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1. POLITICALLY INCORRECT REMARKS 
 
We want to develop a language for the formal representation 
of mathematical propositions (including axioms and 
definitions), with a precise syntax and semantics, which 
supports truly friendly reading and writing. The output 
must be syntactically and semantically perfect in fully 
rigorous senses.  
 
I have come to the conclusion that this is impossible to 
accomplish in a satisfactory way without IMPROVING on 
existing mathematical notation. Not just modifying existing 
mathematical notation.  
 
I mean overhauling it in major ways with powerful unifying 
ideas that preserve, and often improve, readability - at 
the same time supporting perfectly constructed statements. 
What I normally see - that is perfectly constructed - 
doesn't look too much like normal mathematics, and is 
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generally much less readable.  
 
The overhauling of existing mathematical notation is going 
to require a lot of creative logic oriented new ideas, if 
it is really going to be an improvement.  
 
A difficulty is that you start with a few good ideas, but 
not enough of them. So your prototypes not only don't look 
like existing mathematics, but are also comparatively 
unreadable. So nobody is going to encourage you to continue 
your efforts.  
 
So this project may well be only for retired people. I 
retired in 2012.  
 
We describe a relatively simple language for expressing 
mathematical propositions, sketching its absolutely 
rigorous syntax and semantics. It should work well on some 
limited kinds of mathematics. In particular, mathematics 
with a medium level of abstraction, not mired in much 
conventional notation.  
 
Most obviously, it should be well suited to elementary set 
theory. It seems like it should support elementary number 
theory and elementary analysis, but some of this notation 
needs to be overhauled in order to work with this approach. 
I'm thinking particularly of summation and integration. In 
this approach, there is the simplifying and unifying idea 
of having only one variable binding operator, and that is 
set abstraction. So summation and integration are to be 
handled as an ordinary operator from functions to numbers, 
or functions to functions.  
 
But how are the functions to be presented and handled? By a 
combination of operators and set abstraction - and some new 
clever ideas needed to keep things readable.  
  
Also, in multivariable analysis, you see this awkward stuff 
with partial derivatives and dx dy, and so forth. Under the 
overhaul, you want to emphasize, e.g., operators that take 
a function of two variables, and a first argument, and 
yield the function of one variable obtained by fixing the 
first argument.  
 
What we propose here is a combination of well known ideas, 
some going back forever, with some new twists combined in 
perhaps new ways. Your instinct may be to reject this kind 
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of overhaul as venturing too far from what is normally 
written. But I have the opposite reaction. I want to 
persist with the overhaul, and to make the overhaul work, 
there will have to be yet more overhaul, and tutorials with 
candid feedback in the wider mathematical community.   
 
I have some confidence that in the end, it will result in 
systematic improvements over existing notation - and make a 
digital library of the kind people are envisioning, more 
feasible.  
 
I now want to delve into the approach.  
 
2. ABOUT LIBRARIES 
 
Readability of the library can be improved by providing 
user controlled tools for modifying the displays of 
selected portions of the library. We envision these tools 
to be only for personal use, and the system makes no 
guarantee as to the soundness of such modified displays.  
 
Ultimately, we expect third parties to provide packages, 
and perhaps soundness proofs for these packages.  
 
The most ambitious kind of digital library project will 
support logical manipulation of statements in the library.  
 
This more ambitious aim would include recognizing closely 
related but different forms of the same theorems.  
 
For such more ambitious purposes, there will be pressure to 
use a much more complicated universal language than is 
being proposed here - likely borrowing from existing 
facilities in general purpose formal verification.  
 
However, I fear that this more ambitious enterprise will 
lead to a language not suited for general non computer 
science mathematicians, and delay the rolling out of a 
useful product.  
 
We think that this limited digital library project is well 
worth the effort - and can also serve as a tangible 
prototype for more ambitious digital library projects.  
 
This language UL has ZFC at its core, and is relatively 
simple, though necessarily significantly more involved than 
any standard formaliza-tion of ZFC used by mathematical 
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logicians.  
 
ZFC itself is based on a very clean division between logic 
and rudimentary set theory. Here we go a long way to keep a 
clean division between "extended free logic" and 
rudimentary set theory. But we compromise on this as we see 
that pushing this clean division further leads to 
undesirable complications. This naturally leads to the 
present setup that is biased toward the set theoretic way 
of doing things.  
 
All entries in the envisioned library will consist of 
statements, in a hypertext environment. Statements are 
further divided into definitions, axioms, theorems, and 
open questions. Informal information concerning each entry 
is available by clicking on it or its various components.  
 
Theorems entered must pass a stringent process ensuring 
that it follows logically from the axioms (ZFC) and 
definitions that precede it. This may not include formal 
verification.  
The crucial relevant notion of logical implication here is 
subject to fully rigorous analysis. 
 
In this preliminary discussion of UL, I won't attempt to 
incorporate TEX, as has already been done with some 
systems.                     
 
We expect that UL can be made reasonably TEX friendly.  
 
3. FREE LOGIC - basics 
 
We strictly adhere to a well known standard version of free 
logic, where terms may be undefined. However, propositions 
have definite truth values, true or false.  
 
s = t means that s,t are both defined and equal. 
s ≈ t means that s = t or s,t are both undefined.  
t↓ means that t is defined. 
t↑ means that t is undefined.  
 
In order for t to be defined, it must be the case that all 
of its subterms are defined.  
 
Variables and constants are always defined.  
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Any atomic formula that connects terms by relation symbols, 
including =,↑, but excluding ≈,↓, is automatically false if 
any of the terms being connected are undefined.  
 
E.g., 1 div 0 is undefined. 1 div 0 = 1 div 0 is false. 1 
div 0 ≈ 1 div 2 is true. Here div is 2-ary division of real 
numbers.    
 
There is a well known appropriate relative completeness 
theorem for free logic.  
 
4. EXTENDED FREE LOGIC 
 
The part of our setup that is prior to ZFC, or any set 
existence axioms whatsoever, is "extended free logic". 
Almost all of it is not set theoretic. Removing all set 
theoretic bias in extended free logic seems to cause some 
difficulties that are best avoided. 
 
In extended free logic, we have a fixed set of variables, 
constant symbols, relation symbols, and function symbols. 
There are the special variables xi, i ≥ 1, that range over 
everything. The remaining variables are subject to being 
restricted to some nonempty range of objects.  
 
We support prefix and infix notation. The semantics of 
infix notation is derived from the semantics of prefix 
notation.  
 
The only bracketing operators are { } and < >, and they are 
of arbitrary arity. All relation and function symbols are 
of fixed arity.  
 
The only variable binding operator is set abstraction, {_ : 
_}.  
 
There is a standard relative completeness theorem for 
extended free logic. The library conforms to this relative 
validity for extended free logic, relative to the axioms of 
ZFC.  
 
The semantics is based on (extended free logic) structures. 
The variables, constant symbols, relation symbols, and 
function symbols are fixed annotated strings (see below).  
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The domain is a nonempty set D. Variables are assigned 
subsets of D as their range of values. The special 
variables xi, i ≥ 1, are assigned D.  
 
Constant symbols are assigned at most one element of D. k-
ary relation symbols: subsets of Dk. k-ary function symbols: 
partial f:Dk → D. { } and k ≥ 1: partial f:Dk → D. < > and 
k ≥ 1: partial g:Dk → D. {_:_} - a partial h:℘(D) → D.  
 
A crucial feature of extended free logic is: every object 
takes on the role of object and k-ary relation and par-tial 
k-ary function, simultaneously, for all k ≥ 1.  
Accordingly, as part of the structure, to each x ∈ D and k 
≥ 1, we assign an A ⊆ Dk and a partial f:Dk → D.  
 
The syntax is sketched below. Among the notable features 
are the atomic formulas s[t1,...,tk], for "s, as a k-ary 
relation, holds of t1,...,tk", and the terms s(t1,...,tk), 
for "the value of s, as a partial k-ary function, at 
t1,...,tk".   
 
The Tarskian semantics is carefully defined as expected. 
There is a relative completeness theorem, with nice axioms 
and rules of inference.  
 
5. THE INTENDED SET THEORETIC STRUCTURES 
 
We use the usual cumulative hierarchy of sets, given semi 
formally as  
 
V(0) = ∅ 
V(α+1) = ℘(V(α)). 
V = ∪αV(α). 
 
The 2-ary relation symbol ∈ is interpreted as membership.  
 
We interpret {x1,...,xk} as expected. We interpret <x,y> as 
{{x},{x,y}}. For k ≥ 2, we interpret <x1,...,xk+1> as 
<x1,<x2,..., xk+2>>. We interpret <x> as x.  
 
We interpret {_:_} as f:℘(V) → V, where f(X) is X if X is 
a set; undefined otherwise  
 
We interpret x[y1,...,yk] as <y1,...,yk> ∈ x, k ≥ 1.  
 



	   7	  

We interpret x(y1,...,yk) as the unique z such that 
<y1,...,yk,z> ∈ x if it exists; undefined otherwise.  
 
The ranges of variables other than the xi, i ≥ 1, and the 
interpretations of constant, relation, and function 
symbols, are fluid as indicated earlier.  
 
All library entries must hold in all set theoretic 
structures.  
 
We also use the more general ZFC structures, where (V,∈) is 
replaced by any model of ZFC.  
 
All library entries must hold in all ZFC structures.  
 
Since the library contains definitions, including variable 
restrictions, we need to be careful about what "hold" here 
means. 
 
There is a relative completeness theorem for libraries, 
involving library continuations.  
 
6. LETTERS, SIGNS 
 
We use a large standard finite set V of letters. A few of 
these letters have special significance for extended free 
logic: 
 
= ↑ ↓ ≈ ( ) [ ] { } < > , : ¬ ∧ ∨ → ↔ ∀ ∃ ! x 0 1 2 3 4 5 
6 7 8 9 
 
Every letter comes with a normal version, a subscripted 
version, and a superscripted version.  
 
Every library starts with the core, which is a standard 
axiomatization of ZFC in extended free logic using only the 
above symbols plus the special 2-ary relation symbol ∈. 
These ZFC axioms include the standard treatments of {...}, 
<...>, {_:_}, x[...], x(...).  
 
The library must continue in a manner that is semantically 
valid relative to this core.  
 
We envision a standard initial package that goes well 
beyond this core. It will treat the obvious nonlogical 
statements involving the following wider letter list: 
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∈ ∉ = ≠ ∪ ∩ ⊆ ⊇ ⊂ ⊃ ⊄ \ ℘ ∅  
↑ ↓ ≈  
( ) [ ] { } < > , : 
¬ ∧ ∨ → ↔ ∀ ∃ ! 
 
We now begin to provide some details concerning the syntax.  
 
The signs are of four disjoint kinds: variables, constant 
symbols, relation symbols, function symbols. Each of these 
four consist of the nonempty finite strings from V, with 
tiny characters in the front and back that tell us which of 
the four categories we intend, and the intended arity. 
However, normally, the category and arity can be inferred, 
and so it does not have to appear. In any case, the user 
has the ability to show or hide these tiny characters.  
 
The variables are strings from V, with a tiny v in front 
and a tiny v in back.  
 
The constant symbols are strings from V, with a tiny c in 
front and a tiny c in back.  
 
The relation symbols are strings from V, with a tiny r in 
front, and its arity (≥1) in back, again tiny.  
 
The function symbols are strings from V, with a tiny f in 
front, and its arity (≥1) in back, again tiny.  
 
The user has the option of showing or hiding the tiny 
characters.  
 
In a revised form of UL, we should be able to omit the use 
of these tiny characters. 
 
7. USING SIGNS 
 
Only certain signs are actually used in the library. With 
exceptions, all signs used in the library are introduced by 
a definition prior to its use. A sign is introduced at most 
once. Thus the meaning of a sign cannot change. This is 
workable, as the user can choose to modify the display.  
 
The exceptional signs that do not have to be introduced, 
are the 2-ary relation symbols ∈,=, the unrestricted 
variables xi, i ≥ 1, and those variables that the initial 
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system package, and later the user, chooses to range over 
everything.    I.e., restricted variables are introduced 
with restrict-ion spelled out, before use. Variable 
introductions are considered definitions.  
 
8. INTRODUCING VARIABLES 
 
DEFINITION. Introducing α. α↓ ↔ ϕ. 
 
Here α is a variable (not an xi) and ϕ is a formula with 
exactly the free variable α.  
 
UPDATE: An alternative is to only use variables ranging 
over everything, and restrict variables by local hypotheses 
or where clauses. This and some other related design issues 
will be carefully addressed as we begin to create actual 
mathematical text (axioms, definitions, theorems only).  
 
9. INTRODUCING CONSTANT SYMBOLS  
 
DEFINITION. c ≈ t. 
 
Here c is a constant symbol and t is a term without c. 
 
10. INTRODUCING RELATION SYMBOLS  
 
DEFINITION. R(x1,...,xk) ↔ ϕ. 
 
Here R is a k-ary relation symbol, and ϕ is a formula not 
mentioning R whose free variables are among x1,...,xk.  
 
11. INTRODUCING FUNCTION SYMBOLS  
 
DEFINITION. F(x1,...,xk) ≈ t. 
 
Here F is a k-ary function symbol, and t is a term not 
mentioning F, whose free variables are among x1,....,xk. 
NOTE: All relation and function symbols are introduced in 
prefix form. But we will support infix notation, as 
indicated below. 
 
NOTE: In the appropriate sense, all of these definition 
forms are unambiguous and benign. 
 
12. TERMS  
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Every constant symbol and variable is a term. 
 
s(t1,...,tk), α(t1,...,tk) are terms if α is a k-ary function 
symbol and s,t1,...,tk are terms, k ≥ 1.  
 
(!t)(ϕ), (!t γ s)(ϕ} are terms if s,t are terms, ϕ is a 
formula, and γ is a 2-ary relation symbol.  
 
{t1,...,tk}, <t1,...,tk> are terms if t1,...,tk are terms.  
 
{t: ϕ}, {t γ s: ϕ} are terms if s,t are terms, ϕ is a 
formula, and γ is a 2-ary relation symbol. 
NOTE: {t: ϕ}, etc., is the set of all values of t such that 
the free variables in t obey ϕ. E.g., {F(x,y): ϕ}. If we 
have y fixed, this is a one dimensional sum, and we write 
{F(x,z): ϕ[y/z] ∧ z = y}.  
 
t1 t2 ... tk is a term if  
 
a) k is odd. 
b) each ti, i odd, is a term. 
c) each ti, i even, is a term or a 2-ary function symbol.  
 
Here terms ti, i even, represent sets in their role as 
binary functions. For k ≥ 5, t1 t2 ... tk is evaluated left 
associatively.  
 
13. ATOMIC FORMULAS 
 
t↑, t↓, where t is a term.  
s[t1,...,tk], α[t1,...,tk], where α is a relation symbol and 
s,t1,...,tk are terms, k ≥ 1.  
 
t1 t2 ... tk is an atomic formula if  
 
a) k is odd. 
b) each ti, i odd, is a term. 
c) each ti, i even, is a term or a 2-ary relation symbol.  
 
Here terms ti, i even, represent sets in their role as 
binary relations. t1 t2 ... tk is read conjunctively as  
t1 t2 t3 ∧ t3 t4 t5 ∧ ... ∧ tk-2 tk-1 tk.  
 
14. FORMULAS 
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Closure under ¬,∧,∨,→,↔, with precedence rules.  
 
(∀α1,...,αk)(ϕ), (∃α1,...,αk)(ϕ), (∃!α1,...,αk)(ϕ). 
(∀α1,...,αk γ t)(ϕ), (∃α1,...,αk γ t)(ϕ), (∃!α1,...,αk γ 
t)(ϕ). 
 
where α1,...,αk are distinct variables, t is a term, ϕ is a 
formula, and: γ is a 2-ary relation symbol.  
 
15. ASSUME, THEN, TFAE, EIN 
 
Assume ϕ1,...,ϕk. THEN ψ1,...,ψr.  
 
The following are equivalent:  
ϕ1. 
... 
ϕk.  
 
Each implies the next: 
ϕ1. 
... 
ϕk. 
 
16. DEVELOPMENT 
 
There are enough details here to actually produce a small 
prototype library, and see how it looks. Then the language 
will be fine tuned.  
I propose to start with the easiest: elementary set theory. 
Then try elementary number theory, elementary algebra, 
elementary analysis. And so forth.  
 
I will use careful mathematical thinking to "guarantee" 
that all entries are in the appropriate sense theorems of 
ZFC.  
 
I suspect that additional features need to be carefully 
added to the language that are easily managed, but support 
some worthwhile additional readability. To judge the 
tradeoffs between language simplicity and readability, we 
have to get our hands dirty.   
 
17. CORE LIBRARY  
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AXIOM 1. x1 ∈ {x2,...,xk+1} ↔ x1 = x2 ∨ ... ∨ x1 = xk+1. 
 
AXIOM 2. <x1,x2> = {{x1},{x1,x2}} ∧ <x1> = x1. 
 
AXIOM 3. <x1,...,xk> = <<x1,x2>,x3,...,xk>.  
 
AXIOM 4. x1(x2,...,xk+1) = (!xk+2)(<x2,...,xk+2> ∈ x1).  
 
AXIOM 5. x1[x2,...,xk+1] ↔ <x2,...,xk+1> ∈ x1. 
 
AXIOM 6. x1 ∈ {t: ϕ} ↔ (∃x2,...,xk+1)(ϕ ∧ x1 = t). Here t is 
a term, ϕ is a formula, x1 is not in t,ϕ, and the free 
variables in t are x2,...,xk+1. 
 
AXIOMS. ZFC, taking advantage of axioms 1-6.  
 
18. INITIAL LIBRARY 
 
The initial library package includes the core library plus 
a number of definitions involving the most commonly used 
symbols.  
 
There is the basic initial library, which is small and 
simple. This would fall well short of, say, the definition 
of the standard number system.  
 
The full initial library package would be much larger, 
treating the elementary mathematics that virtually every 
user of mathematics worldwide needs.  
 
DEFINITION 1. x ∉ y ↔ ¬x ∈ y. 
 
DEFINITION 2. x ≠ y ↔ ¬x = y. 
 
DEFINITION 3. ∅ ≈ {x: x ≠ x}.  
 
THEOREM 1. ∅↓. 
 
DEFINITION 4. x ⊆ y ↔ (∀z ∈ x)(z ∈ y). 
 
DEFINITION 5. x ⊇ y ↔ y ⊆ x 
 
DEFINITION 6. x ⊂ y ↔ x ⊆ y ∧ x ≠ y. 
 
DEFINITION 7. ⊃(x,y) ↔ x ⊇ y ∧ x ≠ y. 
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DEFINITION 8. x ⊄ y ↔  
¬x ⊂ y. 
 
DEFINITION 9. x ∪ y ≈ {z: z ∈ x ∨ z ∈ y}. 
 
DEFINITION 10. x ∩ y = {z: z ∈ x ∧ z ∈ y}. 
 
DEFINITION 11. x\y ≈ {z ∈ x: z ∉ y}.  
 
DEFINITION 12. ℘(x) = {y: y ⊆ x}.  
 
DEFINITION 13. ∪(x) = {y: (∃z ∈ x)(y ∈ z)}. 
 
DEFINITION 14. ∩(x) ≈ {y: (∀z ∈ x)(y ∈ z)}.  
 
THEOREM 2. x ∪ y↓. x ∩ y↓. x\y↓. ℘(x)↓. ∪(x)↓. 
 
THEOREM 3. x ≠ ∅ → ∩x↓.  
 
DEFINITION 15. 0 ≈ ∅. 1 ≈ 0 ∪ {0}. 2 ≈ 1 ∪ {1}. 3 ≈ 2 ∪ 
{2}. 4 ≈ 3 ∪ {3}. 5 ≈ 4 ∪ {4}. 6 ≈ 5 ∪ {5}. 7 ≈ 6 ∪ {6}. 8 
≈ 7 ∪ {7}. 9 ≈ 8 ∪ {8}. 
 
THEOREM 4. 0 = ∅. 1 = 0 ∪ {0}. 2 = 1 ∪ {1}. 3 = 2 ∪ {2}. 4 
= 3 ∪ {3}. 5 = 4 ∪ {4}. 6 = 5 ∪ {5}. 7 = 6 ∪ {6}. 8 = 7 ∪ 
{7}. 9 = 8 ∪ {8}. 
52085 is 5 α 2 α 0 α 8 α 5, for the suitable 2-ary function 
symbol α from the more advanced part of the initial library 
package, which is to be evaluated left associatively. c's, 
and spaces, to see 52085.  
 
Obviously, we want n α m = 10n+m. 
 
19. CONTINUING... 
 
In an elaboration of ideas, we plan to  
 
i. Treat extended free logic, its semantics, and the 
relative completeness theorem.  
 
ii. Define the notion of extended free logic library.  
 
iii. Define extended free logic libraries over ZFC.  
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iv. Cover a variety of rich mathematical statements. Refine 
language according to experience.  
 
v. Years ago, I proposed to create a database of what I 
called CONCEPT TREES. This is basically the definitional 
structure only in the library. A mathematical notion is 
traced back to the set theoretic core, obtaining a labeled 
tree. How do the structure of these trees compare from area 
to area of mathematics?  


