
1

FINITE TREES AND THE NECESSARY USE OF LARGE CARDINALS
by

Harvey M. Friedman
Department of Mathematics
Ohio State University

friedman@math.ohio-state.edu
www.math.ohio-state.edu/~friedman/

January 10, 1998

We introduce the basic concept of insertion rule that speci-
fies the placement of new vertices into finite trees. We
prove that every “good” insertion rule generates a tree with
simple structural properties in the style of classical Ramsey
theory. This is proved using large cardinal axioms going well
beyond the usual axioms for mathematics.

And this result cannot be proved without these large cardinal
axioms. We also prove that every insertion rule greedily
generates a tree with these same structual properties. It is
also nec-essary and sufficient to use the same large
cardinals. The results suggest a new area of research -
"greedy Ramsey theory."

A partial ordering is a pair (X,£), where X is a nonempty
set, and £ is reflexive, transitive, and antisymmetric. The
ancestors of x in X are just the y < x. A tree T = (V,£) is a
partial ordering with a least element (root), where the the
ancestors of any x in V form a finite linearly ordered set
under ≤.

If x < y and for no z is x < z < y, then we say that y is a
child of x and x is the parent of y. V = V(T) is the set of
vertices of the tree T = (V,£). Every vertex other than the
root has a unique parent; i.e., is a child.

For finite rooted trees, T1 Õ T2 means that T1,T2 have the
same root, and if x is the parent of y in T1, then x is the
parent of y in T2. I.e., no parent/child bond is broken by
going from T1 to T2.

Let N = {1,2,...}. A k-tree is a finite rooted tree whose
root is • and whose children are k element subsets of N.
The trivial k-tree is the k-tree with the single vertex •.
We write [N]k be the set of all k element subsets N and [N]k+

for [N]k » {•}. We use £* for the standard reverse lexico-
graphic ordering on [N]k, in which sets are compared accor-
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ding to the lexicographic ordering on Nk after the sets are
placed in strictly descending order. We extend this linear
ordering to [N]k+ by placing • at the top.

Let T be a k-tree and x Œ [N]k. We say that x dominates T if
and only if for all y Œ Ch(T), we have x >* y.

Insertion rules specify the placement of new, dominating,
vertices into trees.

Formally, an insertion rule on TR(k) is a function f defined
on exactly the pairs (T,x), where T is a k-tree and x Œ [N]k

dominates T, where each defined f(T,x) lies in V(T).

How do we use an insertion rule on TR(k)? Let A Õ [N]k be
finite and write A = v1 <* ... <* vn. Construct k-trees T0 Õ
... Õ Tn as follows. T0 is the trivial k-tree. Ti+1 is the k-
tree obtained by inserting vi+1 into Ti as a new child of the
vertex f(Ti,vi+1). We write Ti+1 = Ti/vi+1,f(Ti,vi+1). Clearly
Ch(Tn) = A.

In this way, f generates a unique k-tree with any finite
subset of [N]k as its children.

Often one concentrates on a subclass S of trees and inserts
vertices only into trees in S. This leads to the more general
notion of insertion rule in TR(k). This is a pair (S,f) such
that S is a nonempty subset of TR(k) and f is a function
defined on exactly the pairs (T,x), where T Œ S and x Œ [N]k

dominates T, where each defined T/x,f(T,x) lies in S.

Here S is called the field, and f is called the function.

We say that an insertion rule in TR(k) admits T if and only
if T lies in its field. We say that (S,f) is initial if and
only if it admits the trivial k-tree.

The study of trees generated by insertion rules on TR(k) is
closely related to the study of trees admitted by insertion
rules in TR(k). The latter is somewhat more general, as can
be seen by the following utterly straightforward background
theorem.

BACKGROUND. Let k ≥ 1 and S Õ TR(k). If S is the set of trees
generated by some insertion rule on TR(k), then S is the set
of trees admitted by some insertion rule in TR(k). However,



3

the converse is false. On the other hand, if S is the set of
trees admitted by some initial insertion rule in TR(k), then
S is the set of trees generated by some insertion rule for
TR(k).

Here is a template:

PROPOSITION 1. Let k,p ≥ 1. Every “good” insertion rule on
(in) TR(k) generates (admits) a k-tree in which all k element
subsets of some p element set are vertices that are
“similar.”

Ex: For 1-trees T and x Œ N dominating T, let f(T,x) =
max(Ch(T)) if T is nontrivial; • otherwise. The trees gener-
ated by f consist of just the 1-trees with no splitting,
where parents (other than the root •) are strictly smaller
than children. No two vertices in such 1-trees are “similar”
in any appropriate sense. So this f is not “good.”

INFINITE RAMSEY THEOREM. Let k,p ≥ 1. In every function on
[N]k with finite range, all k element subsets of some p
element set are “similar.”

INFINITE RAMSEY THEOREM. Let k,p ≥ 1. In every function on
[N]k with finite range, all k element subsets of some p
element set have the same value.

Here we use two related concepts of “similar” between
vertices in k-trees. The ancestors of a vertex v in a tree T
= (V(T),£) are the vertices w such that w < v (in the sense
of the tree partial order £).

The first notion of similarity is that x,y have the same
number of ancestors. In this case, for various notions of
“good” we have the following theorems.

THEOREM 2. Let k,p ≥ 1. Every “good” insertion rule on (in)
TR(k) generates (admits) a k-tree in which all k element
subsets of some p element set are vertices with the same
number of ancestors.

We use some combina-torial set theory to derive Theorem 2.
Let X be any nonempty set and k ≥ 1. A k,X-tree is a tree
whose set of vertices is exactly [X]k = the set of all k
element subsets of X. Recall that set of all ancestors of
every vertex is finite.
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THEOREM 3. Let X have power ¡w. Let k,p ≥ 1. In every k,X-
tree, all k element subsets of some p element set are
vertices with the same number of ancestors.

We use Theorem 3 to derive Theorem 2 (under various notions
of “good”). This provides a proof of Theorem 2 in Zermelo set
theory. We prove that the use of infinitely many uncountable
cardin-als cannot be removed.

Second notion of similarity: Let x,y Œ [N]k. We say that x is
enti-rely lower than y if and only if every element of x is
strictly smaller than every element of y.

The second notion of similarity is that x,y have the same
entirely lower ancestors. I.e., every entirely lower ancestor
of x is an entirely lower ancestor of y, and vice versa.

PROPOSITION 4. Let k,p ≥ 1. Every “good” insertion rule on
(in) TR(k) generates (admits) a k-tree in which all k element
subsets of some p element set are vertices with the same
entirely lower ancestors.

We prove Proposition 4 using large cardinal axioms that go
well beyond the usual axioms for mathematics - the subtle
cardinals of finite order. And we prove that they are
necessary.

We now present the simplest of our arsenal of notions of
“good” insertion rules on (in) TR(k).

A decreasing insertion rule on TR(k) is an insertion rule f
on TR(k) such that for all k-trees T1 Õ T2 and x Œ [N]k

dominating T2, f(T1,x) ≥* f(T2,x).

A decreasing insertion rule in TR(k) is an insertion rule
(S,f) in TR(k) such that for all T1 Õ T2 from S and x Œ [N]k

dominating T2, f(T1,x) ≥* f(T2,x).

THEOREM 5. Let k,p ≥ 1. Every decreasing insertion rule on
(in) TR(k) generates (admits) a k-tree in which all k element
subsets of some p element set are vertices with the same
number of ancestors.

PROPOSITION 6. Let k,p ≥ 1. Every decreasing insertion rule
on (in) TR(k) generates (admits) a k-tree in which all k
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element subsets of some p element set are vertices with the
same entirely lower ancestors.

We prove Theorem 5 in Z = Zermelo set theory. We show that it
cannot be proved in Z with full separation replaced by
bounded separaton.

We prove Proposition 6 in ZFC + ("k)(there exists a subtle
cardinal of order k). We prove that these large cardinals are
necessary by showing that Proposition 6 cannot be proved in
ZFC + {there exists a subtle cardinal of order k}k.

We now give a formulation of these necessary uses of set
theory in terms of “greedy” constructions.

The term “greedy” comes from “greedy” algorithms, whereby
optimal finite objects are sought in various context. In
certain important contexts, the standard efficient algorithms
proceed by building up the desired optimized object in
sequentially, where at each stage the construction extends
the object built thus far in a relatively optimal way. This
kind of construction is used for the standard efficient
algorithms in such diverse contexts as minimal spanning
trees, Huffman codes, task-scheduling, shortest paths, etc.

Our results definitely reflect this “greedy” idea. Moreover,
we expect that further results will be obtained with yet
closer connections with greedy algorithms of the kind that
figure so prominently in the theory of algorithms.

Let f be an arbitrary insertion rule on TR(k). We now
consider the k-trees greedy generated by f.

In a greedy generation of a k-tree using f, we start with a
nonempty finite set of vertices v1 <* ... <* vn from [N]

k, n ≥
1. We are free to pick any such set of vertices, but from now
on the construc-tion is entirely deterministic.

We begin the construction at stage 0 with the trivial k-tree.
At stage 0 ≤ i < n, we have a k-tree Ti with vertices
v1,...,vi, and at stage i+1 we seek to insert vi+1 into Ti.
Recall that in tree generation, we place vi+1 into Ti as a new
child of f(Ti,vi+1).

In greedy generation, we instead consider the placement of
vi+1 in all subtrees T’ Õ T and pick one where f(T’,vi+1) is <*



6

least. We continue this greedy process until we construct Tn,
which has vertices v1,...,vn.

We say that T is greedy generated by f iff T results from
such a greedy construction; i.e., T = Tn, where we use the
vertices v1 <* ... <* vn of T. For any finite A Õ [N]k there
is a unique k-tree with children A which is greedy generated
by f.

The following obvious result supplies us with the needed
link:

THEOREM 7. Let k ≥ 1 and f be a decreasing insertion rule on
TR(k). The trees generated by f are exactly the trees greedy
generated by f. And let g be an insertion rule on TR(k). Then
there exists a decreasing insertion rule h on TR(k) such that
the trees greedy generated by g are exactly the trees
generated by h.

Now consider the following analogs to Theorem 5 and
Proposition 6.

THEOREM 8. Let k,p ≥ 1. Every insertion rule on TR(k) greedy
generates a k-tree in which all k element subsets of some p
element set are vertices with the same number of ancestors.

PROPOSITION 9. Let k,p ≥ 1. Every insertion rule on TR(k)
greedy generates a k-tree in which all k element subsets of
some p element set are vertices with the same entirely lower
ancestors.

By Theorem 7, we see that Theorem 8 is equivalent to Theorem
5 for on/generates, and Proposition 9 is equivalent to
Proposition 6 for on/generates.

Thus Theorem 8 and Proposition 9 share these same
metamathematical properties as Theorem 5 and Proposition 6:

a) Theorems 5 and 8 can be proved in Z but not in Z with
separation replaced by bounded separation;
b) Propositions 6 and 9 can be proved in ZFC + ("k)(there
exists a subtle cardinal of order k), but not in ZFC + {there
exists a subtle cardinal of order k}k.
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We now present straightforward finite forms of the above
results. We begin with Ramsey’s finite form of the Infinite
Ramsey theorem. Let [n]k = {1,...,n}k.

FINITE RAMSEY THEOREM. Let n >> k,r,p ≥ 1. For every f:[n]k Æ
[r], all k element subsets of some p element set have the
same value.

We find it illuminating to use the >> notation.

Here we can replace the first sentence by: “for all k,p ≥ 1
there exists n such that the following holds.”

For k,n ≥ 1, a k,n-tree is a k-tree all of whose vertices lie
in [n]k. Let TR(k,n) be the set of all k,n-trees.

The concepts of insertion rule on (in) [n]k, generation,
greedy generation, admitting, decreasing, are carried over
straighforwardly.

Here are the straightforward finite forms of 5,6,8,9. They
are provably equivalent to 5,6,8,9 respectively by a standard
finitely branching tree or compactness argument.

THEOREM 5’. Let n >> k,p ≥ 1. Every decreasing insertion rule
on (in) TR(k,n) generates (admits) a k,n-tree in which all k
element subsets of some p element set are vertices with the
same # of ancestors.

PROPOSITION 6’. Let n >> k,p ≥ 1. Every decreasing insertion
rule on (in) TR(k,n) generates (admits) a k,n-tree in which
all k element subsets of some p element set are vertices with
the same entirely lower ancestors.

THEOREM 8’. Let n >> k,p ≥ 1. Every insertion rule on TR(k,n)
greedy generates a k,n-tree in which all k element subsets of
some p element set are vertices with the same number of
ancestors.

PROPOSITION 9’. Let n >> k,p ≥ 1. Every insertion rule on
TR(k,n) greedy generates a k,n-tree in which all k element
subsets of some p element set are vertices with the same
entirely lower ancestors.


