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1. APPROXIMATE FIXED POINTS AND LARGE CARDINALS

Let P(Z) be the Cantor space of all subsets of N. We are
interested in mappings j:P(Z) Æ P(Z).

We say that j:P(Z) Æ P(Z) is a contraction if and only if for
all n ≥ 0 and A,B Œ P(Z), if A,B agree on (-n,n) then j(A),
j(B) agree on (-n-1,n+1).

THEOREM 1.1. Every contraction on P(Z) has a unique fixed
point.

Let n,k ≥ 1. An approximate fixed point of j of type (n,k) is
a chain of sets A1 Õ ... Õ An Õ Z such that

*for all 1 £ i £ n-1, j(Ai+1) and Ai+1 agree on all sums and
products of length k from Ai » {0,±1}.*

An infinite approximate fixed point of type (n,k) is an
approximate fixed point of type (n,k) whose terms are
infinite.

A bi-infinite approximate fixed point of type (n,k) is an
approximate fixed point of type (n,k) whose terms are bi-
infinite; i.e., contain infin-itely many positive and infin-
itely many negative elements.

We would like to obtain a bi-infinite approximate fixed point
theorem. I.e.,

PROTOTYPE. Every “suitable” j:P(Z) Æ P(Z) has bi-infinite
approximate fixed points of every type.

We present a weak condition on j for this Prototype to hold.
It turns out that we need large cardinals in order to prove
that this condition works.

We say that j:P(Z) Æ P(Z) is a compression on P(Z) if and
only if there exists r ≥ 0 and t > 1 such that
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*if A,B agree on (-n,n) then j(A),j(B) agree on (-tn-
1,tn+1).*

We say that j is a decreasing compression on P(Z) iff j is a
compression on P(Z) satisfying

*A Õ B implies j(A) ⊇ j(B).*

We say that j is a uniformly decreasing compression on P(Z)
iff j is a decreasing compres-sion on P(Z) for which there
exists r ≥ 0 such that

*the value of j at any set is equaled to the value of j at
some subset of cardinality £ r.*

PROPOSITION 1.2. Every uniformly decreasing compres-sion on
P(Z) mapping finite sets to cofinite sets has bi-infinite
approximate fixed points of every type.

Here is a weak special case of Proposition 1.2.

PROPOSITION 1.3. Every uniformly decreasing compression on
P(Z) mapping finite sets to cofinite sets has an infinite
approximate fixed point of every type with a positive
element.

We must use t > 1 in the definition of compression. If we use
t = 1 then Propositions 1.2, 1.3 are false.

PROPOSITION 1.4. Let V be any countable set of infinte
subsets of Z. Any uniformly decreasing contraction on P(Z)
mapping finite sets to cofinite sets has approximate fixed
points of every type whose first set meets every
element of V.

PROPOSITION 1.5. Let t be a type. Any finite set of uniformly
decreasing compressions on P(Z) mapping finite sets to
cofinite sets have respective infinite approximate fixed
points of type t with the same first set. Moreover, we can
replace "infinite" by  "bi-infinite."

PROPOSITION 1.6. Let t be a type. Any countable set of
uniformly decreasing compressions on P(N) mapping finite sets
to cofinite sets have respective infinite approximate fixed
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points of type t with almost equal first sets. Moreover, we
can replace "infinite" by "bi-infinite."

THEOREM 1.7. Propositions 1.2 - 1.6 (all forms) are provably
equivalent to the 1-consis-tency of MAH = ZFC + {there exists
a k-Mahlo cardinal}k over ACA. In particular, they are
independent of ZFC.

Theorem 1.7 holds even if we weaken the Propositions
substantially. Here
are some simultaneous weakenings:
i) restrict to types of the form (3,k) and (n,2);
ii) restrict 1.5 to two uniformly decreasing compressions on
P(Z).

Propositions 1.2 - 1.6 are provable for types (2,k) and
(n,1).

2. DISJOINT COVERS

We use N for the set of all nonnegative integers. For x Œ Nk,
write max(x) for the maximum of the coordinates of x.

Let A,B,C be any sets. We say that A,B is a disjoint cover of
C if and only if

i) A,B are disjoint;
ii) C Õ A » B.

Let F:Nk Æ N. We say that F is strictly dominating iff for
all x Œ Nk, F(x) > |x|.

For A Õ N, write F[A] for the forward image of Ak under F.

The fundamental infinite disjoint cover theorem:

THEOREM 2.1. Let F:Nk Æ N be strictly dominating. There
exists A Õ N such that A,F[A] is a disjoint cover of N. A is
unique and infinite.

We want to have some control over A. But since A is unique,
we have no control. What about A,F[A] is a dijoint cover of
A+A? Not very much control:

THEOREM 2.2. For all k ≥ 1 there is a strictly dominating F:Nk

Æ N such that the follow-ing holds. If A,F[A] is a disjoint
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cover of A+A then A is finite or eventually equaled to the
multiples of a positive integer.

We thus are led to pairs A Õ B Õ N such that B,F[B] is a
disjoint cover of A+A. We wish to have some control over such
A,B.

The following result indicates that we can find "large" A,B.

THEOREM 2.4. Let k ≥ 1, F:Nk Æ N be strictly dominating, and
V be a countable set of infinite subsets of N. There exist A
Õ B Õ N meeting every element of V, such that B,F[B] is a
disjoint cover of A+A.

PROPOSITION 2.5. Let k,r ≥ 1, F:Nk Æ N be strictly dominat-
ing, and V be a countable set of infinite subsets of N. There
exist A1 Õ ... Õ Ar Õ N meeting every element of V, such that
for all 1 £ i £ r-1, Ai+1,F[Ai+1] is a disjoint cover of Ai +
Ai.

There are some important spec-ial cases of Proposition 2.5.

PROPOSITION 2.6. Let k,r ≥ 1, F:Nk Æ N be strictly dominat-
ing, and E be an infinite subset of N. There exist A1 Õ ... Õ
Ar Õ N with infinitely many elements in common with E, such
that for all 1 £ i £ r-1, Ai+1,F[Ai+1] is a disjoint cover of
Ai + Ai.

And also the case E = 2N+1.

PROPOSITION 2.7. Let k,r ≥ 1, F:Nk Æ N be strictly dominat-
ing. There exist A1 Õ ... Õ Ar Õ N with infinitely many odd
elements, such that for all 1 £ i £ r-1, Ai+1,F[Ai+1] is a
disjoint cover of Ai + Ai.

A weakening:

PROPOSITION 2.8. Let k,r ≥ 1, F:Nk Æ N be strictly dominat-
ing. There exist A1 Õ ... Õ Ar Õ N where Ar has infinitely
many odd elements, such that for 1 £ i £ r-1, Ai+1,F[Ai+1] is a
disjoint cover of Ai + Ai.

We can consider two strictly dominating functions.

PROPOSITION 2.9. Let k,r ≥ 1 and F,G:Nk Æ N be strictly
dominating. There exist infinite A1 Õ ... Õ Ar Õ N and
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B1 Õ ... Õ Br Õ N where for all 1 £ i £ r-1, Ai+1,F[Ai+1] is a
disjoint cover of Ai+Ai, Bi+1,G[Bi+1] is a disjoint cover of
Bi+Bi, and A1 = B1.

THEOREM 2.10. Propositions 2.5 - 2.0 are provably equivalent
to the 1-consistency of MAH = ZFC + {there exists an n-Mahlo
cardinal}n over ACA. The forward direction is provable in
RCA0.

3. DISJOINT COVERS OF A+A: SEMILINEAR FUNCTIONS

An integral semilinear func-tion on N is a function from some
N^k into N whose graph is a semilinear subset of Nk+1. A
semilinear subset of Nk is a Boolean combination of finitely
many halfplanes given by integer coefficients.

We can consider Propositions 2.5 - 2.9 with "strictly
dominating" replaced by "a strictly dominating integral
semilinear function."

THEOREM 3.1. Propositions 2.5 - 2.9 so modified are provably
equivalent to the consistency of MAH. The forward direction
is provable in RCA0.

PROPOSITION 3.2. Let k,r ≥ 1, F:Nk Æ N be a strictly
dominating integral semilinear function. There exist A1 Õ ...
Õ A Õ N starting with an infinite geometric progression, such
that for all 1 <= i £ r-1, Ai+1,F[Ai+1] is a disjoint cover of
Ai+Ai.

THEOREM 3.3. Proposition 3.2 is provably equivalent to the
consistency of MAH. The forward direction is provable in RCA0.

4. DISJOINT COVERS OF A+A: SEMILINEAR FUNCTIONS, FINITE FORMS
Prop 3.2 in explicit form:

PROPOSITION 4.1. Let k,r ≥ 1, F:Nk Æ N be a strictly domin-
ating integral semilinear function, and t be sufficiently
large. There exist {1,t,t2,...} = A1 Õ ... Õ Ar Õ N such that
for 1 £ i £ r-1, Ai+1, F[Ai+1] is a disjoint cover of Ai + Ai.

PROPOSITION 4.2. Let k,r ≥ 1, F:Nk Æ N be a strictly domin-
ating integral semilinear function, and t,n be sufficiently
large. There exist {1,t,t2,..., tn} = A1 Õ ... Õ Ar Õ N where
for 1 £ i £ r-1, Ai+1, F[Ai+1] is a disjoint cover of Ai + Ai.
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Note that Proposition 4.2 is explicitly in ’04 form.

We can put Proposition 4.2 in explicitly ’01 form with the
help of estimates. Here are the considerations that allow us
to do this. By the "presentation", we will mean the
presentation of the graph of F as a Boolean combination of
finitely many halfplanes, and the parameters k,r.

i. We can use linear algebra to bound the universal quanti-
fiers in the definition of strictly dominating, double
exponentially in the presentation.

ii. We can hypothesize that t,n be double exponentially
higher than the presentation. This requires a detailed
understanding of the proof of 4.2 from Mahlo cardinals.

iii. We can bound the magnitudes of the elements of Ar double
exponentially in the presentation and t,n.

THEOREM 4.3. Propositions 4.1, 4.2 are provably equivalent to
the consistency of MAH. The forward direction is provable in
RCA0. For Proposition 4.2, the equivalence can be proved in
EFA* = exponential function arithmetic with indefinitely
iterated exponention, with the forward direction provable in
EFA = exponential function arithmetic.

5. DISJOINT COVERS OF P[A]: POLYNOMIALS

We move to Z = the set of all integers.

Let F:Zk Æ Z and E Õ Zk. We say F is expansive on E iff there
exists c > 1 where for all x1,...,xk Œ E,

|F(x1,...,xk)| > c|x1|,..., c|xk|.

We write FE[A] for F[A
k « E].

A set is bi-infinite iff it has infinitely many positive and
negative elements.

THEOREM 5.1. Let P be an integral polynomial that is
expansive on a set E. There exists bi-infinite A Õ B Õ Z such
that B,PE[B] is a disjoint cover of P[A].

PROPOSITION 5.2. Let P be an integral polynomial that is
expansive on a set E. There exists bi-infinite A Õ B Õ C Õ Z
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such that B,PE[B] is a dis-joint cover of P[A] and C, PE[C] is
a disjoint cover of P[B].

PROPOSITION 5.3. Let r ≥ 1 and  P be an integral polynomial
that is expansive on a set E. There exists bi-infinite A1 Õ
... Õ Ar Õ Z such that for all 1 £ i £ r-1, Ai+1,PE[Ai+1] is a
disjoint cover of P[Ai].

THEOREM 5.4. Propositions 5.2 and 5.3 are provably equiva-
lent to the 1-consistency of MAH over ACA. The forward
direction of this equivalence is provable in RCA0.

6. DISJOINT COVERS OF P[A], POLYNOMIALS, FINITE FORMS

PROPOSITION 6.1. Let r ≥ 1 and P be an integral polynomial
that is expansive on an intersection E of finitely many
halfplanes, and t,n be sufficiently large. There exist finite
sets {1,t,tt,tt^2), ...,tt^n)} = A1 Õ ... Õ Ar Õ Z such that
for all 1 £ i £ n-1, Ai+1,PE[Ai+1] is a disjoint cover of P[Ai].

THEOREM 6.2. Proposition 6.1 is provably equivalent to the
1-consistency of MAH over EFA*, with EFA for the forward
direction. Moreover, these results hold if we set n = 3 or if
we replace all n inclusions by proper inclusions.

7. DISJOINT COVERS OF T[A], POSITIVE LINEAR FUNCTIONS, FINITE
FORMS

A positive integral linear function is a function from some
Cartesian power of Z into Z which is given by a linear
transformation whose coefficients are nonnegative integers.

PROPOSITION 7.1. Let r ≥ 1, T be a positive integral linear
function that is strictly dom-inating on an integral semi-
linear set E, and t,n be sufficiently large. There exist
finite {1,t,t2,...,tn} Õ A1 Õ ... Õ An Õ Z such that for all
1 £ i £ r-1, Ai+1, TE[Ai+1] is a disjoint cover of T[Ai].

THEOREM 7.2. 7.1 is provably equivalent to the consistency of
MAH over EFA*, with EFA for the forward direction. More-over,
these results hold if we set n = 3 or if we replace all n
inclusions by proper inclusions.

We can follow the same procedure as indicated earlier
to put Proposition 7.1 in explicitly ’01 form, where Theorem
7.2 still holds.
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8. CLASSIFICATION PROBLEMS

(one of many variants)

PROPOSITION. Let r ≥ 1 and P be an integral polynomial that
is expansive on a set E. There exists bi-infinite A1 Õ≠ ...
Õ≠ Ar Õ≠ Z such that for all 1 £ i £ r-1, Ai+1,PE[Ai+1] is a
disjoint cover of P[Ai].

FORM I. Let P be an integral polynomial that is expansive on
a set E, r ≥ 1. There exist bi-infinite A1 Õ≠ ... Õ≠ Ar Õ≠ Z
where for 1 £ i £ r-1, a specific Boolean equation holds
among Ai+1,PE[Ai+1],P[Ai].

There are 256 instances of Form I up to Boolean equivalence
of Boolean equations. Of course, there are far fewer than
that many when one takes into account other formal aspects of
the situation. The following result indicates that there are,
in some sense, only three different kinds
of instances of Form I.

THEOREM 8.1. Every instance of Form I is either provable in
ACA, refutable in RCA0, or equivalent to the 1-consistency of
MAH over ACA. All three possibilities are realized.

THEOREM 8.2. Let T be an extension of ACA. The following are
equivalent. i) every instance of Form I is either provable or
refutable in T;
ii) T proves or refutes the 1-consistency of MAH.

THEOREM 8.3. (First finite obstruction) Suppose a given
instance of Form I holds with "bi-infinite" replaced by
"arbitrarily large finite." Then it holds with "bi-infinite"
replaced by "infinite."

PROPOSITION 8.4. (Second finite obstruction) Suppose a given
instance of Form I holds with "bi-infinite" replaced by
"infinite." Then it holds unmodified.

PROPOSITION 8.5. (Third finite obstruction) Suppose a given
instance of Form I holds with "bi-infinite" replaced by
"arbitrarily large finite." Then it holds unmodified.

Third finite obstruction = first and second ones.
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THEOREM 8.6. Second and third finite obstruction are prov-
ably equivalent to the consistency of MAH over ACA, with RCA0
for the forward direction.

We conjecture that these results hold for the much more
comprehensive Form II below. However, too hard right now.

FORM II. Let P be an integral polynomial that is expansive on
a set E, and r ≥ 1. There exists bi-infinite A1 Õ≠ ... Õ≠ Ar
Õ≠ Z where for all 1 £ i £ r-1, a specific Boolean equation
holds among Ai,Ai+1, P[Ai],P[Ai+1],PE[Ai],PE[Ai+1].

However, there is an interesting subcase of Form II that
seems within reach.

FORM III. Let P be an integral polynomial that is expansive
on a set E, and r ≥ 1. There exist bi-infinite A1 Õ≠ ... Õ≠
Ar Õ≠ Z such that for all 1 £ i £ r-1, a specific set of dis-
joint cover conditions holds among Ai,Ai+1,P[Ai],P[Ai+1],
PE[Ai],PE[Ai+1].

9. POSET PRELIMINARIES

A poset is a reflexive, transitive, and antisymmetric
relation £. The field of £, fld(£), is {x: x £ x}. We write x
< y iff x £ y and x ≠ y.

We say that x is a predecessor of y in £ iff x < y. We say
that x is an immediate predecessor of y in £ iff

i) x < y;
ii) there is no z such that x < z < y.

A maximal point of £ is a field element x which is not a
predecessor.

Write £x for £ « {y: y £ x}2.

The height of a poset £ is the length of the longest finite
sequence x1 < x2 ... < xn. If there is no longest length, then
the height is considered
to be •.

10. OPTIMIZED POSETS IN Nk
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N = set of all nonnegative integers. Write PO(k) for the set
of all posets £ such that

i) fld(£) Õ Nk;
ii) x < y implies max(x) < max(y).

max(x) is the maximum of the coordinates of x, and so the
second < in ii) is numerical.

We write FPO(k) for the set of all elements of PO(k) whose
field is finite.

Write PO(k,r),FPO(k,r) for the set of all elements of PO(k)
and FPO(k),resp., such that every field element has at most r
immediate predecessors.

Let F:FPO(k,r) Æ R. We define F*:PO(k,r) Æ R » {±•} by

F*(£) = ÂxŒfld(£)\{0}F(£x)/max(x).

F* is undefined if sum doesn’t converge to an extended real
number. F* may not extend F.

We say £ is F*-optimal if F*(£) is defined, and there is no
<=' in PO(k,r) with the same field such that F*(£') > F*(£).

THEOREM 10.1. Let k,r ≥ 1 and F:FPO(k,r) Æ R have finite
range. $ an F*-optimal poset whose field contains an infin-
ite Cartesian power. If F is into R+0 then there exist F*-
optimal posets whose field is any prescribed subset of Nk.

Finite range means that the range is a finite set.

PROPOSITION 10.2. Let k,r ≥ 1 and F:FPO(k,r) Æ R have finite
range. There exists an F*-optimal poset of finite height
whose field contains an
infinite Cartesian power.

I.e., whose field contains Ek for some infinite E Õ N.

THEOREM 10.3. Proposition 10.2 is provably equivalent to the
1-consistency of MAH over ACA. The forward direction is
provable in RCA0.

11. LARGER CARDINALS
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We say that x Œ Z+k is strict-ly increasing iff each coor-
dinate is strictly less than the next.

For x,y Œ Nk, we say that x is entirely lower than y iff
every coordinate of x is strictly less than every coordinate
of y.

PROPOSITION 11.1. Let k,r ≥ 1 and F:FPO(k,r) Æ Z have finite
range. There exists an F*-optimal poset whose maximal points
comprise the strictly increasing k tuples from an infinite
set, all of which have the same entirely lower predecessors.

And here is a sharper form.

PROPOSITION 11.2. Let k,r ≥ 1 and F:FPO(k,r) Æ Z have finite
range. There exists an F*-optimal poset whose maximal points
comprise the strictly increasing k tuples from an infinite
set, all of which have the same entirely lower predecessors
and the same number of predecessors.

THEOREM 11.3. Propositions 11.1 and 11.2 are provably
equivalent to the  1-consistency of SUB = ZFC + {there exists
an n-subtle cardinal}n over ACA. The forward direction is
provable in RCA0.

12. FINITE FORMS

First we begin with two semi-finite forms. The hypotheses are
infinite but the conclusion is finite.

Here we will not need the parameter r. For F:FPO(k) Æ R, we
define F* as before. Also £ is an F*-optimal poset iff F*(£)
is defined, and for no £' in PO(k) with the same field, is
F*(£') > F*(£).

PROPOSITION 12.1. Let k,p ≥ 1 and F:FPO(k) Æ Z have finite
range. $ a finite F*-optimal poset whose maximal points
comprise the strictly increasing k tuples from a p element
set, all of which have the same entirely lower predecessors.
And here is a sharper form.

PROPOSITION 12.2. Let k,p ≥ 1 and F:FPO(k) Æ Z have finite
range. There exists a finite F*-optimal poset whose maximal
points comprise the strictly increasing k tuples from a p
element set, all of which have the same entirely lower
predecessors and the same number of predecessors.
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We now give the obvious finite forms. Let PO(k:t) be the set
of all elements of PO(k) whose field is Õ {0,... ,t}^k. Let
F:PO(k:t) Æ R. We define F* as before. Also £ is an F*-opti-
mal poset iff £ Œ PO(k:t) and for no £' Œ PO(k:t) with the
same field, is F*(£') > F*(£).

PROPOSITION 12.3. Let t >> k,r,p ≥ 1 and F:FPO(k:t) Æ {-
r,...,r}. There exists an F*-optimal poset whose maximal
points comprise the strictly increasing k tuples from a p
element set, all of which have the same entirely lower
predecessors.

And here is a sharper form.

PROPOSITION 12.4. Let t >> k,r,p ≥ 1 and F:FPO(k:t) Æ
{-r,...,r}. There exists an F*-optimal poset whose maximal
points comprise the strictly increasing k tuples from a p
element set, all of which have the same entirely lower
predecessors and the same number of predecessors.

THEOREM 12.5. Propositions 12.1 - 12.4 are provably
equivalent to the 1-consistency of SUB = ZFC + {there exists
an n-subtle cardinal}n over RCA0. In the case of Propositions
12.3 and 12.4 we can use EFA*, with EFA for the forward
direction.


