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FOUNDATIONS OF MATHEMATICS
In mathematics, we find a huge variety of concepts. We also 
find “proofs” that we believe are beyond dispute. 

But what exactly are the rules of the game? I.e., what are the 
allowable methods of creating new concepts, and what are the 
allowable methods of reasoning in proofs? 

Some very precise (mathematical!) structures have evolved to 
address this question. These structures evolved through the 
efforts and insights of many mathematicians and mathematical 
philosophers, such as Cauchy, Dedekind, Boole, Cantor, Frege, 
Russell, Zermelo, Frankel, and others. 

The culmination of these efforts has led to the current 
foundations of mathematics called 

the ZFC axiom system. 



VARIETY OF MATHEMATICAL CONCEPTS
We find a huge variety of concepts in mathematics. For 
example: integers, rationals, reals, complexes, addition, 
subtraction, multiplication, exponentiation, sequence, 
series, less than, greater than, sets, functions, graphs, 
relations, member, semigroups, groups, rings, fields, 
integral domains, vector spaces, topological spaces, 
continuous functions, differentiable functions, analytic 
functions, and so forth. 

We also have logical notions that allow us to make 
assertions and do reasoning. 

We have already talked about the logical notions in the 
first two Lectures: the variables v1,v2,...; the connectives 

¬,∧,∨,➞,↔; the quantifiers ∀,∃, and =. These nine items can 
be reduced, but we gain very little by this, and it is not 
generally done. 



REDUCTION OF MATHEMATICAL CONCEPTS 
integers, rationals, reals, complexes, addition, subtraction, multiplication, 
exponentiation, sequence, series, less than, greater than, sets, functions, graphs, 
relations, member, semigroups, groups, rings, fields, integral domains, vector 
spaces, topological spaces, continuous functions, differentiable functions, analytic 
functions, and so forth.

We keep v1,v2,...,¬,∧,∨,➞,↔,∀,∃,=.

We definitely benefit from sharply reducing the mathematical 
concepts. 

Experience has shown that the most advantageous reduction is to 

SETS WITH THE MEMBERSHIP RELATION.

Alternative reductions have been proposed, but none have 
overthrown this classic standard choice of primitive concepts. 



SET THEORETIC FOUNDATIONS OF MATHEMATICS 
Everything is a set. The only mathematical relation is 
membership between sets, written ∈. I.e., x ∈ y. The logical 

symbols are v1,v2,...,¬,∧,∨,➞,↔,∀,∃,=.

All mathematical concepts are explicitly defined in terms of 

sets and v1,v2,...,∈,¬,∧,∨,➞,↔,∀,∃,=.

All mathematical proofs are conducted within the system ZFC = 
Zermelo Frankel set theory with the axiom of choice. ZFC looks 
like this:

1. Axioms and rules of logic for ∈,¬,∧,∨,➞,↔,∀,∃,=.
2. Axioms for set theory.

Do mathematicians adhere to ZFC? ABSOLUTELY YES, and 
ABSOLUTELY NO. We will explain later. 
 



AXIOM OF EXTENSIONALITY

The fundamental EXTENSIONALITY axiom of ZFC says that two sets 
are equal if and only if they have the same elements. 

This is written formally as 

(∀z)(z ∈ x ↔ z ∈ y) ➞ x = y.

This means that in order to define a set, we need only say 
exactly what its elements are. 

This supports set abstraction as a method of defining sets.

There are many other axioms of ZFC, as we shall see. 

Set abstraction is introduced on the next page. 



SET ABSTRACTION 
It is crucial to see how we treat various kinds of 
mathematical objects as sets, in order to understand the set 
theoretic foundations of mathematics. 

An important set formation construct is set abstraction:

{x: P(x)}

which is read “the set of all x such that P holds of x”. 
I.e., the set consisting of the x such that P(x). I.e., the 
set whose elements are exactly the x such that P(x).

HOWEVER, there may not be such a set. But

{x ∈ A: P(x)}

always exists, where A is a set (everything is a set!). This 
is a very fundamental axiom of set theory called SEPARATION.



WHAT’S WRONG WITH {x: P(x)}?
BERTRAND RUSSELL

Let’s take a look at {x: x ∉ x}. Call this set A. 

Is A ∈ A? If so, then A does NOT obey the defining condition for 
A, namely x ∉ x. Hence A ∉ A. But then A DOES obey the defining 
condition for A. Hence A ∈ A. This is a contradiction.

So {x: x ∉ x} does not exist. This is due to Bertrand Russell 
(Russell’s Paradox). What about {x: x = x}? Suppose this 
exists, and write B = {x: x = x}. Note that everything is in 
B. Now write 

{x ∈ B: x ∉ x}

which must exist because of the B. But this is just {x: x ∉ 
x}, since B is everything. However, this does not exist. Hence 
{x: x = x} does not exist.  

 



SINGLETONS, UNORDERED PAIRS, ORDERED 
PAIRS, EMPTY SET

Define {x,y} = {z: z = x ∨ z = y}. The PAIRING AXIOM says that 
this exists. 

Define {x} = {x,x} = {y: y = x}. 

{x,y} is the unordered pair. What about the ordered pair? Any 
way of defining this is somewhat artificial. Most standard is 

<x,y> = {{x},{x,y}}. 

The only thing we care about is this:

CHALLENGE: <x,y> = <z,w> ➞ x = z ∧ y = w.  

We define ∅ = {x: x ≠ x}.



RELATIONS AND FUNCTIONS
A relation is a set of ordered pairs. I.e., a set all of whose 
elements are ordered pairs.

It is convenient to write R[x,y] for 

R is a relation ∧ <x,y> ∈ R. 

This is read “the relation R holds at x,y”. 

A function is a relation f such that 

(∀x,y,z)(f[x,y] ∧ f[x,z] ➞ y = z). 

It is convenient to write f(x) for 

the unique y such that f is a function and f[x,y].

f(x) is read as “the value of the function f at the argument 
x”. f(x) may or may not exist - even if f is a function. 



SUBSETS, DOMAINS, RANGES, UNIONS, 
INTERSECTIONS, RELATIVE COMPLEMENTS

We define x ⊆ y iff (∀z)(z ∈ x ➞ z ∈ y).

We define dom(x) = {y: x is a relation ∧ (∃z)(x[y,z])}. 

We define rng(x) = {y: x is a relation ∧ (∃z)(x[z,y])}. 

We define f:A ➞ B iff f is a function ∧ dom(f) = A ∧ rng(f) ⊆ B. 

We define x ∪ y = {z: z ∈ x ∨ z ∈ y}. 

We define x ∩ y = {z: z ∈ x ∧ z ∈ y}. 

We define x\y = {z: z ∈ x ∧ z ∉ y}. 

Note that \ is relative complement. We don’t have complement: 
the complement of ∅ would be {x: x = x}, which doesn’t exist.



NATURAL NUMBERS - INTUITIVE DEFINITIONS

We have seen that the ordered pair’s definition is somewhat 
artificial, but we only care about its crucial property: <x,y> 
= <z,w> ➞ x = z ∧ y = w. 

Likewise, natural numbers in set theory are somewhat 
artificial. First we give four equivalent intuitive 
definitions. 

0 = ∅.  1 = {∅}.  2 = {∅,{∅}}.  3 = {∅,{∅},{∅,{∅}}}. ...
0 = ∅.  1 = {0}.  2 = {0,1}.  3 = {0,1,2}.  4 = {0,1,2,3}. ...
n = {0,1,...,n-1}. 
0 = ∅.  n+1 = n ∪ {n}. 

However clear these intuitive definitions are, they do not 
constitute a definition of “being a natural number” in set 
theory. 



NATURAL NUMBERS - CRUCIAL PROPERTY
No matter how we define the natural numbers in set theory, we 
want a crucial property to hold. We want definitions NAT(x), 
LESS(x,y), where we can prove that 

1. LESS defines a strict linear ordering on the x’s with NAT.
2. This linear ordering has a least element and no greatest 
element. 
3. Every nonempty set, all of whose elements have NAT, has a 
least element under LESS. 

CHALLENGE: Give two definitions NAT(x), LESS(x,y), in set 
theory, and prove 1-3. Tougher: Stay within finite set theory. 

CHALLENGE: Suppose NAT(x), LESS(x,y) are two definitions that 
have properties 1-3. Suppose NAT’(x), LESS’(x,y) are two 
others. State and prove an isomorphism theorem for (NAT,LESS) 
and (NAT’,LESS’).



DEVELOPMENT OF NUMBER SYSTEMS
Once we have definitions NAT, LESS, we can explicitly develop 
the number systems. Yes, there will still be some 
artificialities, but they will be limited and manageable. 

Note that so far we have NOT committed to the existence of 
infinite sets. In particular, we have not used {x: NAT(x)}. 

I.e., we have stayed within what we call FINITE SET THEORY. 
This is a very good place to be, even though ZFC has an Axiom 
of Infinity. 

We can continue the set theoretic foundations within finite set 
theory, for the ordered semiring of natural numbers, the 
ordered ring of integers, and the ordered field of rationals. 

When we arrive at the ordered field of reals, we will need the 
Axiom of Infinity. This is because a general real number is 
going to have to be an infinite set.  

 



ADDITION ON NATURAL NUMBERS 
This requires Cartesian products and binary functions. We 
define A × B = {<x,y>: x ∈ A ∧ y ∈ B}. 

Let 0 be the least x with NAT(x), and x’ be the immediate 
successor of x, both with respect to LESS. We use < for LESS.

CHALLENGE: Let NAT(x). There is a unique function f with domain 
{y: y < x} × {y: y < x} such that 

f(<y,0>) = y, f(<y,z’>) = f(<y,z>)’

provided 0,y,z’ < x. 

CHALLENGE: These unique functions agree on their common domains. 

We then define x + y = z iff for some such f, f(<x,y>) = z. 

CHALLENGE: +,< puts an ordered commutative semigroup structure 
on the natural numbers.



MULTIPLICATION ON NATURAL NUMBERS  
CHALLENGE: Let NAT(x). There is a unique function g with 
domain {y: y < x} × {y: y < x} such that 

g(<y,0>) = y, g(<y,z’>) = g(<y,z>) + y

provided 0,y,z’ < x.  

CHALLENGE: These unique functions agree on their common 
domains. 

We then define x • y = z iff for some such g, g(<x,y>) = z. 

CHALLENGE: +,•,< puts a commutative ordered semiring structure 
on the x with NAT(x). 



SUBTRACTION ON NATURAL NUMBERS
ORDERED RING OF INTEGERS

CHALLENGE: If x ≤ y then there is a unique z such that x+z = y.

For x ≤ y, we write y-x for this unique z. 

Define the integers to be the natural numbers together with the 
<0,x>, where NAT(x). The <0,x> serve as the negative integers. 

CHALLENGE: Define <,≤,+,-,• appropriately for the integers.
Prove that <,+,-,• puts a commutative ordered ring structure on 
the integers. 

For integers x,y, define x|y iff (∃z)(x•z = y). Write y÷x for 
this unique z (assuming x ≠ 0).

CHALLENGE: Let x,y be integers, y ≠ 0. There is a greatest z 
such that z|x ∧ z|y. This is written gcd(x,y).

 



ORDERED FIELD OF RATIONALS 
To build the rationals, first develop the pre rationals, which 
are the <x,y>, x,y integers, y > 0. 

Define <x,y> + <z,w> = <x•w + y•z,y•w>. <x,y>•<z,w> = 
<x•z,y•w>. Define <x,y> ≡ <z,w> iff x•w = y•z. 

CHALLENGE. ≡ is an equivalence relation on the pre rationals, 
compatible with +,•. 

The rationals are the pre rationals <x,y>, where gcd(x,y) = 1. 

CHALLENGE: Every pre rational is ≡ to a unique rational. It is 
<x÷gcd(x,y),y÷gcd(x,y)>. It is called the reduction.

The sum (product) of rationals is obtained by taking + (•) as 
pre rationals, and then taking the reduction.  

CHALLENGE: +,• puts a commutative field structure on the 
rationals, using <x,y> < <z,w> iff x•w < y•z.



ORDERED FIELD OF REALS
So far, we have stayed within finite set theory. But now we 
have to enter the realm of INFINITE SET THEORY. 

We take the approach of Dedekind (Dedekind cuts of rationals). 
This has advantages and disadvantages over other approaches.

We let Q be the set of all rationals. The left cuts in Q are 
the nonempty A ⊆ Q such that 
i. if x < y and y ∈ A, then x ∈ A.
ii. A is not all of Q. 

The real numbers are defined to be the left cuts in Q. 

Define A + B = {x+y: x ∈ A ∧ y ∈ B}. Define A < B iff A is 
properly included in B. The definition of A • B is trickier. 

CHALLENGE: Define • appropriately. Show that <,+,• puts an 
ordered field structure on the reals. 
 



ORDERED FIELD OF REAL NUMBERS
COMPLETENESS

We say that x is an upper bound of a set of real numbers if 
and only if x is at least at large as every element of the 
set. 

CHALLENGE: Prove that every nonempty set of real numbers with 
an upper bound, has a least upper bound.

FIELD OF COMPLEX NUMBERS
The complex numbers are the <x,y>, where x,y are real numbers. 
We define <x,y> + <z,w> = <x+z,y+w>, <x,y> • <z,w> = <x•z -
y•w,x•w + y•z>. 

CHALLENGE: Prove that +,• puts a field structure on the 
complex numbers.



THE FINITE SET THEORETIC UNIVERSE
We now give a description of the finite set theoretic universe using 
ordinary mathematics. This is quite a rich hierarchy.

Define POW(x) = {y: y ⊆ x}. This is the power set construction. 

Define V(0) = ∅. V(n+1) = POW(V(n)). V(ω) = ∪n V(n).

We know from ordinary mathematics that the power set of a finite set 
is finite, and therefore by induction, each V(n) is finite.

We say that x is transitive iff every element of every element of x 
is an element of x. 

CHALLENGE: Each V(n) is transitive. V(ω) is transitive. Each V(n) ∈ 
V(n+1). Each V(n) ∈ V(ω). No V(n) ∈ V(n). V(ω) ∉ V(ω). Each V(n) is 
a proper subset of V(n+1). V(ω) is infinite. Every x ∈ V(ω) is 
finite. 

(V(ω),∈) forms a structure. We shall see that it obeys ALL of the 
axioms of ZFC except one: the Axiom of Infinity. 



EXTENSIONALITY, PAIRING HOLD IN (V(ω),∈)
Define V(0) = ∅. V(n+1) = POW(V(n)). V(ω) = ∪n V(n). 

EXTENSIONALITY: Any two sets with the same elements are equal.

Let x,y ∈ V(ω) have the same elements according to (V(ω),∈). 
Since V(ω) is transitive, x,y really have the same elements. 
Hence x = y. 

PAIRING: The set consisting of x,y exists. 

Let x,y ∈ V(ω). Of course {x,y} exists. But we need to show 
that {x,y} not only lies in V(ω), but is, in the opinion of 
V(ω), the set consisting of x,y. 

Let x ∈ V(n), y ∈ V(m). Wlog, n ≤ m. By V(n) ⊆ V(m), we have, 
x,y ∈ V(m). Now {x,y} ⊆ V(m). Hence {x,y} ∈ V(m+1). So {x,y} ∈ 
V(ω). It is clear that {x,y} is the set consisting of x,y in 
the opinion of V(ω). 



UNION, SEPARATION HOLD IN (V(ω),∈)
Define V(0) = ∅. V(n+1) = POW(V(n)). V(ω) = ∪n V(n).
Extensionality, Pairing hold in (V(ω),∈).

UNION: The set consisting of all elements of elements of x, 
exists.

Let x ∈ V(ω). Let x ∈ V(n). By transitivity of V(n), the 
elements of elements of x lie in V(n). Hence the set A of all 
elements of elements of x is a subset of V(n). Hence A ∈ 
V(n+1). Hence A ∈ V(ω). In the opinion of V(ω), A is the set 
consisting of all elements of elements of x.

SEPARATION: {x ∈ A: P(x) holds} exists.

Let A ∈ V(ω). Let A ∈ V(n). Let B = {x ∈ A: P(x) holds in 
(V(ω),∈)}. Then B ⊆ A ⊆ V(n). Hence B ∈ V(n+1). So B ∈ V(ω). 
In the opinion of V(ω), B is {x ∈ A: P(x) holds}. 



POWER SET HOLDS IN (V(ω),∈)
RANKS OF ELEMENTS OF V(ω)

Define V(0) = ∅. V(n+1) = POW(V(n)). V(ω) = ∪n V(n).
Extensionality, Pairing, Union, Separation hold in (V(ω),∈).

POWER SET: The set of all subsets of x exists.

Let x ∈ V(ω). Let x ∈ V(n). Then x ⊆ V(n). So every subset of x 
lies in V(n+1). These are the same as the “subsets of x in the 
opinion of V(ω)”. Hence the set B of all “subsets of x in the 
opinion of V(ω)” is a subset of V(n+1). Hence B ∈ V(n+2), B ∈ 
V(ω). Clearly B is the set all subsets of x in the opinion of 
V(ω). 

Define the rank of y ∈ V(ω) as the least n such that y ∈ V(n). 

CHALLENGE: If x ∈ y ∈ V(ω) then the rank of x is smaller than 
the rank of y. 



FOUNDATION, CHOICE HOLD IN (V(ω),∈)
Define V(0) = ∅. V(n+1) = POW(V(n)). V(ω) = ∪n V(n).
Extensionality, Pairing, Union, Separation, Power Set hold in (V(ω),∈).

FOUNDATION: Every nonempty x has an element disjoint from x.

Let x ∈ V(ω) be nonempty in the opinion of V(ω). Then x has an 
element from V(ω). Choose y in x of least possible rank. If x,y 
have a common element z, then the rank of z is smaller than the 
rank of y. This contradicts the choice of y. 

CHOICE: Let A be a set of pairwise disjoint nonempty sets. 
There is a set that has exactly one element in common with all 
elements of A.

The elements of V(ω) are all finite. We apply induction to A. 
Suppose true for |A| ≤ n. Let |A| = n+1, where in the opinion 
of V(ω), A is a set of pairwise disjoint nonempty sets. Apply 
the induction hypothesis to the result of deleting an element 
from A. Extend its choice set by one set.  



REPLACEMENT HOLDS IN V(ω,∈)
Define V(0) = ∅. V(n+1) = POW(V(n)). V(ω) = ∪n V(n).
Extensionality, Pairing, Union, Separation, Power Set, Foundation, Choice, hold in 
(V(ω),∈).

REPLACEMENT: Suppose (∀x ∈ A)(∃y)(P(x,y)). Then 
(∃z)(∀x ∈ A)(∃y ∈ z)(P(x,y)). 

Let A ∈ V(ω). Then A is finite. For each x ∈ A, let n be the 
least rank of some y ∈ V(ω) such that P(x,y) holds in 
(V(ω),∈). Let m be the maximum of these n’s. Then (∀x ∈ A)(∃y)
(y has rank ≤ m and P(x,y) holds in (V(ω),∈)). Hence (∀x ∈ A)
(∃y)(y ∈ V(m) and P(x,y) holds in (V(ω),∈)). Set z = V(m). Note 
that z ∈ V(ω). 

NOTE: This form of Replacement is a bit stronger than the 
usual form. 



ZFC WITHOUT INFINITY HOLDS IN (V(ω),∈)
Define V(0) = ∅. V(n+1) = POW(V(n)). V(ω) = ∪n V(n).
Extensionality, Pairing, Union, Separation, Power Set, Foundation, Choice, 
Replacement hold in (V(ω),∈).

ZF consists of the axioms and rules of logic for 

∈,¬,∧,∨,➞,↔,∀,∃,=, together with
Extensionality, Pairing, Union, Separation, Power Set, 
Foundation, Replacement, Infinity.

ZFC consists of the axioms and rules of logic for 

∈,¬,∧,∨,➞,↔,∀,∃,=, together with
Extensionality, Pairing, Union, Separation, Power Set, 
Foundation, Replacement, Choice, Infinity.

INFINITY: There exists A, where ∅ ∈ A ∧ (∀x ∈ A)(x ∪ {x} ∈ A).

CHALLENGE: Infinity fails in (V(ω),∈). 



DO MATHEMATICIANS ADHERE TO ZFC?

ABSOLUTELY YES: ZFC is still the gold standard for the axioms 
used in a proof that do not have to be acknowledged. Rarely, 
more axioms are used, and sometimes needed. Most commonly, in 
set theoretic investigations. E.g., the continuum hypothesis, 
the existence of measurable cardinals. The use of these 
controversial axioms are required to be acknowledged.

ABSOLUTELY NO: Mathematicians present proofs in free form, and 
are not tied down to any formalism. ZFC is far too cumbersome 
for any mathematician to adhere to.

Both are correct. These two answers have been reconciled to a 
large extent. Very highly sugared forms of ZFC now exist as 
interactive computer programs. With the help of a computer, 
absolutely rigorous formal proofs have been created for a 
large body of theorems - in highly sugared ZFC. See, e.g., 
MIZAR http://mizar.org/ There are some competitors.  

http://mizar.org
http://mizar.org

