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I want to thank President Gee for his (overly) kind 
remarks. I am very glad to see Gordon return to Ohio State 
this academic year.  
 
I also want to thank the Mathematics, Philosophy, and 
Computer Science and Engineering Departments who thought of 
me for this honor. Thanks also to the Selection Committee 
and the Office of Academic Affairs for choosing me for this 
occasion. 
 
In looking over the past University Distinguished Lectures, 
archived on the OSU website, the topics have generally had 
a clear and transparent relevance to our daily lives.  
 
We have been delightfully treated to Climate History, Legal 
Aspects of Civil and Human Rights, Superhuman Capabilities 
of Animals, Psychological Aspects of Cancer, Energy, Food, 
and Water Scarcity, Americans with Disabilities Act, and 
The Federal Reserve on 9/11 – just to name a few.  
 
Most recently, Kevin Boyle just gave a dramatic Lecture on 
the Dynamics and Implications of the Sacco/Venzetti Trials. 
And Marilyn Brewer gave a fascinating Lecture on the 
Psychology of Social Groups last Spring. 
 
Now, I want to warn you that this talk will be relatively 
painful. For some of you, it’s going to be about 50 minutes 
too long.  
 
So I want to give a very short version of the talk. 
 
LOGIC IS EVERYWHERE! 
 
Let me make it even shorter: 
 
LOGIC EVERYWHERE! 
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For those of you who have remained in the audience, here is 
the 50 minute version.  
 
There will be a number of words and phrases that I won’t 
have time to explain in detail. I have displayed these in 
yellow text, and I think you will find it informative to 
jot these down and search them on the Internet.  
 
You can of course search for LOGIC WIKIPEDIA. 
 
I am going to talk about LOGIC as the science of reasoning.  
 
We all do reasoning. Some of it is entirely straightforward 
and second nature. Some of it is highly complex and subtle. 
And the quality of this reasoning that we all do ranges 
from obviously valid, to highly questionable – and worse! 
 
But doing reasoning is one thing – having a deep 
understanding of what it is, how we do it, how we should do 
it – is quite another.  
 
We do not have anything approaching a deep scientific 
understanding of reasoning in most contexts – not in common 
sense, not in the arts, and not in the sciences. These are 
wide open topics of research.  
 
However, we do have a relatively deep scientific 
understanding of at least some key aspects of mathematical 
reasoning.  
 
But first, I want to start with some very limited 
situations in common sense thinking, where we do have a 
deep understanding. 
 
Let us consider the five logical connectives: 
 
not ¬ 
and ∧ 
or ∨ 
if then → 
if and only if ↔ 
 
The last four “connect” two sentences, creating a third. 
The first counts as “connecting one sentence”, creating a 
second sentence. 
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Here is an example of valid reasoning involving just or, 
and if then.  
 
Fred lives in Chicago, or Fred lives in New York. 
If Fred lives in Chicago then Fred lives in a big city. 
If Fred lives in New York then Fred lives in a big city. 
THEREFORE, Fred lives in a big city.  
 
In symbols, this falls under the valid inference 
 
p ∨ q 
p → r 
q → r 
∴ r 
 
Here p stands for Fred lives in Chicago, 
q for Fred lives in New York, 
and r for Fred lives in a big city. 
 
In this very limited context, we can mathematically define 
what we mean by a valid inference, and we can determine 
whether such an inference is valid by the method of truth 
tables.  
 
So far, so good. But this is a severely limited context. It 
is nowhere near sufficient to reflect reasoning in even 
very elementary mathematics.  
 
For this, we need to fast forward from the Greeks to the 
late 1800s and the great philosopher Gottlob Frege. 
 
In addition to the sentential connectives, we must work 
with the two quantifiers  
 
for all ∀ 
there exists ∃ 
 
You can’t just say to somebody: for all. Or just say: there 
exists. There has to be some surrounding material. 
 
There is a grammar for this, resulting in a formal language 
called Predicate Calculus (Gottlob Frege, 1879). Rather 
than present this grammar, let me just give a group of 
familiar examples. 
 
1. Everybody loves everybody. 
2. Somebody loves somebody. 
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3. Everybody loves somebody.  
4. Somebody loves everybody. 
 
5. Everybody is loved by everybody. 
6. Somebody is loved by somebody. 
7. Everybody is loved by somebody. 
8. Somebody is loved by everybody. 
 
In predicate calculus, this reads: 
 
1. (∀x)(∀y)(L(x,y)). 
2. (∃x)(∃y)(L(x,y)). 
3. (∀x)(∃y)(L(x,y)). 
4. (∃x)(∀y)(L(x,y)). 
 
5. (∀x)(∀y)(L(y,x)). 
6. (∃x)(∃y)(L(y,x)). 
7. (∀x)(∃y)(L(y,x)). 
8. (∃x)(∀y)(L(y,x)). 
 
If you think hard about this, you will see that  
 
1,5 are logically equivalent. 
2,6 are logically equivalent. 
 
1,2,3,4,7,8 are all logically inequivalent. 
 
Here logically equivalent means: under any interpretation 
of the concepts involved, the statements are both true or 
both false. 
 
    1,5 
   /   \   
  4     8 
  |     | 
  7     3 
   \   / 
    2,6 
 
The downward arrows indicate logical “implication”. In 
other words, we can infer 2,6 from 7. Also 1,5 each imply 
8. 
 
The intricacies of the predicate calculus are well 
understood, and it assumes a dominant role in modern logic 
[next slide for inference definition]. 
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An inference in predicate calculus is considered valid if 
in any interpretation, if all of the premises are true, 
then the conclusion is true. 
 
COMPLETENESS THEOREM (KURT GÖDEL, 1930). Every valid 
inference in predicate calculus can be backed up by a proof 
using only a fixed finite set of basic axioms and rules of 
inference.  
 
However, it is known that there is no magic bullet like the 
method of truth tables to determine the validity of an 
inference in predicate calculus. 
 
NO ALGORITHM (ALONZO CHURCH, 1936). There is no general 
method for determining whether an inference in the 
predicate calculus is valid.  
 
Let’s now see what happens when we focus predicate calculus 
on the basic structures of grade school and high school 
mathematics. 
 
From grade school, we have the whole numbers, or integers 
 

...,-2,-1,0,1,2,... 
 
We can add (+), subtract (-), and compare (<,≤,>,≥,=,≠). 
 
EXAMPLES: 
 
(∀ integers x)(∃ integer y)(x < y+y). 
 
(∀ integers x)(∃ integer y)(x = y+y). 
 
(∀ integers x,y)(x < y → (∃ integer z)(x < z ∧ z < y)). 
 
The first is true, whereas the second and third are false. 
 
LINEAR ARITHMETIC OVER INTEGERS ALGORITHM (M. PRESBURGER, 
1929). There is a general method for determining whether a 
sentence in the predicate calculus based on the integers, 
+,-,<,≤,>,≥,=,≠, is true.  
 
This result has been intensively studied in computer 
science, where the algorithm is reworked in order to run 
efficiently on real computers, for a variety of 
applications. 
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Also from grade school, we have the fractions, or rational 
numbers, n/m, where n,m are integers and m ≠ 0.  
 
Again we can add (+), subtract (-), and compare 
(<,≤,>,≥,=,≠). 
 
EXAMPLES:  
 
(∀ rationals x)(∃ rational y)(x < y+y). 
 
(∀ rationals x)(∃ rational y)(x = y+y). 
 
(∀ rationals x,y)(x < y → (∃ rational z)(x < z ∧ z < y)). 
 
This time, all three sentences are true. 
 
LINEAR ARITHMETIC OVER RATIONALS ALGORITHM (modified 
PRESBURGER). There is a general method for determining 
whether a sentence in the predicate calculus based on the 
rationals, +,-,<,≤,>,≥,=,≠, is true. 
 
Fast forward from grade school to high school. The real 
numbers “fill out” the rational numbers by incorporating 
such numbers as “the square root of 2” and π (the 
circumference of a circle of diameter 1).   
 
We can add, subtract, and compare real numbers. 
 
LINEAR ARITHMETIC OVER REALS. The true sentences of linear 
arithmetic over the reaLS are the same as the true 
sentences of linear arithmetic over the rationals. 
 
In fact, we can incorporate integers, rationals, and reals, 
all mixed together: 
 
LINEAR ARITHMETIC OVER INTEGERS, RATIONALS, REALS, 
TOGETHER. There is a general method for determining whether 
a sentence in the predicate calculus based on integers, 
rationals, reals, +,-,<,≤,>,≥,=,≠, is true. 
 
Recall from grade school and high school that we can also 
multiply integers, multiply rationals, and multiply reals.  
 
So what happens if we also use multiplication?  
 
ALGORITHM with +,-,•,<,≤,>,≥,=,≠ over INTEGERS? NO!! Kurt 
Gödel 1931. 
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ALGORITHM with +,-,•,<,≤,>,≥,=,≠ over RATIONALS? NO!! Julia 
Robinson 1949. 
 
ALGORITHM with +,-,•,<,≤,>,≥,=,≠ over REALS? YES!! Alfred 
Tarski 1931, 1948. 
 
This algorithm over the reals continues to be reworked 
intensively by computer scientists, so that it runs 
efficiently enough on real computers for many applications. 
 
We now move to a profound foundational problem about 
mathematics. How do we get a precise handle on what we mean 
by “correct” or “correctly done” mathematics? In other 
words, what are the standards for a mathematical proof? 
 
Mathematical proofs are based on axioms and rules of 
inference for Predicate Calculus. But Predicate Calculus 
reasoning can only be part of the answer. 
 
Mathematics relies on the ability of mathematicians to 
“construct” mathematical objects. In other words, we have 
to construct the integers, the rationals, the reals, and we 
also have to construct basic operations on them such as 
addition, subtraction, and multiplication.  
 
We also have to build functions on the reals as is needed 
for Calculus and other parts of mathematics.  
 
The standard way of unifying the various modes of 
constructing mathematical objects is through set theory. 
 
Sets arise when multiple objects are conceived of as a 
single unit.  
 
Sets have elements, and the sole determining feature of a 
set is just what its elements are. 
 
Thus we have the first axiom of set theory. 
The remaining six axioms below are rather powerful set 
existence (construction) axioms.  
 
ZERMELO SET THEORY (1908) 
 
Extensionality: If two sets have the same elements, then 
they are equal. 
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Pairing: Given two sets x,y, there is a set z whose 
elements are exactly x,y. 
Union: Given a set x, there is a set y whose elements are 
exactly the elements of the elements of x. 
Power Set: Given a set x, there is a set y whose elements 
are exactly the subsets of x. 
Separation: Given a set x and a description of a property 
of sets, there is a set y whose elements are exactly those 
elements of x which obey that property. 
Choice: Given a set x whose elements are each nonempty and 
have no elements in common with each other, there is a set 
y which has exactly one element in common with these 
elements of x.  
 
These easily suffice to develop the main basic 
infrastructure of contemporary mathematics. In other words, 
natural numbers, integers, rationals, reals, complexes, 
addition, subtraction, multiplication, division, order, 
ordered pairs, functions, metric spaces, topological 
spaces, measure spaces, continuity, differentiability, 
analyticity, etcetera.  
 
Once this infrastructure is built, the mathematician is 
free to sit entirely on top of it, ignoring how this 
infrastructure was built. 
 
There are two additional axioms needed for the gold 
standard of the foundations of mathematics – the ZFC 
axioms. ZFC = Zermelo Fraenkel with the Axiom of Choice. 
 
The first is practically never used: 
 
FOUNDATION. Given a nonempty set x, there is an element y 
of x which has no elements in common with x. 
 
The second is almost never used, and the known uses of 
Replacement are particularly interesting: 
 
REPLACEMENT. Given a set x, and a description of a unique 
assignment of a set to all elements of x, there is a set 
whose elements are exactly these assignments. 
 
Why do we believe in these fundamental axioms for 
mathematics? No definitive answer has been given. 
 
One longstanding observation is that all of these axioms, 
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with the exception of INFINITY, are easily seen to hold in 
the universe of finite sets – by merely using induction.  
 
This leads to the conjecture that our axioms of set theory 
arise from transferring the “simple” principles that 
“obviously hold in the finite sets” to infinite set theory, 
and then merely adding the axiom of Infinity. 
 
I can report some ongoing major progress on this conjecture 
in recent weeks. But I will kindly spare you the details of 
what I am doing with this. 
 
Are these powerful ZFC axioms enough to prove or refute all 
statements in mathematics? 
 
FIRST INCOMPLETENESS THEOREM (KURT GÖDEL 1931, B. ROSSER 
1936). ZFC is not sufficiently strong to prove or refute 
all statements in integer arithmetic (+,•) – UNLESS(!) the 
axioms of ZFC are contradictory. 
 
More generally, for any system of finitely many axioms 
sufficient to develop basic integer arithmetic, there 
remains statements in integer arithmetic which cannot be 
proved or refuted – UNLESS(!) the axioms of the system are 
contradictory. 
 
But are the axioms of ZFC contradictory? We believe that 
they are not contradictory, but 
 
SECOND INCOMPLETENESS THEOREM (KURT GÖDEL 1931). ZFC is not 
sufficiently strong to prove that the axioms of ZFC are not 
contradictory – UNLESS(!) the axioms of ZFC are 
contradictory.  
 
More generally, any system of finitely many axioms 
sufficient to develop basic integer arithmetic, is not 
sufficiently strong to prove that its axioms are not 
contradictory – UNLESS(!) the axioms of that system are 
contradictory. 
 
We now change our focus from mathematics and philosophy to 
computer science and computer assisted education. 
 
Large computer programs are notoriously expensive to create 
and are notoriously prone to bugs. There are many reasons 
for this. 
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This is not going to improve until there is a major 
overhaul in the programming environments. And it is clear 
that logic will play a central role in this process. 
 
One crucial missing ingredient is what are called “formal 
specifications”. These are completely precise 
specifications of how the program is required to behave.  
 
We don’t have to specify the behavior of the program 
completely. We need only specify the behavior in situations 
that we care about.  
 
In any case, formal specifications need to be written in 
versions of Predicate Calculus tailor made to the intended 
applications.  
 
Formal specifications are needed in order  
 
i. Support reusability of software. 
ii. Support verification. 
 
By verification of software, we mean a mathematical proof 
that the software obeys the formal specification. 
 
Verification of software goes far beyond the usual software 
testing in common practice in industry. 
 
We want a programming environment where a team of software 
developers not only writes code, but also is responsible 
for verification of the code. 
 
It has long been realized that some serious heavy duty 
tools are needed in order to enable programmers to feasibly 
verify the code that they write – even if existing 
programming languages are overhauled. 
 
Without appropriate tools, it will be considerably harder 
to verify code than to write it. This is generally not 
acceptable. 
 
Major components of these badly needed tools are logic 
based algorithms, or decision procedures. Many of these 
were first developed by logicians, before they were refined 
and optimized by computer scientists. For example, 
algorithms discussed earlier for linear arithmetic over the 
integers, rationals, and reals, and algorithms with 
multiplication added, over just the reals. 
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Let me give a very basic example of this approach.  
 
We want to write a program that, given any nonempty finite 
sequence of integers, returns the greatest term.  
 
In other words, we want to program a function f:FSQ → INT 
such that  
 
(∀α)(length(α) > 0 → f(α) = max(α)). 
 
This is the formal spec. Obviously we need to have some 
math in the background – in particular, the concept of 
max(α). More generally, max(α;n,m) = maximum value of α 
from position n through position m, provided n ≤ m. 
 
Now we write the code.  
 
The programmer sees that they need to code an auxiliary 
function g:FSQ × N → Z with this formal spec: 
 (∀α,n)(1 ≤ n ≤ length(α) → g(α,n) = max(α;1,n)) 
 
The programmer writes code for g in this recursive 
functional style: 
 g(α,1) = Val(α,1).  
 g(α,n+1) = max(g(α,n),Val(α,n+1)). 
 
Implementation of Val is at the base of the system.  
 
Code must be written for max of two integers. Probably 
already written much earlier than this code: 
 max(x,y) = if x ≥ y then x else y. 
 
To finish the code, the programmer writes 
 f(α) = g(α,length(α)). 
 
To recap, the entire program looks like this: 
 
CODE 
 
max(x,y) = if x ≥ y then x else y. 
g(α,1) = Val(α,1).  
g(α,n+1) = max(g(α,n),Val(α,n+1)). 
f(α) = g(α,length(α)). 
 
SPECS 
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length(α) > 0 → f(α) = max(α). 
1 ≤ n ≤ length(α) → g(α,n) = max(α;1,n). 
 
The programmer needs to verify the program. Programmer 
writes  
  
"prove 1 ≤ n ≤ length(α) → g(α,n) = max(α;1,n) by induction 
on n ≥ 1". 
 
In this very basic example, note that the above logical 
formula is just the second spec statement, so that we can 
expect the system to try this induction on its own, without 
help from the programmer! 
 
The system comes back with DONE. This is because the system 
has basic logical manipulations, together with the ability 
to prove the induction step  
  
 g(α,n) = max(α;1,n) → g(α,n+1) = max(α;1,n+1) 
 
using the line of code 
  
 g(α,n+1) = max(g(α,n),Val(α,n+1)) 
 
and the mathematical fact  
  
 max(α;1,n+1) = max(max(α;1,n),Val(α,n+1)). 
 
The verification is completed by the system using the 
mathematical fact 
 
 max(α) = max(α;1,length(α)).  
 
(I left out some inequalities for readability). 
 
This work is still highly exploratory, and it is far from 
clear just how to design a working system for cost 
effectively creating verified code for real world 
programming situations. 
 
We now come to potential applications of logic in 
education. 
 
The general idea is that through the creative use of logic 
and logical analysis, we can develop systems that 
automatically generate multi step homework and exam 
problems subject to Instructor controlled parameters. 
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Furthermore, these problems can be automatically graded. 
The student enters their multi step solution in a special 
format, and obtains feedback after each step – from the 
computer. 
 
The entire history of all student responses on all previous 
problems is stored and this can be used to adjust the 
future problems generated by the system, subject to control 
by the Instructor. 
 
Furthermore, all of this data can be used to fine tune the 
Instructor's Lectures, since the Instructor knows how well 
the students are doing with the homework and exam problems, 
down to the last detail, every day. 
 
Ideas like this have of course been around for quite some 
time. The real challenge is to design such a system, course 
by course, where the automatically generated multi step 
problems truly reflect the goals of the course, and the 
interaction engages the students appropriately. 
 
This requires an array of sophisticated problem templates, 
reflecting various degrees of difficulty. Logic is of great 
use here since the problems must have formal structure to 
support real time computer grading.  
 
A much bigger challenge is to create the appropriate 
structured modes through which students enter multi step 
solutions, and receive feedback from the system in real 
time. 
 
I got engaged with these ideas in connection with a 
practical need at OSU. All computer science majors are 
required to take MATH 366, which is a course in basic 
discrete mathematics and basic proof structure. 
 
We know that the clear majority of students do not leave 
the course with enough working understanding of proof 
structure to meet the needs of their majors. 
 
The common view is that there simply is not enough time and 
resources in a one quarter course, under normal teaching 
methods, for the students to have nearly enough of the 
needed quality interactive time to absorb these difficult 
and subtle skills. 
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I have time to present a couple of the templates from the 
Syrus project. 
 
TEMPLATE 1. (∀ integers n,m,r)(x α y ∧ z β w → u γ v). 
TRUE OR FALSE? IF TRUE, PROVE. IF FALSE, GIVE 
COUNTEREXAMPLE. 
 
TEMPLATE 2. (∀ integers n,m)(∃ integer r)(x α y ∧ z β w). 
TRUE OR FALSE? IF TRUE, PROVE. IF FALSE, GIVE 
COUNTEREXAMPLE. 
 
Here x,y,z,w,u,v are among the letters n,m,r, and α,β,γ are 
among the symbols <,>,≤,≥,=,≠. 
 
TRUE/FALSE is checked in real time. Proofs are entered 
interactively, with many steps, and real time feedback. 
 
Obviously, it is no surprise that logic would be highly 
useful in teaching what amounts to basic logic in the 
context of elementary discrete mathematics. 
 
But we believe that these ideas are strongly applicable to 
elementary mathematics courses, including K–12. 
 
Some future targets are:  
 
∈-δ proofs.  
Courses in the mathematical sciences. 
And beyond... 
 
EXAMPLE 1 from SYRUS.  
 
(∀ integers n,m,r)(n < m ∧ r < m → n ≤ r). 
True or False? If true, prove. If false, give 
counterexample. 
 
False. 
 
Counterexample:  
 
n = 1 m = 2, r = 0.  
Want ¬(1 < 2 ∧ 0 < 2 → 1 ≤ 0). 
More interaction optional.  
DONE. 
 
EXAMPLE 2 from SYRUS. 
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(∀ integers n,m,r)(n < m ∧ ¬(m ≥ r) → n < r). 
True or false? If true, prove. If false, give 
counterexample. 
 
True. Two methods available. 
 
Direct: 
Let n,m,r be integers.  
Assume n < m ∧ ¬(m ≥ r). 
Want n < r.  
Have n < m, ¬(m ≥ r). Have m < r. Have n < r.  
DONE. 
 
Indirect: 
Let n,m,r be integers. 
Assume ¬(n < m ∧ ¬(m ≥ r) → n < r). Want contradiction. 
Using truth tables, convert to: 
 
Assume n < m, ¬(m ≥ r), ¬(n < r). Derive contradiction.  
Have m < r. Have n < r.  
DONE.  
 
EXAMPLE 3 from SYRUS. 
 
(∀ integers n,m)(∃ integer r)(r > n ∧ m < r). 
True or false? If true, prove. If false, give 
counterexample. 
 
True. 
 
Let n,m be integers. 
Set r = max(n,m)+1. 
Want max(n,m)+1 > n ∧ m < max(n,m)+1. 
More interaction optional. 
DONE.  
 
EXAMPLE 4 from SYRUS.  
 
(∀ integers n,m)(∃ integer r)(n < r ∧ r ≤ m). 
True or false? If true, prove. If false, give 
counterexample.  
 
False. 
 
Counterexample: 
n = 0, m = 0. 
Assume (∃ integer r)(0 < r ∧ r ≤ 0). 
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Want contradiction.  
Have 0 < r ∧ r ≤ 0. 
Have 0 < r, r ≤ 0. 
DONE.  
 
I hope you've found these Interdisciplinary Adventures of 
some interest.  
 
Thank you very much.  


