
DECISION PROCEDURES
FOR VERIFICATION

by
Harvey M. Friedman

Distinguished University Professor of
Mathematics, Philosophy, Computer

Science
Ohio State University

friedman@math.ohio-state.edu
http://www.math.ohio-state.edu/

~friedman/
Joint Theory of Computation

and Programming Language Seminar
Department of Computer Science

Harvard University
delivered October 9, 2009

mailto:friedman@math.ohio-state.edu
mailto:friedman@math.ohio-state.edu
http://www.math.ohio-state.edu/%7Efriedman/
http://www.math.ohio-state.edu/%7Efriedman/
http://www.math.ohio-state.edu/%7Efriedman/
http://www.math.ohio-state.edu/%7Efriedman/

ABSTRACT

We focus on two formal methods contexts which generate investigations
into decision problems for finite strings.

• RESOLVE Verification Conditions (VCs)

• JAVA Pathfinder

At Ohio State and elsewhere, formal specifications are given and
annotated programs are written (providing loop invariants) that are
designed to meet those specifications. This generates mathematical
statements called VCs (verification conditions), which guarantee that
the annotated program meets the specifications.

If the context is finite strings, then decision procedures for finite
strings can be very useful.

We discuss such a decision procedure which we formulated based on our
examination of the VCs generated at Ohio State from string processing
programs written in RESOLVE. We also discuss the boundary between the
decidable and undecidable.

A second source of decision procedure investigations is suggested by

a tool for JAVA programs called JAVA PATHFINDER. This is a tool to

automatically detect dead code in JAVA programs. It exploits the

structure of JAVA programs, and is based on recognizing the

impossibility of satisfying finitely many conditions. This naturally

leads to a very wide ranging investigation into decision procedures

involving the primitives in JAVA libraries, such as string

replacement x[y/z]. We discuss some decidability and undecidability

results for this context.

INTEGERS, OBJECTS, STRINGS, CONCATENATION
FOR VCs

Language L has three sorts: integers, objects, and (finite) strings
(of) objects. Variables ni, xi, αi.

Linear arithmetic, strict linear ordering on objects, empty string,
concatenation, length of string, object to length 1 string, n-th term
of string, weakly increasing string.

Terms, atomic formulas, universal formulas, universal sentences, are
defined in the expected way.

In all interpretations, everything is predetermined except the choice
of the linear ordered set of objects.

WHICH UNIVERSAL SENTENCES ARE TRUE IN ALL INTERPRETATIONS?

THEOREM. A universal sentence is true in all interpretations if and
only if it is true in THE interpretation where the objects are the
integers with the usual ordering.

Henceforth, we work only with this standard interpretation. Thus we
only speak of the TRUTH or FALSITY of a sentence of L.

INTEGERS, OBJECTS, STRINGS, CONCATENATION
FOR VCs

We present the language L formally. We use INT, OBJ, STR.
• binary relation symbols <,≤,=,≠ of type INT × INT.
• binary function symbols +,- of type INT × INT ⇒ INT.
• unary function symbols | |,- of type INT ⇒ INT.
• constant symbols 0,c of type INT, where c is a nonempty string of
base ten digits, not beginning with 0.
• unary function symbol | | of type STR ⇒ INT.
• binary function symbols •,div,mod of type INT × INT ⇒ INT.
• binary relation symbols <,≤,=,≠ of type OBJ × OBJ.
• ternary relation symbol VAL of type STR × INT × OBJ.
• constant symbol Λ of type STR.
• binary relation symbols =,≠ of type STR × STR.
• binary function symbol ^ of type STR × STR ⇒ STR.
• unary relation symbol WINC of type STR.
• unary function symbol < > of type OBJ ⇒ STR.
NOTE: Use of •,div,mod will be restricted to stay within linear
arithmetic.

We have overloaded <,≤,-,≠,| |. This is harmless by the strong
typing.

INTEGERS, OBJECTS, STRINGS, CONCATENATION
FOR VCs

We now define the terms of L.

• every INT variable and INT constant is an INT term.
• every OBJ variable is an OBJ term.
• every STR variable and STR constant is an STR term.
• let s,t be INT terms. Then s+t, s-t, |s|, -s, are INT terms.
• let c be an INT constant and t be an INT term. Then c•t, t div c, t
mod c are INT terms.
• let s be an OBJ term. Then <s> is a STR term.
• let s,t be STR terms. Then s^t is a STR term and |s| is an INT
term.

Note that the OBJ terms are just the OBJ variables.

The atomic formulas of L are defined as follows.

• let s,t be OBJ terms. Then s < t, s ≤ t, s = t, s ≠ t are atomic
formulas of L.
• let s,t be STR terms of L. Then WINC(s), s = t, s ≠ t are atomic
formulas of L.
• let s be an STR term, t an INT term, r an OBJ term. Then VAL(s,t,r)
is an atomic formula of L.
• let s,t be INT terms. Then s < t, s ≤ t, s = t, s ≠ t are atomic
formulas of L.

INTEGERS, OBJECTS, STRINGS, CONCATENATION
FOR VCs

The semantics needs only a few comments.
• the object sort is Z, with its usual order.
• | | on strings is length.
• VAL(α,i,x) holds if and only if the i-th term of the string α is
the object x.
• for objects x, <x> is the string of length 1 consisting of x.
• ^ is concatenation of strings.
• WINC(α) if and only if the string α is weakly increasing, in the
sense that each term is ≤ the next.

We have given a decision procedure for determining the truth of any
universal sentence in L, subject to a natural condition that is
always obeyed by the VCs generated by the OSU project (sometimes
after trivial preprocessing).
To state this condition, we use the notion of positive/negative
occurrences in propositional formulas.

i. p is a positive occurrence in p.
ii. the positive (negative) occurrences in A ∧ B, A ∨ B are the
positive (negative) occurrences in A,B.
iii. the positive (negative) occurrences in ¬A are the negative
(positive) occurrences in A.
iv. the positive (negative) occurrences in A ⇒ B are the negative
(positive) occurrences in A and the positive (negative) occurrences
in B.

INTEGERS, OBJECTS, STRINGS, CONCATENATION
FOR VCs

There are three types of equations of L: INT, OBJ, and STR equations.

Let A be a quantifier free formula of L. We say that A obeys the
positive (negative) STR equation restriction if and only if every
string variable occurs at most once in the totality of all positive
(negative) occurrences of STR equations in A.

THEOREM. There is a decision procedure for determining the truth
value of all universal sentences of L whose quantifier free part
obeys the negative STR equation restriction.

The procedure works well in practice. Jeremy Avigad implemented the
algorithm in Isabelle for a couple of interesting examples, with very
good results. Later, it has been coded as a standalone application by
the OSU group, again with very good results.

REVERSE of strings can also be added, as well as SINC (strictly
increasing), with the algorithm appropriately modified.

We can also add COUNT(x,α) = number of occurrences of the object x in
the string α. We can also add α ≡ β for “having the same set of
terms”.

Also, WINC, SINC can be generalized to appropriate universal
conditions.

INTEGERS, OBJECTS, STRINGS, CONCATENATION
FOR VCs

Not clear if the universal sentences of L are decidable with no
restriction. This is closely related to the decidability of the
observed to be difficult problem of the existential theory of string
in a finite alphabet with length equality. Obviously undecidability
of the latter immediately implies undecidability of the former.

This difficult problem is discussed, for example, in http://
logic.pdmi.ras.ru/~yumat/talks/turku2006/FibonacciWordsAbstract.pdf
where Matiyasevich remarks that such an undecidability result would
give an entirely new solution to Hilbert’s 10th Problem (that there
is no decision procedure for determining whether an integral
polynomial has an integral solution).

However, we have shown undecidability of the universal sentences of L
with no restriction, if we add COUNT. The undecidability uses the
negative solution to Hilbert’s 10th problem.

The decidability of the satisfiability of unrestricted word equations
with constants (no length equations) has a long history. The state of
the art is PSPACE. See

W. Plandowski, Satisfiability of Word Equations with Constants is in
PSPACE, JACM, vol 51, issue 3, May 2004, p. 483-496.

TWO EXAMPLES

• α^β = γ^δ ∧ (|α| = |γ| ∨ |β| = |δ|) ⇒ α = γ ∧ β = δ.
• WINC(α^<x>^β) ∧ WINC(α^<y>) ∧ x < y ∧ |γ| = |α|+1 ∧ γ^δ = α^<x>^β
⇒ WINC(γ^<y>).

Jeremy Avigad worked up my algorithm in Isabelle, and, in the second
case, it found 111 subgoals to prove, in the initial round of
reductions.

SETUP FOR THE ALGORITHM

GOAL: Determine whether a quantifier free formula A is
satisfiable in integers, objects, and finite strings of
objects. Here the objects are also integers. We also
assume that the variable condition holds.

First put A into disjunctive normal form, B1 ∨ ... ∨ Bn,
where the B’s are conjunctions of atomic formulas. The
variable condition now just says that in the aggregate
of the string equations among the conjuncts, no string
variable appears more than once.

We also can drive negation signs in according to these
replacements. Below as always, x,y are object variables,
s’,t’ are integer terms, and s,t are string terms.

¬x = y by x ≠ y.
¬x ≤ y by y < x.
¬x < y by y ≤ x.
¬x ≠ y by x = y.
¬s’ = t’ by s’ ≠ t’.
¬s’ ≤ t’ by t’ < s’.
¬s’ < t’ by t’ ≤ s’.
¬s’ ≠ t’ by s’ = t’.
¬s = t by s ≠ t.

A EQUIVALENT TO B1 ∨ ... ∨ Bn
By pushing negation signs in as indicated, we can assume
that A is equivalent to B1 ∨ ... ∨ Bn, where each Bi is a
finite set of atomic formulas of the forms (interpreted
conjunctively)

*)
x < y
x ≤ y
x = y
x ≠ y
s = t
s ≠ t
s' < t'
s' ≤ t'
s' = t'
s' ≠ t'
WINC(s)
¬WINC(s)
VAL(s,s',x)
¬VAL(s,s',x)

where x,y are OBJ variables, s',t' are INT terms, s,t
are STR terms, and no STR variable appears more than
once in the totality of STR equations s = t.

THE INITIAL TREE T0(A)
STRATEGY FOR BUILDING T(A)

The root of T0(A) is labeled by A. There are n sons of
the root, and they are labeled by the finite sets
B1,...,Bn, respectively. These are also the leaves of
T0(A).

We wish to determine if A is satisfiable. Note that this
is equivalent to “some leaf is satisfiable”.

We will now successively modify T0(A) to eventually
create a finite tree T(A), by a nondeterministic
process. At each stage, we either keep the same
vertices, or we add sons to one of the leaves L. In the
former case, we change the label to one leaf. In the
latter case, we do not change the label of L.

We will argue that the nondeterministic process must
finish, and result in a finite tree T(A). The leaves of
T(A) will have rather restricted atomic formulas.

We will also argue that “A is satisfiable if and only if
some leaf is satisfiable” holds at any stage of the
nondeterministic construction.

MORE STRATEGY FOR BUILDING T(A)

In addition to the equivalence of the satisfiability of
the root (A) with satisfiability of some leaf, we also
want

i. the variable restriction holds at every vertex.
ii. the label of every nonleaf is “greater” than the
labels of each of its sons.

These conditions will be checked incrementally. I.e., as
we modify a tree with these properties, we show that
these properties are preserved.

Some care is needed to use the right notion of “greater”
here. We choose one so that there are no infinite
descending sequences.

We now introduce our transformation rules.

RULES
1.1. Λ as proper subterm of a string term. Remove Λ.
1.2. s = Λ or Λ = s, where s has an OBJ variable.
Replace conjunction by 1 = 0.
1.3. s = Λ or Λ = s, where s is a concatenation of one
or more STR variables. Remove, and replace all
occurrences of the variables in s by Λ.
1.4. Λ = Λ. Remove.
1.5. |Λ|. Replace by 0.
1.6. α = t or t = α. Remove, and replace every
occurrence of α by t.
1.7. α ≠ Λ or Λ ≠ α. Replace by |α| ≠ 0.
1.8. <x> ≠ Λ or Λ ≠ <x>. Remove.
1.9. ¬WINC(s). Replace by VAL(s,n,x), VAL(s,m,y), n <
m, y < x, where n,m,x,y are new variables.
1.10. |t|, where t is not an STR variable. First
replace by |t1'| + ... + |tn'|, where t1',...,tn' are
the components of t, from left to right. Then replace
each summand |<x>| by 1, |Λ| by 0.
1.11. ¬VAL(s,t',x). Split with {|s| < t'}, {t' < 1},
{VAL(s,t',y), x ≠ y}, where y is a new variable.
1.12. s ≠ t, where this inequation has at least one
variable. Split with {|s| ≠ |t|}, {VAL(s,n,x),
VAL(t,n,y), x ≠ y}, where n,x,y are new variables.

MORE RULES

2.1. WINC(<x>), WINC(Λ). Remove.

2.2. WINC(u1u2...up), p ≥ 2, where the u's are either
STR variables or some <x>. For each 1 ≤ i < p, let Si
= {WINC(ui), VAL(ui,|ui|,vi), VAL(ui+1,1,wi+1), vi ≤
wi+1}. Here v1,...,vp-1,w2,...,wp are new OBJ variables.
Let Si' be the result of removing WINC(ui) in case ui
is some <x>. Replace by S1' ∪ ... ∪ Sp-1'.

3.1. VAL(Λ,s',x). Replace the conjunction by 1 = 0.

3.2. VAL(<y>,s',x). Replace by s' = 1, y = x.

3.3. VAL(<y>t,s',x). Split with {s' = 1, x = y}, {s' >
1, VAL(t,s'-1,x)}.

3.4. VAL(t,s',x). Split with {s' = 1, VAL(t,s',x)},
{s' > 1, VAL(t,s'-|α|,x)}.

YET MORE RULES

4.1. <x> = <y>. Replace by x = y.

4.2. <x> = <y>t or <y>t = <x>. Replace by x = y, t =
Λ.

4.3. <x> = αt or αt = <x>. Split with {<x> = t, α =
Λ}, {<x> = α, t = Λ}. Follow the first split by
replacing all occurrences of α by Λ. Follow the second
split by replacing all occurrences of α by <x>.

4.4. <x>s = <y>t. Replace by x = y, s = t.

4.5. <x>s = αt or αt = <x>s. Split with {α = Λ, <x>s =
t}, {s = βt, α = <x>β}, where β is a new STR variable.
Follow the first split by replacing all occurrences of
α by Λ. Follow the second split by replacing all
occurrences of α by <x>β.

4.6. αs = βt. Split with {|α| ≤ |β|, β = αγ, s = γt},
{|β| < |α|, α = βγ, γs = t}, where γ is a new STR
variable. Follow the first split by replacing all
occurrences of β by αγ. Follow the second split by
replacing all occurrences of α by βγ.

LEMMAS
LEMMA 4.1. During the successive application of these
rules, starting with T0(A), the variable restriction
applies to every leaf. I.e., no STR variable appears
more than once in the totality of STR equations on a
leaf.

LEMMA 4.2. Suppose the successive application of these
rules, starting with the finite tree T0(A), results in
a finite tree T(A), where no further applications of
the rules are possible. Let {E1,...,Ek} be the label
of a leaf of T(A). Then the E's are of the forms

x < y concatenation removed
x ≤ y ¬WINC, ¬VAL, Λ removed
x = y
x ≠ y
s' < t'
s' ≤ t'
s' = t'
s' ≠ t'
WINC(α)
VAL(α,s',x)

where x,y are OBJ variables, α is a STR variable, and
s',t' are INT terms. Furthermore, the only STR terms
that appear are STR variables.

MORE LEMMAS

LEMMA 4.3. Let T be any tree that arises during the
application of these rules, starting with T0(A). Then
A is satisfiable if and only if some leaf of T is
satisfiable.

Let a finite set of atomic formulas be given,
satisfying condition *) of slide 12. We associate the
following 5 nonnegative integers.

Q1 = total number of occurrences of variables in STR
equations, plus the total number of occurrences of
WINC,VAL, and ≠ between STR terms.
 For Q2, first list the occurrences of |t|, WINC(t),
VAL(t,t',x), where t is not an STR variable.
 Q2 = the total number of occurrences of variables
in the STR terms t above, plus the total number of
occurrences of Λ anywhere.

LEMMA 4.4. On any application of any of the non
splitting rules to a conjunction satisfying condition
*), the pair (Q1,Q2) is lowered lexicographically, or
becomes all 0's. On any application of any of the
splitting rules, the pair (Q1,Q2) is lower at each of
the two sons.

LAST CRUCIAL LEMMA FOR T(A)

LEMMA 4.5. The process of applying the rules in any
way, starting with T0(A), must terminate in a finite
tree T(A). We make no claims of uniqueness.

Proof: Suppose the process continues forever.

case 1. Only finitely many vertices are generated.
Then after some stage, the tree is fixed, and the
labels only are changing. Since there are only
finitely many leaves, some leaf has its label updated
infinitely often. But each time its label is updated,
its (Q1,Q2) drops lexicographically. This is
impossible.

case 2. Infinitely many vertices are generated. Since
the splits are finite (at most 3), an infinite path of
vertices will be generated, by the Konig tree lemma.
But by looking at their (Q1,Q2), we get an infinite
descending sequence lexicographically, which is
impossible.

QED

T(A) is any resulting finite tree.

SATISFIABILITY OF LEAVES OF T(A)

We reduced satisfiability of A to satisfiability of some
leaf of T(A). Recall leafs have sets of formulas

x < y x ≤ y x = y x ≠ y
s' < t' s' ≤ t' s' = t' s' ≠ t'
WINC(α)
VAL(α,s',x)

where x,y are OBJ variables, α an STR variable, s',t'
are INT terms, all STR terms appearing are variables.

(∃n1,...,np,x1,...,xq ∈ Z)(∃α1,...,αr ∈ Z*)(E1 ∧ ... ∧ Ek)

can be converted to an existential sentence in linear
arithmetic. This is because the a’s can be eliminated.
Recall that concatenation has been eliminated. So
strings exist with WINC iff the named positions are
compatible with WINC - because we can fill the gaps with
copies of the last value before the gap starts.

Existential linear arithmetic is NP complete.

FURTHER INVESTIGATIONS

The method supports much more comprehensive extensions.
Two among many important additions to what we have are

1. CT(α,x) = number of occurrences of x in α.
2. α is a permutation of β.

Satisfiability should still be decidable (with the
variable restriction). However

THEOREM. If we add 1 or 2, and also allow αβ = βα, then
satisfiability is not computable.

Proof: Note that αβ = βα ∧ 0 < |α| < |β| ∧ CT(α,x) = 1 ∧
CT(β,x) = |α| implies β = α|α|. This means that we have a
hook into the squaring operation, looking at lengths.
Also, using lengths and concatenation, we have an
obvious hook into addition. Therefore we can code up
Diophantine equations, and obtain the non computability.
We can use 3 instead as follows. WINC(a) ∧ the first two
terms of α are distinct ∧ αβ = βα ∧ WINC(γ) ∧ γ is a
permutation of αβ ∧ γ = δε ∧ last(δ) = first(α) ∧
first(ε) = second(α) ∧ |δ| = |α| implies |αβ| = n2. This
gives the required hook into squaring. QED

JAVA STRING LIBRARY

 char

charAt(int index)
 Returns the character at the specified index.

 int

These are only a limited part of the Library.

compareTo(String anotherString)
 Compares two strings lexicographically.

 String

concat(String str)

endsWith(String suffix)
 Tests if this string ends with the specified suffix.

 boolean

equals(Object anObject)
 Compares this string to the specified object.

 boolean

equalsIgnoreCase(String anotherString)
 Compares this String to another String, ignoring case considerations.

 byte[]

getBytes()
 Convert this String into bytes according to the platform's default character encoding, storing the result into a new byte array.

 byte[]

getBytes(String enc)
 Convert this String into bytes according to the specified character encoding, storing the result into a new byte array.

 void

getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
 Copies characters from this string into the destination character array.

 int

hashCode()
 Returns a hashcode for this string.

 int

indexOf(int ch)
 Returns the index within this string of the first occurrence of the specified character.

 int

indexOf(int ch, int fromIndex)
 Returns the index within this string of the first occurrence of the specified character, starting the search at the specified index.

 int

indexOf(String str)
 Returns the index within this string of the first occurrence of the specified substring.

 int

indexOf(String str, int fromIndex)
 Returns the index within this string of the first occurrence of the specified substring, starting at the specified index.

http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#compareTo(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#compareTo(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#concat(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#concat(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#endsWith(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#endsWith(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#equals(java.lang.Object)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#equals(java.lang.Object)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/Object.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/Object.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#equalsIgnoreCase(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#equalsIgnoreCase(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#getBytes()
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#getBytes()
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#getBytes(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#getBytes(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#getChars(int,%20int,%20char%5B%5D,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#getChars(int,%20int,%20char%5B%5D,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#hashCode()
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#hashCode()
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#indexOf(int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#indexOf(int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#indexOf(int,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#indexOf(int,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#indexOf(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#indexOf(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#indexOf(java.lang.String,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#indexOf(java.lang.String,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html

JAVA STRING LIBRARY

 String

intern()
 Returns a canonical representation for the string object.

 int

lastIndexOf(int ch)
 Returns the index within this string of the last occurrence of the specified character.

 int

lastIndexOf(int ch, int fromIndex)
 Returns the index within this string of the last occurrence of the specified character, searching backward starting at the specified index.

 int

length()
 Returns the length of this string.

 boolean

regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len)
 Tests if two string regions are equal.

 String

replace(char oldChar, char newChar)
 Returns a new string resulting from replacing all occurrences of oldChar in this string with newChar.

 boolean

startsWith(String prefix)
 Tests if this string starts with the specified prefix.

 boolean

startsWith(String prefix, int toffset)
 Tests if this string starts with the specified prefix beginning a specified index.

 String

substring(int beginIndex)
 Returns a new string that is a substring of this string.

 String

substring(int beginIndex, int endIndex)
 Returns a new string that is a substring of this string.

 char[]

toCharArray()
 Converts this string to a new character array.

http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#intern()
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#intern()
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#lastIndexOf(int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#lastIndexOf(int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#lastIndexOf(int,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#lastIndexOf(int,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#length()
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#length()
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#regionMatches(boolean,%20int,%20java.lang.String,%20int,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#regionMatches(boolean,%20int,%20java.lang.String,%20int,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#replace(char,%20char)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#replace(char,%20char)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#startsWith(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#startsWith(java.lang.String)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#startsWith(java.lang.String,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#startsWith(java.lang.String,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#substring(int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#substring(int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#substring(int,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#substring(int,%20int)
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#toCharArray()
http://www.blackberry.com/developers/docs/4.0.2api/java/lang/String.html#toCharArray()

JAVA LIBRARY PRIMITIVES
STRING REPLACEMENT
FOR JAVA PATHFINDER

One of the many JAVA primitives is the string replacement operation
x[y/z]. Here x,y,z are strings. In case y is empty, return the
default empty string.

x[y/z] is the result of the following process. Lay out the
occurrences of y as a substring of x, making sure that they do not
overlap by resetting after the end of the previous occurrence. Then
replace each of these occurrences by z.

Now let A be an alphabet. We allow A to be infinite. Let A* be the
set of all finite strings from A, including Λ. The variables are the
vi, i ≥ 0. The A-terms are defined as follows.

• Every variable, and every c ∈ A* is a term.
• If c ∈ A* and t is a term, then ct, tc are terms.
• If s,t,r are terms, then s[t/r] is a term.

The atomic A-formulas are simply equations between terms. The A-
formulas are defined in the usual way, using connectives and
quantifiers over A*.

JAVA LIBRARY PRIMITIVES
STRING REPLACEMENT
FOR JAVA PATHFINDER

THEOREM. Let A have at least 3 elements. There is no algorithm for
determining the truth value of existential A-sentences.

The proof uses the negative solution to Hilbert’s 10th Problem.

We can put the quantifier free part of the existential sentence into
disjunctive normal form, and take the disjunctions out, getting a
disjunction of existentially quantified finite sets of A-literals
(atomic A-formulas and their negations). Thus, it suffices to
consider solvability in A* of the finite set of A-literals.

By introducing new variables, we can focus on the satisfiability of a
finite set of literals of the form

r1[s1/t1] = p1
...
rk[sk/tk] = pk
x1 ≠ a1
...
xn ≠ an

where each rj,sj,tj,pj is either a variable or an element of A*, each
xi is a variable among the rj,sj,tj,pj, and each ai is a variable among
the rj,sj,tj,pj or an element of A*.

JAVA LIBRARY PRIMITIVES
STRING REPLACEMENT
FOR JAVA PATHFINDER

r1[s1/t1] = p1
...
rk[sk/tk] = pk
x1 ≠ a1
...
xn ≠ an

where each rj,sj,tj,pj is either a variable or an element of A*, each xi is a variable among
the rj,sj,tj,pj, and each ai is a variable among the rj,sj,tj,pj or an element of A*.

Our undecidability proof shows that there is a fixed k such that for
at most k equations, we have undecidability. However, the k coming
from our proof is allied with numbers of elementary operations
associated with the negative solution to Hilbert’s 10th problem, and
so k is going to be, at least, in the 100s.

On the other hand, we suspect that if k is small, then this
existential problem is decidable.

To test the waters, we considered the case k = 1. We established
decidability, with a fairly elaborate detailed analysis. k = 2 will
be very considerably harder, but probably achievable. For k = 3, we
may already be intractable territory, and be forced to settle for
decidability of fragments.

GENERAL
METHODOLOGY

Universal, or dually, Existential, problems based on string
operations are fundamental mathematically, and have existing and
potential importance for formal methods.

Undecidability is the norm when there is a reasonably healthy dose of
primitives.

How do we cope?

• Examine cases generated by real world examples. Spot a fragment of
the problem, and prove decidability.
• And/or put the problem in a convenient normal form, and focus on
cases where some of the parameters are very small. Slowly increase
them.

