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I discuss my efforts concerning 3 crucial issues in the
foundations of mathematics that are deeply connected with the
great work of Kurt Gödel.

A. To what extent can set theoretic methods be used in an
essential way to further the development of normal
mathematics?

B. Are there fundamental principles of a general
philosophical nature which can be used to give consistency
proofs of set theory, including the so called large cardinal
axioms?

C. To what extent, and in what sense, is the natural
hierarchy of logical strengths rep resented by familiar
systems ranging from exponential function arithmetic to ZF +
j:V Æ V robust?

Our discussion of A is aimed at mathematicians; B,C at
mathematicians & philosophers.

A1. HIGH SCHOOL SEQUENCES AND COLLEGE CONTINUITY.

There exists a longest sequence in 2 letters, x1,...,xn, such
that no block xi,..., x2i is a subsequence of a later block
xj,..., x2j. The longest length is n(2) = 11.

This was used as a problem for gifted high school students by
Paul Sally at U. Chicago. One student proved n(2) = 11.

There is a longest sequence x1,...,xn in 3 letters such that
no block xi,...,x2i is a subsequence of a later block
xj,...,x2j. Call this longest length n(3).

THEOREM A1.1. n(1) = 3, n(2) = 11, n(3) > A7198(158386).

Here Ak(n) is the kth level of the Ackermann hierarchy
(starting with A1 = doubling) at n.
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THEOREM A1.2. ("k)(n(k) exists) is provable in 3 quantifier
induction but not in 2 quantifier induction.

In fact, the growth rate of n(k) lies just beyond the
multirecursive functions.

In College Continuity, we use the usual notion of pointwise
continuity for functions f:A Æ B, where A,B are (countable)
sets of real numbers.

The following statement looks like it comes from the era of
classical descriptive set theory, but is new:

THEOREM A1.3. Let A,B be countable sets of real numbers.
There is a one-one continuous f:A Æ B or a one-one continuous
g:B Æ A.

This requires a transfinite induction argument of length w1

in several senses. From the reverse math point of view:

THEOREM A1.4. A1.3 is provably equivalent to ATR0 over RCA0.

This holds even for countable sets of rational numbers.

A2. FINITE TREES.

The first finite combinatorial theorem shown to be unprovable
in PA appeared in 1977 by Jeff Paris and Leo Harrington.

By 1977, I had obtained some finite statements independent of
even ZFC, but they had nowhere near the simplicity of PH.

At that time, my best contributions concerning independence
lie in the Borel world, and are discussed below.

The ideas in PH were expected to be pushed to get the
ultimate similarly natural finite statements corresponding to
ZFC and beyond.

However, this remained elusive, and the ideas in PH seem
insufficient to move forward significantly.

There were some limited advances (e.g., work with McAloon and
Simpson), but real progress came from something unrelated to
PH  the celebrated theorem of J.B. Kruskal:



3

THEOREM A2.1. (KT). In any infinite sequence of finite trees,
one tree is inf preserving embeddable into a later tree.

This was the first satisfying semifinite statement provable
in ZFC but not predicatively provable. KT is not provable in
ATR and corresponds to bar induction for ’1

2 formulas.

The original finite forms of KT involve finite sequences of
finite trees, and are also predicatively unprovable:

THEOREM A2.2. (FKT). Let n >> k ≥ 1 and T1,...,Tn be finite
trees, where each Ti has at most k+i vertices. Then ($i <
j)(Ti is inf preserving embeddable into Tj).

Finite sequences of controlled growth rates provide a natural
unifying method for generating finite forms from semifinite
forms, such as KT. It is also a natural setting for new
investigations connecting combinatorial analysis and proof
theory; see recent work of Weiermann.

Despite the naturalness of FKT, 20 years went by before my
discovery of finite versions involving only a single
sufficiently large finite tree, whose mathematical interest
can be clearly identified separately from KT.

THEOREM A2.3. Let r >> k,n ≥ 1, and T be an n-labeled finite
prefect tree of uniform valence k and uniform height r. There
is an inf, label, terminal preserving embedding from a
truncation of T into a higher truncation of T.

A2.3 is also predicatively unprovable and corresponds roughly
to bar induction for ’1

2 formulas.

The celebrated graph minor theorem of Robertson and Seymour:

THEOREM A2.4. (GMT) In every infinite sequence of finite
graphs, one graph is minor included in a later one.

A2.4 cannot be proved in ’1
1-CA0, and can be proved in ’1

1-CA
+ BI. Appropriate finite forms have been given.

A3. BOREL DETERMINACY AND REAL ANALYSIS.

My first unusual independence result was obtained in 1968
and published in 1971: Borel determinacy cannot be proved in
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ZC, or even using the cumulative hierarchy up to any suitably
specified countable ordinal.

At that time, D.A. Martin had only proved BD from ZFC with
large cardinals. In 1974, he proved BD using the cumulative
hierarchy on each countable ordinal, completing the circle.

In 1982, I found the following purely analytic form of BD.

THEOREM A3.1. Let E Õ ¬ x ¬ be a Borel set that is symmetric
about the origin. Then E contains or is disjoint from the
graph of a Borel function from ¬ into ¬.

Like BD, A3.1 corresponds to the cumulative hierarchy on all
countable ordinals.

Recently, I have found a new set of examples from real
analysis that exhibit this and other incompleteness
phenomena, that appear in work of the functional analysts
Debs and Saint Raymond. This is discussed in section A5.

A4. BOREL DIAGONALIZATION.

In 1974, I discovered Borel diagonalization, which led to
Borel statements that can be proved with large cardinals but
not in ZFC.

The 1974 statements are the denials of Borel versions of
“there are uncountably many real numbers”. Clearly $ a Borel
diagonalizer F:¬• Æ ¬.

THEOREM A4.1. There is no invariant Borel diagonalizer F:¬•

Æ ¬. I.e., no Borel F:¬• Æ ¬ such that rng(x) = rng(y) Æ
F(x) = F(y), and where each F(x) is off of x.

A4.1 can be proved in Z3 but not in Z2.

From 1974 to the early 1980’s I looked for stronger Borel
diagonalization statements.

THEOREM A4.2. $ no invariant Borel diagonalizer for any Borel
equivalance relation.

A4.2 corresponds to the cumulative hierarchy on all countable
ordinals.
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THEOREM A4.3. Let F be an isomorphically invariant Borel
function from infinite sequences of finitely generated groups
into finitely generated groups. Then all of the values of F
at infinite subsequences of some fixed infinite sequence are
isomorphically embeddable in some term of that fixed
sequence.

A4.3 is one among a complex of my Borel statements from the
80’s that can be proved using a measurable cardinal but not
using sharps, even if it is relativized to L. (There are
sharper results).

A5. BOREL SELECTION.

Recently, we analyzed a complex of Borel statements of
Debs/Saint Raymond of U. Paris. They stated them more
generally with coanalytic. The incompleteness phenomena are
already present with Borel. This is a new chapter in Borel
independence results.

Let S Õ A2. f is a selection for S on A iff dom(f) = A and
for all x Œ A, (x,f(x)) Œ S.

f is a selection for S iff f is a selection for S on dom(S).

THEOREM A5.1. Let S Õ NN x NN be Borel, and E Õ NN be Borel.
If $ a continuous selection for S on every compact subset of
E, then $ a continuous selection for S on E.

THEOREM A5.2. Let S Õ NN x NN be Borel. If $ a constant
selection for S on every compact set, then $ a Borel
selection for S.

A5.1, A5.2 correspond to the cumulative hierarchy on all
countable ordinals.

PROPOSITION A5.3. Let S Õ NN x NN be Borel. If $ a Borel
selection for S on every compact set, then $ a Borel
selection for S.

A5.3 is independent of ZFC, and can be forced.

A6. BOOLEAN RELATION THEORY.

Let f:Ak Æ B and C be a set. Write fC for the set of all
values of f at elements of C.
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The most primitive examples of BRT are:

THEOREM A6.1. For all f:Nk Æ N there exists infinite A Õ N
such that fA ≠ N.

THEOREM A6.2. " strictly dominating f:Nk Æ N, $ infinite A Õ
N such that fA = N\A.

A6.1 is provable in ACA but not in ACA0. A6.2 is provable in
RCA0.

Observe that these assert “for all multivariate maps of a
certain kind there is a set of a certain kind such that a
Boolean relation holds between the set and its image under
the map”.

In (equational) BRT, we look at statements of the form “for
all k multivariate maps of a certain kind, there exists n
sets of a certain kind such that a particular Boolean
equation holds between the sets and their images under the
maps”.

THEOREM A6.3. Consider BRT with 2 multivariate maps from N
into N of expansive linear growth and 3 infinite subsets of
N. Among the 2512 such statements (up to formal Boolean
equivalence), some are provable using large cardinals but not
in ZFC.

CONJECTURE. Every one of the 2512 can be proved or refuted
using large cardinals (even Mahlo cardinals of finite order).

This conjecture seems out of each. For about two years, I
searched for an appropriate subclass of the 2512 for which I
could establish this conjecture. In March, 2002, I found
something truly unexpected.

A7. THE UNEXPECTED.

PROPOSITION A7.1. For all multivariate functions from N into
N of expansive linear growth, there exist infinite A,B,C Õ N
such that
A U. fA Õ C U. gB
A U. fB Õ C U. gC.
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Here U. indicates disjoint union. Thus U. is the same as U
together with the assertion that the terms in the union are
disjoint.

There are 34 = 81 such inclusions, and 812 = 6561 ordered
pairs.

Here is the truly unexpected.

THEOREM A7.2. A7.1 is provable using Mahlo cardinals of
finite order but not in ZFC. But with all other pairs of
inclusions (up to symmetry), we have decidability within RCA0.

B1. IS SET THEORY CONSISTENT?

To the true believer in set theory (with large cardinals),
formal set theory (with large cardinals) is consistent since
the axioms are true; by induction, the theorems are true. No
justification is necessary.

There have been a number of attempts to informally justify
(at least the consistency of) the axioms of ZFC, and also to
informally justify (at least the consistency of) the axioms
of ZFC with large cardinals.

My approach to this problem is to search for some clear
unifying principles that stand independently of set theory
and even mathematics, and then show that set theory (with
large cardinals) is interpretable using these principles. The
simplicity of such principles and their distance from set
theory and mathematics are to be maximized.

The principles are generally given by philosophical stories,
which will undoubtedly need careful modification and polish
over a considerable period of time.

I regard the results discussed below as highly suggestive,
but definitely not decisive.

I conjecture that this approach can be carried out based on a
variety of common sense notions from everyday life. In fact,
pushing virtually any common sense notion too far leads to
contradictions, and we conjecture that there is a common way
to resolve such contradictions which provides formalisms that
are mutually interpretable with set theory (with large
cardinals).
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B2. THE EXPANDING MIND/1.

I assume a mind M that will grow more powerful, indefinitely.
We let M = M[1],M[2],M[3],..., be an infinite sequence of
minds, representing “critical” stages in the unending
expansion of M.

One measure of the power of a mind is the unary/binary
relations on N that it can define. We do not specify
precisely how the minds make such definitions. Ordinary
arithmetic and logical operations are available to any mind.

Also each mind can imagine the infinite sequence of
successively more powerful minds under discussion, which can
be used to define unary and binary relations on N. However,
no mind can have access to individual unary/binary relations
defined by a more developed mind. Otherwise, the two minds
would define the same unary/binary relations on N.

The previous paragraph yields an appropriate comprehension
axiom scheme for unary/binary relations on N defined by
M[i], involving the sequence M[1],M[2],... .

0ne mind fully dominates another if $ a binary relation on N
defined by the former whose cross sections are the unary
relations on N defined by the latter. I use that each M[i+1]
fully dominates M[i].

I also use that the present/future looks the same to all
M[i]. I.e., M[i],M[i+1],... and M[i+1],M[i+2],... satisfy the
same appropriate formulas with parameters from N, or even
parameters from the unary/binary relations on N defined by
M[i].

I can interpret ZFC + #’s in this philosophical story, and
the philosophical story can be interpreted in ZFC +
measurable cardinal. There are sharper results.

B3. THE EXPANDING MIND/2.

Here we obtain substantial strength with only two minds, M
and the more powerful M*. M has its domain of objects d(M),
and M* has its domain of objects d(M*), where every object of
M is an object of M* but not vice versa. Thus d(M*) is richer
than d(M).
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One measure of the strength of a mind is the unary/binary
relations on its domain that the mind M can define.
Those relations are given by mental constructions of M that
output the truth value of the relation at arguments from
d(M). The same relation may be given by different mental
constructions, as relations are extensional and constructions
are intensional.

I assume that every mental construction of M is a mental
construction of M*. Its range of applicability under M is
d(M) and its range of applicability under M* is d(M*).

I use a very strong form of comprehension for the unary/
binary relations defined by M. M can use not only M* but any
individual unary/binary relations defined by M*, for the
purposes of defining unary/ binary relations.

I assume that M* fully dominates M in the sense that there is
a binary relation defined by M* whose cross sections are the
unary relations defined by M.

I also assume that M and M* agree on the truth values of all
appropriate statements with parameters from the objects of M
and the mental constructions of M.

The interpretation power of this philosophical story lies
between a proper class of Woodin cardinals and an elementary
embedding from a rank +1 into a higher rank +1.

WARNING: There are basic incompatibilities between version 1
and version 2.

This story can be extended in an appropriate way to an
infinite sequence of minds M,M*,M**,... . This leads to a
philosophical story of interpretation power between n-huge
cardinals and a rank into itself.

The axiom of choice is not a natural part of these stories,
so we sometimes rely on work of Woodin on the interpretation
of the axiom of choice in large cardinals.

C1. THE MATHEMATICAL LOGICAL UNIVERSE.

There appears to be a natural hierarchy of formal systems
considered in mathematical logic.
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They range from, say, EFA (exponential function arithmetic)
through the largest of the large cardinal axioms.

There are plenty of interesting/natural incompatibilities
(e.g., ZC versus ZF), but there does not seem to be any
really interesting/natural incompatibilities in terms of
interpretation power.

This suggests an underlying hidden structure of striking
robustness. But how do we get at this since it is easy to
construct lots of theories, no one of which is interpretable
in any other, even using single axioms?

My approach to this problem is to consider only the SIMPLE
first order axiomatic theories in first order predicate
calculus with equality. Here theories are required to be
presented as finitely many axioms together with finitely many
axiom schemes.

The intention is that no matter what notion of “simple” is
used, there are only finitely many simple theories (up to
change of letters).

C2. SIMPLICITY CONJECTURES.

To make some formal conjectures, we choose a specific
reasonable looking experimental context.

We consider theories T in first order predicate calculus with
one binary relation and equality, given by finitely many
formulas and formula schemes. The complexity is taken to be
the total number of atomic formulas. For instance, consider
the theory

($z)("w)(w Œ z ´ ((z Œ x ⁄ z = y) Ÿ j[z])).

j[z] indicates that j is any formula without z free. This
theory is mutually interpretable with PA, and its complexity
is 4.

Note that there are only finitely many theories of any given
complexity, up to change of letters.
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CONJECTURE 1. Every consistent theory of complexity £ 4 is
interpretable in ZFC. Any two which interpret EFA are
interpretation comparable.

CONJECTURE 2. For small n, any two theories of complexity £ n
interpreting EFA are interpretation comparable, the highest
one among the consistent ones being mutually interpretable
with a standard formal system of set theory. A variety of
levels of the mathematical logical universe can be identified
in this way.

Here is a more focused form of Conjecture 2:

CONJECTURE 3. There exists n such that every consistent
theory of complexity £ n is interpretable in ZFC + $
supercompact cardinal, and ZFC + $ measurable cardinal is
interpretable in some consistent theory of complexity £ n.
Among these that interpret EFA, we have interpetation
comparability.

C3. SIMPLICITY IN SET THEORY.

I discuss set theory with the usual primitives Œ,=, with the
following notion of simplicity for sentences: the number of
quantifiers.

Schematic letters are not needed here since we are in the set
theory context.
I came across the following statement in class theory:

Every proper transitive class has a four element chain.

I.e., there are four elements of the class that form a chain
under proper inclusion.

This is independent of MKC, and equivalent to “On is a subtle
cardinal” over VBC.

Here is the purely set theoretic formulation:

The transitive sets with no four element chains form a set.

This is equivalent to ZFC + a subtle cardinal.

In fact, the rank and cardinality of this extremely
elementary set is the first subtle cardinal.
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The set theoretic version has 7 quantifiers, but there is a
modification that has 6 quantifiers and is equivalent to
“there are arbitrarily large subtle cardinals” over ZFC. This
is the simplest known independence result from ZFC in terms
of the # of quantifiers in primitive notation.

There is a paper by Daniel Gogol from the late 70’s claiming
that all 3 quantifier sentences are decided in ZFC, with
admittedly lots of details missing.

I can supply the details, and a very small fragment of ZFC
suffices.

I conjecture that all 4 quantifier sentences are provable or
refutable in ZFC, and all 6 quantifier sentences are provable
or refutable in ZFC + “there are arbitrarily large subtle
cardinals”.

I conjecture that, in the presence of ZFC, we have
interpretation comparability among the 9 quantifier
sentences, and the highest among the consistent ones is
mutually interpretable with a set theory representing one of
the highest levels of the large cardinal hierarchy.

I conjecture that a more detailed stratification of the
mathematical logical universe arises when one considers not
only the count on the quantifiers but also the number of
atomic formulas. Our 6,7 quantifier examples have a
particularly small number of atomic formulas.

Under any of these reasonable complexity measures, at some
point, utter chaos sets in via unabashed Gödel coding, but
when and in what sense? In the low teens?

I conjecture that all incremental roads from the immediately
obvious to the inconsistent pass through the large cardinal
hierarchy and then through logical chaos.
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