
	 1	

AN APPROACH TO THE FORMAL
REPRESENTATION OF MATHEMATICAL

PROPOSITIONS
by

Harvey M. Friedman*
Distinguished University Professor of Mathematics,

Philosophy, and
Computer Science Emeritus

Ohio State University
Presentation at the

Semantic Representation of
Mathematical Knowledge Workshop

Fields Institute
Toronto, Canada
February 3, 2016

Revised February 7, 2016

*This material is based upon work supported by the National
Science Foundation under Grant No. CCF-1162331. Any
opinions, findings, conclusions, or recommendations
expressed here are those of the author and do not

necessarily reflect the views of the National Science
Foundation.

1. POLITICALLY INCORRECT REMARKS

We want to develop a language for the formal representation
of mathematical propositions (including axioms and
definitions), with a precise syntax and semantics, which
supports truly friendly reading and writing. The output
must be syntactically and semantically perfect in fully
rigorous senses.

I have come to the conclusion that this is impossible to
accomplish in a satisfactory way without IMPROVING on
existing mathematical notation. Not just modifying existing
mathematical notation.

I mean overhauling it in major ways with powerful unifying
ideas that preserve, and often improve, readability - at
the same time supporting perfectly constructed statements.
What I normally see - that is perfectly constructed -
doesn't look too much like normal mathematics, and is

	 2	

generally much less readable.

The overhauling of existing mathematical notation is going
to require a lot of creative logic oriented new ideas, if
it is really going to be an improvement.

A difficulty is that you start with a few good ideas, but
not enough of them. So your prototypes not only don't look
like existing mathematics, but are also comparatively
unreadable. So nobody is going to encourage you to continue
your efforts.

So this project may well be only for retired people. I
retired in 2012.

We describe a relatively simple language for expressing
mathematical propositions, sketching its absolutely
rigorous syntax and semantics. It should work well on some
limited kinds of mathematics. In particular, mathematics
with a medium level of abstraction, not mired in much
conventional notation.

Most obviously, it should be well suited to elementary set
theory. It seems like it should support elementary number
theory and elementary analysis, but some of this notation
needs to be overhauled in order to work with this approach.
I'm thinking particularly of summation and integration. In
this approach, there is the simplifying and unifying idea
of having only one variable binding operator, and that is
set abstraction. So summation and integration are to be
handled as an ordinary operator from functions to numbers,
or functions to functions.

But how are the functions to be presented and handled? By a
combination of operators and set abstraction - and some new
clever ideas needed to keep things readable.

Also, in multivariable analysis, you see this awkward stuff
with partial derivatives and dx dy, and so forth. Under the
overhaul, you want to emphasize, e.g., operators that take
a function of two variables, and a first argument, and
yield the function of one variable obtained by fixing the
first argument.

What we propose here is a combination of well known ideas,
some going back forever, with some new twists combined in
perhaps new ways. Your instinct may be to reject this kind

	 3	

of overhaul as venturing too far from what is normally
written. But I have the opposite reaction. I want to
persist with the overhaul, and to make the overhaul work,
there will have to be yet more overhaul, and tutorials with
candid feedback in the wider mathematical community.

I have some confidence that in the end, it will result in
systematic improvements over existing notation - and make a
digital library of the kind people are envisioning, more
feasible.

I now want to delve into the approach.

2. ABOUT LIBRARIES

Readability of the library can be improved by providing
user controlled tools for modifying the displays of
selected portions of the library. We envision these tools
to be only for personal use, and the system makes no
guarantee as to the soundness of such modified displays.

Ultimately, we expect third parties to provide packages,
and perhaps soundness proofs for these packages.

The most ambitious kind of digital library project will
support logical manipulation of statements in the library.

This more ambitious aim would include recognizing closely
related but different forms of the same theorems.

For such more ambitious purposes, there will be pressure to
use a much more complicated universal language than is
being proposed here - likely borrowing from existing
facilities in general purpose formal verification.

However, I fear that this more ambitious enterprise will
lead to a language not suited for general non computer
science mathematicians, and delay the rolling out of a
useful product.

We think that this limited digital library project is well
worth the effort - and can also serve as a tangible
prototype for more ambitious digital library projects.

This language UL has ZFC at its core, and is relatively
simple, though necessarily significantly more involved than
any standard formaliza-tion of ZFC used by mathematical

	 4	

logicians.

ZFC itself is based on a very clean division between logic
and rudimentary set theory. Here we go a long way to keep a
clean division between "extended free logic" and
rudimentary set theory. But we compromise on this as we see
that pushing this clean division further leads to
undesirable complications. This naturally leads to the
present setup that is biased toward the set theoretic way
of doing things.

All entries in the envisioned library will consist of
statements, in a hypertext environment. Statements are
further divided into definitions, axioms, theorems, and
open questions. Informal information concerning each entry
is available by clicking on it or its various components.

Theorems entered must pass a stringent process ensuring
that it follows logically from the axioms (ZFC) and
definitions that precede it. This may not include formal
verification.
The crucial relevant notion of logical implication here is
subject to fully rigorous analysis.

In this preliminary discussion of UL, I won't attempt to
incorporate TEX, as has already been done with some
systems.

We expect that UL can be made reasonably TEX friendly.

3. FREE LOGIC - basics

We strictly adhere to a well known standard version of free
logic, where terms may be undefined. However, propositions
have definite truth values, true or false.

s = t means that s,t are both defined and equal.
s ≈ t means that s = t or s,t are both undefined.
t↓ means that t is defined.
t↑ means that t is undefined.

In order for t to be defined, it must be the case that all
of its subterms are defined.

Variables and constants are always defined.

	 5	

Any atomic formula that connects terms by relation symbols,
including =,↑, but excluding ≈,↓, is automatically false if
any of the terms being connected are undefined.

E.g., 1 div 0 is undefined. 1 div 0 = 1 div 0 is false. 1
div 0 ≈ 1 div 2 is true. Here div is 2-ary division of real
numbers.

There is a well known appropriate relative completeness
theorem for free logic.

4. EXTENDED FREE LOGIC

The part of our setup that is prior to ZFC, or any set
existence axioms whatsoever, is "extended free logic".
Almost all of it is not set theoretic. Removing all set
theoretic bias in extended free logic seems to cause some
difficulties that are best avoided.

In extended free logic, we have a fixed set of variables,
constant symbols, relation symbols, and function symbols.
There are the special variables xi, i ≥ 1, that range over
everything. The remaining variables are subject to being
restricted to some nonempty range of objects.

We support prefix and infix notation. The semantics of
infix notation is derived from the semantics of prefix
notation.

The only bracketing operators are { } and < >, and they are
of arbitrary arity. All relation and function symbols are
of fixed arity.

The only variable binding operator is set abstraction, {_ :
_}.

There is a standard relative completeness theorem for
extended free logic. The library conforms to this relative
validity for extended free logic, relative to the axioms of
ZFC.

The semantics is based on (extended free logic) structures.
The variables, constant symbols, relation symbols, and
function symbols are fixed annotated strings (see below).

	 6	

The domain is a nonempty set D. Variables are assigned
subsets of D as their range of values. The special
variables xi, i ≥ 1, are assigned D.

Constant symbols are assigned at most one element of D. k-
ary relation symbols: subsets of Dk. k-ary function symbols:
partial f:Dk → D. { } and k ≥ 1: partial f:Dk → D. < > and
k ≥ 1: partial g:Dk → D. {_:_} - a partial h:℘(D) → D.

A crucial feature of extended free logic is: every object
takes on the role of object and k-ary relation and par-tial
k-ary function, simultaneously, for all k ≥ 1.
Accordingly, as part of the structure, to each x ∈ D and k
≥ 1, we assign an A ⊆ Dk and a partial f:Dk → D.

The syntax is sketched below. Among the notable features
are the atomic formulas s[t1,...,tk], for "s, as a k-ary
relation, holds of t1,...,tk", and the terms s(t1,...,tk),
for "the value of s, as a partial k-ary function, at
t1,...,tk".

The Tarskian semantics is carefully defined as expected.
There is a relative completeness theorem, with nice axioms
and rules of inference.

5. THE INTENDED SET THEORETIC STRUCTURES

We use the usual cumulative hierarchy of sets, given semi
formally as

V(0) = ∅
V(α+1) = ℘(V(α)).
V = ∪αV(α).

The 2-ary relation symbol ∈ is interpreted as membership.

We interpret {x1,...,xk} as expected. We interpret <x,y> as
{{x},{x,y}}. For k ≥ 2, we interpret <x1,...,xk+1> as
<x1,<x2,..., xk+2>>. We interpret <x> as x.

We interpret {_:_} as f:℘(V) → V, where f(X) is X if X is
a set; undefined otherwise

We interpret x[y1,...,yk] as <y1,...,yk> ∈ x, k ≥ 1.

	 7	

We interpret x(y1,...,yk) as the unique z such that
<y1,...,yk,z> ∈ x if it exists; undefined otherwise.

The ranges of variables other than the xi, i ≥ 1, and the
interpretations of constant, relation, and function
symbols, are fluid as indicated earlier.

All library entries must hold in all set theoretic
structures.

We also use the more general ZFC structures, where (V,∈) is
replaced by any model of ZFC.

All library entries must hold in all ZFC structures.

Since the library contains definitions, including variable
restrictions, we need to be careful about what "hold" here
means.

There is a relative completeness theorem for libraries,
involving library continuations.

6. LETTERS, SIGNS

We use a large standard finite set V of letters. A few of
these letters have special significance for extended free
logic:

= ↑ ↓ ≈ () [] { } < > , : ¬ ∧ ∨ → ↔ ∀ ∃ ! x 0 1 2 3 4 5
6 7 8 9

Every letter comes with a normal version, a subscripted
version, and a superscripted version.

Every library starts with the core, which is a standard
axiomatization of ZFC in extended free logic using only the
above symbols plus the special 2-ary relation symbol ∈.
These ZFC axioms include the standard treatments of {...},
<...>, {_:_}, x[...], x(...).

The library must continue in a manner that is semantically
valid relative to this core.

We envision a standard initial package that goes well
beyond this core. It will treat the obvious nonlogical
statements involving the following wider letter list:

	 8	

∈ ∉ = ≠ ∪ ∩ ⊆ ⊇ ⊂ ⊃ ⊄ \ ℘ ∅
↑ ↓ ≈
() [] { } < > , :
¬ ∧ ∨ → ↔ ∀ ∃ !

We now begin to provide some details concerning the syntax.

The signs are of four disjoint kinds: variables, constant
symbols, relation symbols, function symbols. Each of these
four consist of the nonempty finite strings from V, with
tiny characters in the front and back that tell us which of
the four categories we intend, and the intended arity.
However, normally, the category and arity can be inferred,
and so it does not have to appear. In any case, the user
has the ability to show or hide these tiny characters.

The variables are strings from V, with a tiny v in front
and a tiny v in back.

The constant symbols are strings from V, with a tiny c in
front and a tiny c in back.

The relation symbols are strings from V, with a tiny r in
front, and its arity (≥1) in back, again tiny.

The function symbols are strings from V, with a tiny f in
front, and its arity (≥1) in back, again tiny.

The user has the option of showing or hiding the tiny
characters.

In a revised form of UL, we should be able to omit the use
of these tiny characters.

7. USING SIGNS

Only certain signs are actually used in the library. With
exceptions, all signs used in the library are introduced by
a definition prior to its use. A sign is introduced at most
once. Thus the meaning of a sign cannot change. This is
workable, as the user can choose to modify the display.

The exceptional signs that do not have to be introduced,
are the 2-ary relation symbols ∈,=, the unrestricted
variables xi, i ≥ 1, and those variables that the initial

	 9	

system package, and later the user, chooses to range over
everything. I.e., restricted variables are introduced
with restrict-ion spelled out, before use. Variable
introductions are considered definitions.

8. INTRODUCING VARIABLES

DEFINITION. Introducing α. α↓ ↔ ϕ.

Here α is a variable (not an xi) and ϕ is a formula with
exactly the free variable α.

UPDATE: An alternative is to only use variables ranging
over everything, and restrict variables by local hypotheses
or where clauses. This and some other related design issues
will be carefully addressed as we begin to create actual
mathematical text (axioms, definitions, theorems only).

9. INTRODUCING CONSTANT SYMBOLS

DEFINITION. c ≈ t.

Here c is a constant symbol and t is a term without c.

10. INTRODUCING RELATION SYMBOLS

DEFINITION. R(x1,...,xk) ↔ ϕ.

Here R is a k-ary relation symbol, and ϕ is a formula not
mentioning R whose free variables are among x1,...,xk.

11. INTRODUCING FUNCTION SYMBOLS

DEFINITION. F(x1,...,xk) ≈ t.

Here F is a k-ary function symbol, and t is a term not
mentioning F, whose free variables are among x1,....,xk.
NOTE: All relation and function symbols are introduced in
prefix form. But we will support infix notation, as
indicated below.

NOTE: In the appropriate sense, all of these definition
forms are unambiguous and benign.

12. TERMS

	 10	

Every constant symbol and variable is a term.

s(t1,...,tk), α(t1,...,tk) are terms if α is a k-ary function
symbol and s,t1,...,tk are terms, k ≥ 1.

(!t)(ϕ), (!t γ s)(ϕ} are terms if s,t are terms, ϕ is a
formula, and γ is a 2-ary relation symbol.

{t1,...,tk}, <t1,...,tk> are terms if t1,...,tk are terms.

{t: ϕ}, {t γ s: ϕ} are terms if s,t are terms, ϕ is a
formula, and γ is a 2-ary relation symbol.
NOTE: {t: ϕ}, etc., is the set of all values of t such that
the free variables in t obey ϕ. E.g., {F(x,y): ϕ}. If we
have y fixed, this is a one dimensional sum, and we write
{F(x,z): ϕ[y/z] ∧ z = y}.

t1 t2 ... tk is a term if

a) k is odd.
b) each ti, i odd, is a term.
c) each ti, i even, is a term or a 2-ary function symbol.

Here terms ti, i even, represent sets in their role as
binary functions. For k ≥ 5, t1 t2 ... tk is evaluated left
associatively.

13. ATOMIC FORMULAS

t↑, t↓, where t is a term.
s[t1,...,tk], α[t1,...,tk], where α is a relation symbol and
s,t1,...,tk are terms, k ≥ 1.

t1 t2 ... tk is an atomic formula if

a) k is odd.
b) each ti, i odd, is a term.
c) each ti, i even, is a term or a 2-ary relation symbol.

Here terms ti, i even, represent sets in their role as
binary relations. t1 t2 ... tk is read conjunctively as
t1 t2 t3 ∧ t3 t4 t5 ∧ ... ∧ tk-2 tk-1 tk.

14. FORMULAS

	 11	

Closure under ¬,∧,∨,→,↔, with precedence rules.

(∀α1,...,αk)(ϕ), (∃α1,...,αk)(ϕ), (∃!α1,...,αk)(ϕ).
(∀α1,...,αk γ t)(ϕ), (∃α1,...,αk γ t)(ϕ), (∃!α1,...,αk γ
t)(ϕ).

where α1,...,αk are distinct variables, t is a term, ϕ is a
formula, and: γ is a 2-ary relation symbol.

15. ASSUME, THEN, TFAE, EIN

Assume ϕ1,...,ϕk. THEN ψ1,...,ψr.

The following are equivalent:
ϕ1.
...
ϕk.

Each implies the next:
ϕ1.
...
ϕk.

16. DEVELOPMENT

There are enough details here to actually produce a small
prototype library, and see how it looks. Then the language
will be fine tuned.
I propose to start with the easiest: elementary set theory.
Then try elementary number theory, elementary algebra,
elementary analysis. And so forth.

I will use careful mathematical thinking to "guarantee"
that all entries are in the appropriate sense theorems of
ZFC.

I suspect that additional features need to be carefully
added to the language that are easily managed, but support
some worthwhile additional readability. To judge the
tradeoffs between language simplicity and readability, we
have to get our hands dirty.

17. CORE LIBRARY

	 12	

AXIOM 1. x1 ∈ {x2,...,xk+1} ↔ x1 = x2 ∨ ... ∨ x1 = xk+1.

AXIOM 2. <x1,x2> = {{x1},{x1,x2}} ∧ <x1> = x1.

AXIOM 3. <x1,...,xk> = <<x1,x2>,x3,...,xk>.

AXIOM 4. x1(x2,...,xk+1) = (!xk+2)(<x2,...,xk+2> ∈ x1).

AXIOM 5. x1[x2,...,xk+1] ↔ <x2,...,xk+1> ∈ x1.

AXIOM 6. x1 ∈ {t: ϕ} ↔ (∃x2,...,xk+1)(ϕ ∧ x1 = t). Here t is
a term, ϕ is a formula, x1 is not in t,ϕ, and the free
variables in t are x2,...,xk+1.

AXIOMS. ZFC, taking advantage of axioms 1-6.

18. INITIAL LIBRARY

The initial library package includes the core library plus
a number of definitions involving the most commonly used
symbols.

There is the basic initial library, which is small and
simple. This would fall well short of, say, the definition
of the standard number system.

The full initial library package would be much larger,
treating the elementary mathematics that virtually every
user of mathematics worldwide needs.

DEFINITION 1. x ∉ y ↔ ¬x ∈ y.

DEFINITION 2. x ≠ y ↔ ¬x = y.

DEFINITION 3. ∅ ≈ {x: x ≠ x}.

THEOREM 1. ∅↓.

DEFINITION 4. x ⊆ y ↔ (∀z ∈ x)(z ∈ y).

DEFINITION 5. x ⊇ y ↔ y ⊆ x

DEFINITION 6. x ⊂ y ↔ x ⊆ y ∧ x ≠ y.

DEFINITION 7. ⊃(x,y) ↔ x ⊇ y ∧ x ≠ y.

	 13	

DEFINITION 8. x ⊄ y ↔
¬x ⊂ y.

DEFINITION 9. x ∪ y ≈ {z: z ∈ x ∨ z ∈ y}.

DEFINITION 10. x ∩ y = {z: z ∈ x ∧ z ∈ y}.

DEFINITION 11. x\y ≈ {z ∈ x: z ∉ y}.

DEFINITION 12. ℘(x) = {y: y ⊆ x}.

DEFINITION 13. ∪(x) = {y: (∃z ∈ x)(y ∈ z)}.

DEFINITION 14. ∩(x) ≈ {y: (∀z ∈ x)(y ∈ z)}.

THEOREM 2. x ∪ y↓. x ∩ y↓. x\y↓. ℘(x)↓. ∪(x)↓.

THEOREM 3. x ≠ ∅ → ∩x↓.

DEFINITION 15. 0 ≈ ∅. 1 ≈ 0 ∪ {0}. 2 ≈ 1 ∪ {1}. 3 ≈ 2 ∪
{2}. 4 ≈ 3 ∪ {3}. 5 ≈ 4 ∪ {4}. 6 ≈ 5 ∪ {5}. 7 ≈ 6 ∪ {6}. 8
≈ 7 ∪ {7}. 9 ≈ 8 ∪ {8}.

THEOREM 4. 0 = ∅. 1 = 0 ∪ {0}. 2 = 1 ∪ {1}. 3 = 2 ∪ {2}. 4
= 3 ∪ {3}. 5 = 4 ∪ {4}. 6 = 5 ∪ {5}. 7 = 6 ∪ {6}. 8 = 7 ∪
{7}. 9 = 8 ∪ {8}.
52085 is 5 α 2 α 0 α 8 α 5, for the suitable 2-ary function
symbol α from the more advanced part of the initial library
package, which is to be evaluated left associatively. c's,
and spaces, to see 52085.

Obviously, we want n α m = 10n+m.

19. CONTINUING...

In an elaboration of ideas, we plan to

i. Treat extended free logic, its semantics, and the
relative completeness theorem.

ii. Define the notion of extended free logic library.

iii. Define extended free logic libraries over ZFC.

	 14	

iv. Cover a variety of rich mathematical statements. Refine
language according to experience.

v. Years ago, I proposed to create a database of what I
called CONCEPT TREES. This is basically the definitional
structure only in the library. A mathematical notion is
traced back to the set theoretic core, obtaining a labeled
tree. How do the structure of these trees compare from area
to area of mathematics?

