calculus”. We 
don’t need to be specific about them.  



COMPLETE AXIOMATIZATIONS OF STRUCTURES
Modern adventures in completeness often take on the following 
fundamental character. 

1. An important mathematical structure M is identified.

2. M predicate calculus is predicate calculus that uses only 
symbols for the components of M. 

3. A set T of formulas in M predicate calculus are chosen that 
are true in M. 

4. It is shown that a formula of M predicate calculus is true 
in M iff it can be proved from T (using the axioms and rules of 
M predicate calculus). 

T is called a COMPLETE AXIOMATIZATION of M. In order to be 
interesting, T must be “nice”. Finite is best, but sometimes 
this is impossible. Computability of T is generally a bare 
minimum requirement.



COMPLETE AXIOMATIZATIONS OF STRUCTURES

CHALLENGE: Prove that every structure has a complete 
axiomatization.

CHALLENGE: Suppose M has a complete axiomatization that is 
computable. Then the set of sentences true in M is computable.



SOME STRUCTURES THAT HAVE INTERESTING 
COMPLETE AXIOMATIZATIONS

1. An important mathematical structure M is identified.
2. M predicate calculus is predicate calculus that uses only symbols for the 
components of M. 
3. A set T of formulas in M predicate calculus are chosen that are true in M.
4. It is shown that a formula of M predicate calculus is true in M iff it can be 
proved from T (using the axioms and rules of M predicate calculus). 
T is called a COMPLETE AXIOMATIZATION of M. 

We present simple complete axiomatizations for some 
structures. Here N = set of nonnegative integers, Z = set of 
integers, Q = set of rational numbers, R = set of real 
numbers, and C = set of complex numbers. 

(Q,=)  (Z,=)  (N,=)
(Q,S)  (Z,S)  (N,S)
(Q,<)  (Z,<)  (N,<)

(Q,0,+,-)    (N,0,1,+)
(R,0,1,+,-,•)  (C,0,1,+,-,•)

Here S is the successor function.



(Q,=), (Z,=), (N,=) 
1. Axioms and Rules of Predicate Calculus for just =.
2. (∃y)(y ≠ x1 ∧ ... ∧ y ≠ xn). 
Note that 2) has infinitely many axioms. It is known that 
these structures have no finite complete axiomatization. 

We give some idea of how we prove this is a complete 
axiomatization. The method is called ELIMINATION OF 
QUANTIFIERS. 

All of the other complete axiomatizations that we give are 
verified using this method, or variants of this method.  

In this case, this method shows that every formula (for =) is 
provably (in 1,2) equivalent to a formula without quantifiers.

This is proved by induction on formulas (for =), which leads to 
the key induction step - the quantifier elimination step.   



(Q,=)  (Z,=)  (N,=)
quantifier elimination step

1. Axioms and Rules of Predicate Calculus for just =.
2. (∃y)(y ≠ x1 ∧ ... ∧ y ≠ xn).

The key step is to consider a formula (∃x)(A) for just =, where 
A has NO QUANTIFIERS. Then show that it is provably (in 1,2) 
equivalent to a formula B with no quantifiers. 

This will show that every formula for just = is provably (in 
1,2) equivalent to a quantifier free formula, by induction.

Quantifier free formulas are easy to analyze within 1,2. This 
leads quickly to: every sentence for just = is provable or 
refutable in 1,2. This leads quickly to: every formula true in 
in any of these three structures is provable in 1,2.

 



QUANTIFIER ELIMINATION
CHALLENGE: Let T be any set of formulas in predicate calculus. 
Suppose that every formula (∃x)(A) using symbols in T, where A 
is quantifier free, is provably (in T) equivalent to a 
quantifier free formula using symbols in T. Then every formula 
using symbols in T is provably (in T) equivalent to a 
quantifier free formula using symbols in T.

If the above holds, then we say that T admits quantifier 
elimination.

CHALLENGE: Suppose T is true in M, T admits quantifier 
elimination, and T proves or refutes every atomic formula with 
at most one variable. Then T is a complete axiomatization of M. 

CHALLENGE: Suppose T is true in M, T admits quantifier 
elimination, and T proves or refutes every atomic sentence, and 
there is a constant symbol. Then T is a complete axiomatization 
of M.    



(Q,=), (Z,=), (N,=)  
quantifier elimination step

1. Axioms and Rules of Predicate Calculus for just =.
2. (∃y)(y ≠ x1 ∧ ... ∧ y ≠ xn).

The real work is to understand (∃x)(A), where A is quantifier 
free, from the point of view of 1,2. 

Put A into disjunctive normal form (lecture 1). We get a 
disjunction of formulas of the form (∃x)(B), where B is a 
conjunction of literals (lecture 1). We need only work on each 
of these (∃x)(B). 

By other simple logical manipulations, we can assume that the 
conjuncts of B are of the form x = v, x ≠ v, for various 
variables v other than x.

It is then easy to see how (∃x)(B) is provably (in 1,2) to a 
quantifier free statement involving only the v’s. I.e., we 
have eliminated the quantifier (∃x). 



(Q,S), (Z,S)

1. Axioms and Rules for Logic. 
2. S(x) = S(y) ➞ x = y.
3. (∃y)(S(y) = x).
4. S...S(x) ≠ x.

(N,S)
1. Axioms and Rules for Logic. 
2. S(x) = S(y) ➞ x = y.
3. (∃!x)(∀y)(S(y) ≠ x).
4. S...S(x) ≠ x.

In both cases, we again use infinitely many axioms. This is 
known to be necessary here. 

For the next three examples, we will be able to get finite 
complete axiomatizations.

 



(Q,<)
1. Axioms and Rules of Logic.
2. ¬x < x, x < y ∧ y < z ➞ x < z, x < y ∨ y < x ∨ x = y.
3. (∃y)(x < y), (∃y)(y < x). 
4. x < y ➞ (∃z)(x < z < y).

(Z,<)
1. Axioms and Rules of Logic.
2. ¬x < x, x < y ∧ y < z ➞ x < z, x < y ∨ y < x ∨ x = y.
3. (∃y)(x < y ∧ (∀z)(¬(x < z < y))).
4. (∃y)(y < x ∧ (∀z)(¬(y < z < x))).

(N,<)
1. Axioms and Rules of Logic.
2. ¬x < x, x < y ∧ y < z ➞ x < z, x < y ∨ y < x ∨ x = y.
3. (∃x)(∀y)(x < y ∨ x = y). 
4. (∃y)(x < y ∧ (∀z)(¬(x < z < y))).
5. y < x ➞ (∃y)(y < x ∧ (∀z)(¬(y < z < x))).



(Q,0,+,-)
1. Axioms and Rules of Logic.
2. x+y = y+x, (x+y)+z = x+(y+z), x+0 = x, x+(-x) = 0.
3. x+...+x = 0 ➞ x = 0.
4. (∃y)(y+...+y = x).

(N,0,1,+)
1. Axioms and Rules of Logic.
2. x+1 ≠ 0, x+1 = y+1 ➞ x = y, x+0 = x, (x+y)+1 = x+(y+1).
3. A[x/0] ∧ (∀x)(A ➞ A[x/x+1]) ➞ A, where A is a formula for 
0,1,+. (This is called the induction scheme).

Both of these use infinitely many axioms, and this is 
necessary. The second axiomatization is of a quite different 
style, using the induction scheme 3). 

The final two axiomatizations also necessarily use infinitely 
many axioms.



(R,0,1,+,-,•)

1. Axioms and Rules of Logic.
2. x+y = y+x, (x+y)+z = x+(y+z), x+0 = x, x+(-x) = 0.
3. x•y = y•x, (x•y)•z = x•(y•z), x•1 = x, x•(y+z) = x•y + x•z.
4. x•y = 0 ➞ x = 0 ∨ y = 0. 
5. x12 + ... + xn2 ≠ -1.
6. (∃y)(y2 = x ∨ y2 = -x).
7. xn ≠ 0 ➞ (∃y)(xnyn + xn-1yn-1 + ... + x1y + x0 = 0), n odd.

(C,0,1,+,-,•)

1. Axioms and Rules of Logic.
2. x+y = y+x, (x+y)+z = x+(y+z), x+0 = x, x+(-x) = 0.
3. x•y = y•x, (x•y)•z = x•(y•z), x•1 = x, x•(y+z) = x•y + x•z.
4. x•y = 0 ➞ x = 0 ∨ y = 0. 
5. 1+...+1 ≠ 0.
6. xn ≠ 0 ➞ (∃y)(xnyn + xn-1yn-1 + ... + x1y + x0 = 0), n ≥ 1.



GÖDEL’S CURSE - INCOMPLETENESS
THEOREM. The structures (N,+,•), (Z,+,•), (Q,+,•) have no 
computable complete axiomatization.

We now present a much stronger kind of incompleteness generally 
called the Gödel First Incompleteness Theorem. Gödel never 
proved it in the great generality that we now cast it. 

Let T be a set of axioms in predicate calculus. We say that T 
is consistent if and only if it is free of contradiction. I.e., 
T does not prove both a sentence and its negation. 

Gödel’s completeness theorem tells us that T is consistent if 
and only if T is true in some structure; i.e., has a model. 

We say that T is complete if and only if every sentence using 
the symbols of T is either provable or refutable in T. 



FIRST INCOMPLETENESS THEOREM

Robinson Arithmetic uses the symbols 0,S,+,•, and has finitely 
many axioms which are obviously true in (N,0,S,+,•).

STRONG FIRST INCOMPLETENESS THEOREM. Let T be a consistent 
extension of Robinson Arithmetic with a computable set of 
axioms. Then T is not complete. I.e., there is a sentence 
using symbols of T that is neither provable nor refutable in 
T. 

What is this Robinson Arithmetic that is sufficient to ruin 
completeness? It is surprisingly primitive. 



ROBINSON ARITHMETIC
STRONG FIRST INCOMPLETENESS THEOREM. Let T be a consistent extension of Robinson 
Arithmetic with a computable set of axioms. Then T is not complete. I.e., there is 
a sentence using symbols of T that is neither provable nor refutable in T. 

1. Axioms and Rules for Logic using 0,S,+,•. 
2. S(x) ≠ 0, S(x) = S(y) ➞ x = y, x ≠ 0 ➞ (∃y)(x = S(y)).
3. x+0 = x, x+S(y) = S(x+y).
4. x•0 = 0, x•S(y) = x•y + x. 

In the Strong First Incompleteness Theorem, we even allow T to 
add new symbols to those of Robinson Arithmetic.

CHALLENGE: Show that Robinson Arithmetic does not prove 
0+x = x.



GÖDEL’S SECOND INCOMPLETENESS THEOREM
The Second Incompleteness Theorem focuses on the issue of how 
we can mathematically prove that mathematics itself is free of 
contradiction. 

The Second Incompleteness Theorem appears to ruin any hope of 
accomplishing this. 

Let T be a computable set of axioms that is sufficiently 
powerful to do a lot of standard mathematics. There are plenty 
of examples of such T. The restriction to finitely many axioms 
turns out to be rather mild for present purposes. 

T will be able to handle predicate calculus, and, as a special 
case, handle T. Specifically, T will be able to formulate the 
consistency of sets of sentences. In particular, T will be 
able to formulate the statement that 

T is consistent; i.e., free of contradiction.  



GÖDEL’S SECOND INCOMPLETENESS THEOREM

THEOREM. Under very general conditions, if T is consistent, 
then T does not prove “T is consistent”. 

In Lecture 5, next week, we will present the standard 
foundations for mathematics, which is a system called ZFC = 
Zermelo Frankel set theory with the Axiom of Choice. 

THEOREM. If ZFC is consistent, then ZFC does not prove “ZFC is 
consistent”.

CHALLENGE: Assume ZFC is consistent. Find a sentence A such 
that ZFC + A is consistent and proves that ZFC + A is 
inconsistent.
  
We still have to be careful about the exact formulation of this 
Theorem. We need to have a sentence that appropriately 
expresses “ZFC is consistent” from the point of view of ZFC. 

We can of course just formalize “ZFC is consistent” using the 
symbols of ZFC. This, however, is extremely tedious, and no two 
people would ever do it in exactly the same way. 



GÖDEL’S SECOND INCOMPLETENESS THEOREM

Furthermore, we would then have the puzzling situation of one 
of the great theorems of mathematics being also one with one 
of the most complicated and ugly statement!! 

So clearly we want a general sensible and relevant criteria 
for 

a reasonable formalization, within T, of 
the consistency of T.

There has been progress on this matter in several directions. 
One emerging approach is the criteria that 

the formalization of consistency is based on 
any formalization of predicate calculus 

which supports the Gödel Completeness Theorem. 



IS MATHEMATICS FREE OF CONTRADICTION?
As a consequence of Gödel’s Second Incompleteness Theorem, it 
appears that we are resigned to accepting the consistency of 
mathematics on faith, as we are not going to prove that 
mathematics is consistent without going beyond the mathematics 
that we are proving consistent. 

But there may be a glimmer of hope for getting around this. At 
this point, it is only a fantasy.

Perhaps we can prove, for example, that ZFC is consistent using 
a portion of ZFC together with observations from the physical 
world. 

Gödel’s Second Incompleteness Theorem does not seem to preclude 
this possibility - however fantastic.

CHALLENGE: Defeat Gödel’s curse.  


