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ABSTRACT: Russell’s way out of his paradox via the impre-
dicative theory of types has roughly the same logical power
as Zermelo set theory - which supplanted it as a far more
flexible and workable axiomatic foundation for mathematics.
We discuss some new formalisms that are conceptually close to
Russell, yet simpler, and have the same logical power as
higher set theory - as represented by the far more powerful
Zermelo-Frankel set theory and beyond. END.

The famous Russell’s paradox for sets arises out of the
intuitively appealing naive principle of full comprehension
written

($x)("y)(y Œ x ´ j),

where j is a logical formula involving ",$,&,v,ÿ,Æ,´,Œ, and
variables in which x is not free. The variables are thought
of as ranging over sets. Here x,y are any distinct variables.

In particular, the simple special case

($x)("y)(y Œ x ´ y œ y)

generates the inconsistency by fixing such an x and uni-
versally instantiating y by x, thus obtaining

x Œ x ´ x œ x.

Russell’s Paradox also makes perfectly good sense in other
contexts besides set theory – e.g., in a theory of
predicates. Here the naive comprehension axiom scheme takes
the notationally similar but distinct form

($P)("Q)(P(Q) ´ j),
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where j is a logical formula involving ",$,&,v,ÿ,Æ,´ ,(),
and variables, where P is not free in j. This time the
variables are thought of as ranging over predicates. Here P,Q
are any distinct variables.

Why do I draw a distinction between the set version of
Russell’s Paradox and the predicate version? One big
difference between the way sets and predicates are thought of
is in terms of extensionality. We have pre-ferred not to use
equality as primitive, and so extension-ality for sets takes
on the form

("z)(z Œ x ´ z Œ y) Æ ("z)(x Œ z ´ y Œ z).

Extensionality is in accordance with the usual way of
thinking about sets.

However, the corresponding statement about predicates,

("R)(P(R) ´ Q(R)) Æ ("R)(R(P) ´ R(Q)),

does not seem appropriate. For instance, one may distinguish
different predicates P,Q such that P,Q fail at every
argument, where P,Q can be distinguished by another predicate
R. Then we have ("R)(P(R) ´ Q(R)) and yet ÿ("R)(R(P) ´
R(Q)).

Yet another important distinction between certain notions of
predication and sets will be relevant later in the
discussion.

Frequently people still use the notation x Œ y even if x,y
are predicates and we are asserting that y holds at x. We
will follow this convention. Then the distinction between
predicates and sets may come at the point at which we decide
to include or exclude EXT.

Now after his discovery of Russell’s Paradox, Russell
embarked on a series of developments to repair the damage. It
is customary to identify two proposals of Russell to get out
from under his Paradox.

Russell’s proposed ways out go under the name of various
theory of types, and have been simplified and streamlined in
many ways since Russell. Russell actually used a very
complicated type structure.
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In modern treatments of the theory of types, one usually goes
to the simplest possible type structure (with infinitely many
types). This is where the types are identified with
nonnegative integers. Membership x Œ y is considered well
formed only if the type of y is exactly one higher than the
type of x. These types appear explicitly as superscripts on
the variables.

Regardless of the type structure chosen, Russell’s original
proposal is now identified with the predicative theory of
types, which we shall call PTT. As we shall see, the
predicativity here refers to the decision to avoid any
semblance of the circularity in the inconsistent full
comprehension axiom scheme.

More specifically, Russell’s first proposal is identified
with PTT with extensionality (EXT) and infinity (INF),
presented below. And this is normally cast in the simple
theory of types. However, Russell realized that this
predicative approach proved to be too draconian, and allowed
no way of formalizing, say, the least upper bound principle
for the real numbers (every nonempty bounded set of real
numbers has a least upper bound).

(In connection with this point, there are modern for-
malizations of mathematics that avoid such things as the
least upper bound principle for the real numbers. But a
system such as PTT + EXT + INF is still woefully inadequate;
e.g., with respect to Cantor’s theory of closed subsets of
the real line.)

Now under this version of events, Russell addressed this lack
of power by moving to the impredicative theory of types,
IPTT. Thus it is customary to identify Russell’s second
proposal with IPTT + EXT + INF.

However, in actuality, Russell explicitly introduced a
principle of reducibility (RED) to augment the predicative
theory of types in his first proposal. In Russell’s context,
one then derives the impredicative theory of types from the
predicative theory of types and RED.

Granted, RED is equivalent to IPTT over PTT. But that does
not mean that there isn’t something to learn by first
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formulating and dwelling on PTT + EXT + INF + RED before
passing to IPPT + EXT + INF.

However, RED doesn’t seem to have a natural formulation in
the simple theory of types independently of just going
directly to IPTT. So RED gets put into the invisible back-
ground if the simple theory of types is used.

But in the context of a more complicated type structure than
the simple theory of types, RED has an appropriate
formalization. In particular, we use the cumulative type
structure.

In the cumulative type structure, or cumulative theory of
types, x Œ y is well defined exactly when the type of y is
strictly greater than the type of x; not just exactly 1
higher than the type of x.

In this context of the cumulative theory of types, we can
identify Russell’s second proposal with the system PTT + EXT
+ INF + RED, based on the cumulative theory of types.

In fact, Russell’s idea of Reducibility receded even further
into the background upon the next major development in
axiomatic foundations of mathematics.

This was the move by Zermelo to abolish all type theory in
favor of a single sorted theory where all variables range
over sets (no types). Zermelo set theory supports a much more
elegant and flex-ible formalization of mathematics than any
form of type theory.

Zermelo’s set theory was further extended by Frankel to
include the axiom scheme of Replacement. With some further
additions, ZFC emerged (Zermelo-Frankel set theory with the
axiom of Choice), which is now considered to be the standard
vehicle for the formalization of mathematics.

As you can see, post Russellian events as well as streamlined
history pushes us further away from the conceptions of
Russell with his type theory and axiom of Reducibility. In
addition, there is the general feeling that one loses
philosophical and conceptual purity in the process. So maybe
there is something to be gained by trying to go back to Rus-
sell’s way of looking at things. This seems particularly
tantalizing in light of the fact that the philosophical
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underpinnings of higher set theory are so murky – often
disguised in an overly cluttered technical frame-work.

We have now laid the ground-work for the presentation of our
new formalisms. However before doing this, we fulfill our
promise of presenting PTT, IPTT, EXT, INF, and RED in the
context of simple and cumulative type theory.

Simple type theory is based on infinitely many variables of
each type, where the types are identified with the non-
negative integers. Variables of sort n ≥ 0 are written xn.

PTT in simple type theory is the following scheme:

($xn+1)("yn)(yn Œ xn+1 ´ j),

where all variables occurring in j are of type £ n.

Actually, it is natural to relax this condition somewhat by
insisting only that all bound variables occurring in j are of
sort £ n, and all free variables occurring in j are of sort £
n+1.

If j is unrestricted (except we always need that xn+1 is not
free in j), then we get IPTT.

Extensionality (EXT) is formulated in the simple theory of
types as follows:

("zn)(zn Œ xn+1 ´ zn Œ yn+1) Æ ("zn+2)(xn+1 Œ zn+2 Æ yn+1 Œ zn+2)

Infinity (INF) is formulated in the simple theory of types as
follows:

($x2)($y1)(y1 Œ x2 & ("z1 Œ x2)($w1 Œ x2)(z1 Ã w1)).

Here Ã denotes proper inclusion.

We now give the formulation in the cumulative theory of
types. The cumulative theory of types is also based on
infinitely many variables of each sort, where the sorts are
identified with the nonnegative integers. Also variables of
sort n ≥ 0 are written xn. However, the atomic formulas are
more comprehensive; they are of the form xn Œ ym, where n < m.

PTT in the cumulative theory of types takes on the form
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($xn)(("y0)(y0 Œ xn ´ j0) &... & ("yn-1)(yn-1 Œ xn ´ jn-1)),

where n > 0 and where all variables occurring in j are of
type < n.

Actually, it is natural to relax this condition somewhat by
insisting only that all bound variables occurring in j are of
type < n, and all free variables occurring in j are of type £
n.

EXT in the cumulative theory of types is:

("z0)(z0 Œ xn ´ z0 Œ yn) & ... & ("zn-1)("zn-1 Œ xn ´ zn-1 Œ
yn) Æ ("zm)(xn Œ zm Æ yn Œ zm),

where 0 < n < m.

INF in the cumulative theory of types is exactly the same as
in the simple theory of types.

And now for a punch line. The axiom of Reducibility, RED, in
the cumulative theory of types is:

("xn)($ym)(("z0)(z0 Œ xn ´ z0 Œ ym) & ... & ("zm-1)(zm-1 Œ xn

´ zm-1 Œ ym)),

where n > m.

Thus RED asserts that by pas-sing to higher types, one gets
nothing really new about lower types. E.g., given x of type
8, there is always a y of type 4 such that x and y have the
same elements of each of types 0,1,2, and 3.

As indicated earlier, one easily proves that PTT + RED =
IPTT. For this reason, people focus on the simpler IPTT as
Russell’s main proposal, and also use the simple theory of
types rather the cumulative theory of types.

We have now set the stage for the discussion of one of our
new formalisms, K(W). The language is that of first order
predicate calculus based on Œ and the constant symbol W. W
represents a first set theoretic universe, whereas the
variables in K(W) range over the elements of a second,
larger, set theoretic universe.
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The rationale for having two set theoretic universes, and the
conceptual relationship between these two universes is
particularly crucial in the formulation of the third axiom of
K(W), and we post-pone the discussion of this until after we
have presented the first two axioms of K(W).

The first axiom of K(W) is just the usual axiom of
extensionality:

EXT. ("z)(z Œ x ´ z Œ y) Æ ("z)(x Œ z ´ y Œ z).

The second axiom (scheme) of K(W) is a strong formulation of
the characteristic move of Zermelo adapted to this context of
two set theoretic universes. We call this axiom scheme
Subworld Separation:

SS. ("x Œ W)($y Œ W)("z)(z Œ y ´ (z Œ x & j)), where j is a
formula in L(Œ,W) without y free.

Informally, SS says that for any x Œ W, we can form the set
{z Œ x: j(z)}, and know that it is an element of W. Here j
may mention W as well as arbitrary side parameters. If we
were to restrict j to be a formula in L(Œ), then we would
arrive at an equivalent scheme, since W can be used as a
parameter.

So far, the two EXT and SS, consitute the major charac-
teristic move of Zermelo that lead from Russell’s theory of
types to axiomatic set theory, naturally adapted to the
context of two set theoretic universes. And EXT does not even
need to be adapted.

In fact, EXT + SS do not even suffice to prove the existence
of more than two objects. It has a plethora of finite models.

So at this point you must be skeptical that we are going to
get something very far reaching by simply adding one more
axiom (scheme)!

The third and final axiom (scheme) of K(W) requires more
discussion, and is based on a conceptualization of the
relationship between the first set theoretic universe W, and
the second set theoretic universe over which the variables of
the theory range.
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The general philosophy is that at any time, we can attempt to
conceive of the entire set theoretic universe. But according
to Russell’s Paradox, as we later conceive of the entire set
theoretic universe, reflecting on the previous conception, we
obtain a yet larger set theoretic universe. However,
according to this general philosophy, nothing really new is
obtained – the first set theoretic universe is, for all
intents and purposes, the same as the second set theoretic
universe, even though it is not literally the same.

An important way to think of this sameness is geometric-ally.
We can view both of these set theoretic universes as
extending indefinitely far out into the horizon. But the
second set theoretic universe is longer than the first one.
Nevertheless the effect of the two horizons is that both set
theoretic universes look the same in isolation.

In fact, we can go even further. If we stand at any place in
the first set theoretic universe and look look at the entire
first set theoretic universe (up and down), what we see is
the same thing as if we were to look at the second set theor-
etic universe (up and down).

This a very familiar idea in geometry. For example, consider
the first interval [0,1) and the second interval [0,2).
Clearly from the point of view of any x Œ [0,1), [0,1) and
[0,2) look the same.

This is normally expressed mathematically by the existence of
an order isomorphism from [0,1) to [0,2) that sends x to x.
This can be expressed formally by introducing a unary
function symbol representing an isomormorphism. We can do
this for all x Œ [0,1) by adding a binary function symbol,
with the obvious axiom that for any choice of first argument
in the first interval, the cross section represents an order
isomorphism between the first and second interval that fixes
the chosen first argument.

This line of investigation leads to a whole series of new
geometrically motivated axiomatic set theories involving the
addition of virtual (cross sectional) isomorphisms, which now
appears to me to interpret not only ZFC but its extensions by
the higher axioms of infinity (large cardinals axioms) such
as the existence of a measurable cardinal.
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Let me stop discussion of this line of investigation by
calling this “geometric set theory” and “geometric foun-
dations of set theory.” Just as there were very surprising
and very significant completeness theorems in geometry due to
Tarski, we expect completeness theorems in geometric set
theory (for statements of limited complexity) that establish
the unique position of certain axiomatic set theories in the
logical universe.

Now let’s get back to the presentation of the third axiom
(scheme) of K(W). Here we will not expand the language past
L(Œ,W). Going back to the interval example with [0,1) and
[0,2), we can formulate the geometric idea we have been
discussing more awkwardly as follows. Let x Œ [0,1). We can
assert that, given any true statement internal to [0,1)
mentioning x and <, the exactly corresponding statement
internal to [0,2) mentioning x and < is also true. And we
might as well state this for any x1,...,xk Œ [0,1).

This somewhat awkward way of stating this geometric idea
immediately leads to a corresponding formulation of our long
awaited third axiom (scheme) of K(W). However, the final
formulation of the third axiom (scheme) will be simpler and
more direct. This intermediate formulation reads as follows:

ES. ("x1,...,xk Œ W)(jW Æ j), where k ≥ 0 and j is a formula
in L(Œ) with at most the free variables x1,...,xk.

Here jW is the result of relativizing all quantifiers in j to
W.

ES stands for “elementary submodel” which makes perfectly
good sense to mathematical logicians, as it is a fundamental
notion in model theory.

Now ES is outright logically equivalent to the following:

RED. ("x1,...,xk Œ W)(($y)(j) Æ ($y Œ W)(j)), where k ≥ 0
and j is a formula in L(Œ) with at most the free variables
x1,...,xk.

But this has the very same flavor as Russell Reducibility
(hence the name RED). We have come full circle right back to
Russell!

Let us recapitulate. The axioms of K(W) are:
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1.  EXT. ("z)(z Œ x ´ z Œ y)
Æ ("z)(x Œ z ´ y Œ z).
2. SS. ("x Œ W)($y Œ W)("z)(z Œ y ´ (z Œ x & j)), where j
is a formula in L(Œ,W) without y free.
3.  RED. ("x1,...,xk Œ W)
(($y)(j) Æ ($y Œ W)(j)), where k ≥ 0 and j is a formula in
L(Œ) with at most the free variables x1,...,xk.

K(W) is a very strong system.

The surprise is that K(W) interprets ZFC (Zermelo Frankel set
theory with the axiom of Choice). In fact, K(W) proves
outright a significant fragment of ZFC that is well known to
be sufficient to interpret ZFC. Specifically, K(W) proves all
of ZFC except for the axioms of Foundation and Choice. And
every theorem of K(W) that doesn’t mention W can be proved in
ZFC – in fact, without the axioms of Foundation and Choice.

What is particularly remarkable here is the combined effect
of SS and RED, in the presence of EXT. Zermelo’s SS pushed
Russell’s RED into the background. Each alone does not really
go very far. SS can’t prove the existence of more than two
objects, and has plenty of finite models. And RED has basic
geometric models such as [0,2) with W = [0,1), and Œ as <.
(One can even restrict to rational points only). Yet when
com-bined, they generate a system which interprets (and cor-
responds very closely to) the currently accepted generous
formalization for the whole of mathematics!

Now let us go back to the deep well of geometry. Recall the
discussion of [0,1) and [0,2) relative to any x1,..., xk Œ
[0,1). We said that given any true statement internal to
[0,1) mentioning x1,...,xk, the exactly corresponding
statement internal to [0,2) mentioning x1,...,xk is also true.

A geometer might say some-thing much stronger. Given any
statement about [0,1) mentioning x1,....,xk Œ   [0,1) and <,
the exactly corresponding statement about [0,2) mentioning
x1,...,xk is also true.

Now you might object to this by saying that “the right
endpoint of [0,1) is 1” and “the right endpoint of [0,2) is
2.” But the geometer thinks of [0,1) and [0,2) as abstract
geometric objects.
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In fact, both intervals are included in [0,3), and there is
an order automorphism of [0,3) that sends [0,1) onto [0,2)
and fixes any given finite list of x1,...,xk Œ [0,3).

This geometric idea leads directly to various. One of them is
particularly elegant.

The axioms of T(W1,W2) are:

1. EXT.
2. COMP. ($x Œ W2)("y Œ W1)(y
 Œ x ´ j), where j is a formula in L(Œ,W1,W2) in which x is
not free.
RES. ("x1,...,xk Œ W1)(j(W2) Æ j(W1)), where k ≥ 0 and j is a
formula in L(Œ,W2) with at most the free variables x1,...,xk.

Here COMP means “comprehension” and RES means “resemblance.”
We have deliberately formulated RES so that it again looks
like a form of Russell Reducibility! And now COMP looks like
Russell’s IPTT (with only two or three types)!

And what is the big surprise? T(W1,W2) goes far beyond even
ZFC, and into the depths of the mysterious large cardinal
hierarchy. Roughly at the level of strong forms of
indescribable cardinals. And it’s all surprisingly close to
Russell!!

We anticipate a whole new chapter in axiomatic set theory
where geometric ideas are transferred into the set theoretic
context, thereby generating corresponding axiomatic set
theories. We conjecture that all large cardinal axioms are so
geometrically generated. And the geometrically generated set
theories might have a natural limit determined by fundamental
geometric considerations.

We now formulate a basic principle of mathematics and
philosophy.

AXIOM. For every theorem there is a better theorem. For every
analysis there is a better analysis.

Recall K(W) = EXT + SS + RED. Now consider SS + RED.

We have now been able to show that even this system can
interpret all of ZFC! SS is Zermelo whereas RED is Russell.
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Also recall K(W1,W2) = EXT + COMP + RES. This is particularly
Russellian, as is K(W1,W2,...). Again, we can show that EXT
can be dropped, while preserving the strength of these
systems, which is well beyond ZFC and into the depths of the
large cardinal hierarchy.

We also have alluded to a reason to be interested in dropping
extensionality - it is inappropriate for the theory of
predicates. Yet SS + RED seem to make sense in the context of
predicates as well as in the context of sets. In a sense, one
is con-sidering limited domains of applicability when
interpreting these remaining two axioms set theoretically.

We can take these ideas further by distinguishing two forms
of predication. The first form is where one does not require
that a predicate be fully defined; it may reference a finite
list of objects as parameters. This can be referred as
mathematical predication.

A second kind of predication is pure predication, where one
is not allowed to reference objects as parameters. Any
parameters referenced would have to be removed in favor of a
description.

Under pure predication, the Subworld Separation axiom scheme
has to restricted so that j has at most the free variable x.
However, an additional restriction on SS is warranted – that
x be given by an explicit definition without parameters. In
addition, some restrictions on RED may also be appropriate,
although it is less clear how this is to be determined.

We now conjecture that SS and RED alone, even under such
restrictions, is sufficiently strong to provide an inter-
pretation of ZFC.

We already now that under such restrictions on parameters,
the system T(W1,W2) can interpret ZFC + indescribable
cardinals.

A natural extension of these ideas is to consider T(W1,W2,
...) based on the language L(Œ,W1,W2,...), which uses Œ and
the constant symbols W1,W2,... . The axioms are:

1. Extensionality.
2. COMP.
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RES. ("x1,...,xn Œ Wr) Æ (j(Wr+1) Æ j(Wr)), where n ≥ 0 and j
in L(Œ,Wr+1).

The geometry can be given by the intervals [0,1),[0,2),
..., all sitting inside [0,•).

This system corresponds to subtle cardinals of finite order
in ZFC, which goes even deeper into the mysterious large
cardinal hierarchy. But look! A type structure has reemerged
– W1,W2,..., - and moreover we are using Russel-lian
Comprehension, and RES is clearly a form of Reducibility. So
this is Russell all over again!

Thank you.


