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1. EQUIVALENCE IN A STRUCTURE 
 
We begin with a standard definition from model theory. 
 
DEFINITION 1.1. A structure M = (D,...) is a nonempty set D 
= dom(M) together with a finite list of constants from D, 
relations on D of various arities, and functions from D 
into D of various arities. two finite sequences (a1,...,ak) 
and (b1,...,bk) are M equivalent if and only if a) xi = xj ↔ 
yi = yj; b) any xi is a particular M constant if and only if 
yi is that particular M constant; c) any xi's are related by 
a particular M relation if and only if the corresponding 
yi's are related by that particular M relation; d) the value 
of any xi's is xj under a particular M function if and only 
if the value of the corresponding yi's is yj under that 
particular M function.  
 
DEFINITION 1.2. The count problem for a structure M is the 
problem of determining, for each k, the number of cosets of 
M equivalence on k-tuples. We write γ(M,k) for the number of 
cosets of M equivalence on k-tuples.  
 
For which M is γ(M,k) an algorithmically computable function 
of k? I.e., for which M is γ(M,k) a recursive function? 
 
There is a way of restating this property of M in familiar 
terms from model theory. 
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LEMMA 1.1. Let M be a structure for which the set of 
universal sentences holding in M is recursive. Then γ(M,k) 
is recursive (as a function of k). 
 
Proof: Suppose the set of universal sentences holding in M 
is recursive. Let d1,...,dk ∈ dom(M). The coset of 
(d1,...,dk) is obviously determined by the set T(d1,...,dk) 
of basic atomic formulas in variables v1,...,vk, that hold 
in M of d1,...,dk. Here the basic atomic formulas in 
v1,...,vk take the forms vi = vj, R(vi_1,...,vi_k), c = vi, 
F(vi_1,...,vi_k) = vs, where R,c,F are components of M.  
 
Now suppose that the set of universal sentences holding in 
M is recursive, and fix k. For each set S of basic atomic 
formulas in v1,...,vk, as in the previous paragraph, we can 
determine whether or not there exists d1,...,dk ∈ dom(M) for 
which every element of S holds in M of d1,...,dk, and no 
other basic atomic formulas in v1,...,vk holds in M of 
d1,...,dk. This is because we can determine whether or not 
(∃v1,...,vk)(conj(S) ∧ conj(-S)) holds in M, where "conj" 
indicates conjunction, and -S is the set of basic atomic 
formulas in v1,...,vk not in S. For this existential 
sentence holds in M if and only if its negation, which is a 
universal sentence, does not hold in M.  
 
The number of cosets of M equivalence of k-tuples is 
exactly the number of S's for which the existential 
sentence constructed in the previous paragraph is true. By 
hypothesis, this can be computed. QED 
 
DEFINITION 1.3. M is a recursive structure if and only if 
dom(M) = Z and the relations and functions of M are 
recursive. 
 
If we use any recursive set of finite strings from a finite 
alphabet, or from Z, this would not affect the results 
here, as there would be a recursive isomorphism to Z. 
 
LEMMA 1.2. Let M be a recursive structure for which γ(M,k), 
as a function of k, is recursive. Then the set of universal 
sentences holding in M is recursive. 
 
Proof: Let M be as given and fix k. We can effectively list 
all of the S's in the proof of Lemma 1.1 for which 
(∃v1,...,vk)(conj(S) ∧ conj(-S)) holds in M, as follows. 
List all k-tuples from Z = dom(M), and determine the unique 
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S for which conj(S) ∧ conj(-S) holds in M, as they are 
listed. Keep a count on the number of S's that arise, and 
wait until that count rises to γ(M,k), and then stop.  
 
Now observe that by standard logical manipulations, every 
existential sentence can be effectively converted to a 
conjunction of sentences of the form (∃v1,...,vk)(conj(S) ∧ 
conj(-S)), for some fixed k, which may be much larger than 
the number of existential quantifiers in the given 
existential sentence. This growth, which is easily 
computable, comes from the fact that existential sentences 
allow nested uses of function symbols, and also function 
symbols inside relation symbols. So additional variables 
are used for atomic formulas to basic atomic formulas. Now 
use the listing from the previous paragraph. QED    
 
THEOREM 1.3. Let M be a recursive structure. γ(M,k) is 
recursive if and only if the set of universal sentences 
holding in M is recursive. The converse does not require 
that M be recursive. The forward direction has a non 
recursive counterexample.  
 
Proof: By Lemmas 1.1 and 1.2. For the counterexample, let M 
= (Z,0,+1,R), where +1 is the successor function, and R is 
a unary relation on Z with the following property. For each 
k, all of the patterns of membership in R on blocks of 
positive (negative) integers are realized. Then γ(M,k) is 
the same for all of these M's, and it is easily computed. 
Let M = (Z,0,+1,R) be of this kind where R is not 
recursive. Then R(i) if and only if R holds of i 
applications of +1 at 0. Hence the universal sentences 
holding in M is not recursive. In fact the quantifier free 
sentences holding in M is not recursive. QED  
 
2. EQUIVALENCE IN THE RING OF INTEGERS  
 
We now consider M equivalence of k-tuples where M = (Z,+,•). 
In particular, we focus on γ(M,k), which we write as γ(Z,k).   
 
THEOREM 2.1. γ(Z,1) = 3. 0,1,2 form a complete set of 
representatives. 
 
Proof: Note that a,b are Z equivalent if and only if they 
obey the same basic atomic formulas  
 
v+v = a  
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v•v = v  
 
I.e., they obey the same statements 
 
a = 0   
a = 0 ∨ a = 1 
 
Here are the four possibilities: 
 
a = 0 ∧ (a = 0 ∨ a = 1). This is a = 0. 
a = 0 ∧ ¬(a = 0 ∨ a = 1). This is impossible. 
a ≠ 0 ∧ (a = 0 ∨ a = 1). This is a = 1. 
a ≠ 0 ∧ ¬(a = 0 ∨ a = 1). This is a ∉ {0,1}. A 
representative is a = 2.  
 
So we see that there are only 3 cosets, and 0,1,2 forms a 
complete set of representatives. QED 
 
THEOREM 2.2. θ(Z,2) = 18. The following list of pairs forms 
a complete set of representatives.  
(0,0), (0,1), (0,2) 
(1,-1), (1,0), (1,1), (1,2), (1,3) 
(2,0), (2,1), (2,2), (2,4) 
(-1,-2), (-1,1) 
(4,1), (4,2)s 
(6,3), (16,4) 
 
Proof: We first work with only those (a,b) for which a ≠ b, 
and use Theorem 2.1 for the (a,a).  
 
Note that (a,b) and (c,d) are Z equivalent if and only if 
they obey the same basic atomic formulas  
 
a+a = a  I.e., a = 0 
a+a = b  I.e., 2a = b 
a+b = a  I.e., b = 0 
a+b = b  I.e., a = 0 
b+b = a  I.e., 2b = a 
b+b = b  I.e., b = 0 
a•a = a  I.e., a = 0 ∨ a = 1 
a•a = b  I.e., a2 = b 
a•b = a  I.e., a = 0 ∨ b = 1 
a•b = b  I.e., a = 1 ∨ b = 0 
b•b = a  I.e., b2 = a   
b•b = b  I.e., b = 0 ∨ b = 1 
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Now if (a,b) and (c,d) obey the same formulas above then 
they also satisfy any propositional combination of these 
formulas. Hence we can add a = 1 and b = 1 to the list. 
 
a = 0 
2a = b 
b = 0 
a = 0 
2b = a 
b = 0 
a = 0 ∨ a = 1 
a2 = b 
a = 0 ∨ b = 1 
a = 1 ∨ b = 0 
b2 = a   
b = 0 ∨ b = 1 
a = b 
a = 1 
b = 1  
 
We can replace the above list by any shorter list as long 
as every formula in the above is a propositional 
combination of formulas in this new list.  
 
a = 0 
a = 1 
b = 0 
b = 1 
2a = b 
2b = a 
a2 = b 
b2 = a 
 
We say that (a,b) is free if and only if none of these 
eight equations hold. The free (a,b) form a single 
equivalence class, with representative (2,3).  
 
case 1. a = 0. (0,1), (0,2) are inequivalent. Any (0,n), n 
∉ {1,2}, is equivalent to (0,2).   
 
case 2. a = 1. (1,-1), (1,0), (1,2), (1,3) are 
inequivalent. Any (1,n), n ∉ {-1,0,2,3}, is equivalent to 
(1,3).  
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case 3. a = 2. (2,0), (2,1), (2,4) are inequivalent. Any 
(2,n), n ∉ {0,1,4}, is free.    
 
case 4. a = -1. (-1,-2), (-1,0), (-1,1) are inequivalent. 
Any (-1,n), n ∉ {-2,0,1}, is free, and therefore in case 3. 
We also see that (-1,-2), (-1,1) are not equivalent to any 
pair in case 3. However, (-1,0) is equivalent to (2,0). 
Hence the new pairs, up to equivalence, are (-1,-2), (-
1,1).  
 
Case 5. a = 4. (4,0), (4,1), (4,2), (4,-2), (4,8), (4,16) 
are inequivalent. Any (4,n), n ∉ {0,1,2,-2,6,16}, is free. 
(4,0), (4,8) are equivalent to (-1,0), (-1,-2), 
respectively. Also (4,1), (4,2), (4,-2) are not equivalent 
to any pair in cases 3,4. Hence the new pairs, up to 
equivalence, are (4,1), (4,2).  
 
case 5. a ≥ 5. (a,0), (a,1), (a,2a), (a,a2), (a,a/2), 
(a,sqrt(a)), (a,-sqrt(a)) are inequivalent (some may not 
exist). Any (a,n) that exists, n ∉ {0,1,2a,a/2,sqrt(a),-
sqrt(a)}, is free. (a,0), (a,1), (a,2a), (a,a2) are 
respectively equivalent to (4,0), (4,1), (4,8), (4,16). 
(a,a/2), if it exists, is equivalent to (6,3). (a,sqrt(a)), 
if it exists, is equivalent to (16,4). (a,-sqrt(a)), if it 
exists, is equivalent to (4,-2). Hence the new pairs, up to 
equivalence, are (6,3), (16,4). 
 
case 6. a ≤ -2. (a,0), (a,1), (a,a/2), (a,2a), (a,a2) are 
inequivalent (some may not exist). Any (a,n) that exists, n 
∉ {0,1,a/2,2a,a2}, is free. (a,0), (a,1), (a,a/2), (a,2a), 
(a,a2), if it exists, are respectively equivalent to (4,0), 
(4,1), (6,3), (4,8), (4,16). Hence no new pairs, up to 
equivalence, arise here. 
 
Thus for the (a,b), a ≠ b, we have found  
 
(0,1), (0,2) 
(1,-1), (1,0), (1,2), (1,3) 
(2,0), (2,1), (2,4) 
(-1,-2), (-1,1) 
(4,1), (4,2) 
(6,3), (16,4) 
 
For the (a,a), we appeal to Theorem 1.3. Clearly (a,a) and 
(b,b) are equivalent if and only if a and b are equivalent. 
So we have the representatives (0,0),(1,1),(2,2). QED 
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I should be able to calculate γ(Z,3), but a little bit of 
interesting number theory will surely arise.  
 
Getting an exact count on γ(Z,4) is likely to be a serious 
challenge. The challenge will go up very sharply as k 
increases.  
 
THEOREM 2.3. γ(Z,k) is not recursive. 
 
Proof: Since Z = (Z,+,•) is recursive, Theorem 1.3 applies. 
The universal sentences about Z include the statements 
asserting the existence of no solution to any Diophantine 
equation over Z. By the negative solution to Hilbert's 
Tenth Problem, this is algorithmically unsolvable. QED 
 
What can we say about the k for which the particular 
integer γ(Z,k) is hard to compute?  
 
DEFINITION 2.1. Let T be a system extending EFA = 
Exponential Function Arithmetic. T computes γ(Z,k) if and 
only if there is an integer t such that T proves that γ(Z,k) 
is t. T correctly computes γ(Z,k) if and only if for t = 
γ(Z,k), T proves that γ(Z,k) is t.  
 
THEOREM 2.4. Let T be any consistent recursively 
axiomatized formal system extending EFA. If k is 
sufficiently large, then T cannot correctly compute γ(Z,k).  
 
Proof: Let T be as given. Suppose that for infinitely many 
k, T correctly computes γ(Z,k). Suppose T correctly computes 
γ(Z,n), where n >> k. Let A be a complete set of 
representatives for Z equivalence of n-tuples. Then T 
proves that A is a complete set of representatives for Z 
equivalence of n-tuples. It follows that T proves exactly 
the true universal sentences over Z with at most k symbols. 
Since k is arbitrary, this includes the universal sentence 
Con(T). By Gödel's Second Incompleteness Theorem, this is 
impossible. QED 
 
COROLLARTY 2.5. Let T be any 1-consistent recursively 
axiomatized formal system extending EFA. If k is 
sufficiently large, then T cannot compute γ(Z,k).  
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Proof: Let T be as given. Suppose T computes γ(Z,k) to be t. 
Suppose t is too high; i.e., t > γ(Z,k). Let A be a complete 
list of representatives for Z equivalence on k-tuples. Then 
T proves that there exists a k-tuple that is not equivalent 
to any element of A. Hence T proves a false existential 
sentence, contradicting that T is 1-consistent. Hence T 
correctly computes γ(Z,k). Now apply Theorem 2.4. QED  
 
By a more delicate argument, we have improved Theorem 2.4 
and Corollary 2.5 as follows.  
 
THEOREM 2.6. Let T be any consistent recursively 
axiomatized formal system extending EFA. If k is 
sufficiently large, then T cannot compute γ(Z,k).  
 
Proof: Let ϕ be a Π0

1 sentence not provable or refutable in 
T (due to Rosser). Let M be a model of T + ϕ with 
nonstandard integers. Since Con(T+¬ϕ), M will satisfy 
Con(T+¬ϕ) up to a nonstandard level. But then M can build 
an end extension which it thinks satisfies T+¬ϕ up to this 
nonstandard level. Hence this end extension actually 
satisfies T+¬ϕ together with all of the existential 
sentences that hold in M. So we have increased γ(Z,k) from M 
to this end extension, provided k is sufficiently large. 
QED This shows that T cannot compute γ(Z,k). QED  
 
However, it appears entirely hopeless to get any reasonable 
k in Theorem 2.4 for ZFC or even PA. At present, we have no 
way of controlling the complexity involved in the negative 
solution to Hilbert's Tenth Problem. 
 
3. SIMILARITY OF STRUCTURES 
 
We now turn to a counting problem where we have been able 
to find k. In fact, k = 12. We can view 12 as a kind of 
estimate of the entropy of mathematics.  
 
DEFINITION 3.1. A ternary relation R is a set of ordered 
triples. The field of R, fld(R), of coordinates of its 
elements. Two ternary relations R,S are isomorphic if and 
only if there is a bijection f:fld(R) → fld(S) such that 
for all x,y,z ∈ fld(R), (x,y,z) ∈ R ↔ (f(x),f(y),f(z)) ∈ 
S.  
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DEFINITION 3.2. A bop (binary operation) is a function *:D2 
→ D, where D is any set. We view every bop as a ternary 
relation.  
 
The isomorphism relation between bops (as ternary 
relations) has infinitely many cosets. Actually, the number 
of cosets is even too big to be a set theoretic object. 
Instead, we work with a much weaker notion of isomorphism.  
 
DEFINITION 3.3. Let * be a bop. The k-restrictions of * are 
the functions f:E2 → D, where f ⊆ * and |E| = k.  
 
DEFINITION 3.4. Two bops are k-similar if and only if they 
have the same k-restrictions up to isomorphism.  
 
THEOREM 3.1. The number of cosets of k-similarity on the 
bops, written θ(k), is bounded by a triple exponential in k. 
 
THEOREM 3.2. The function θ(k) is not recursive.  
 
We can instead work with finite bops only. θ'(k) is the 
number of finite bops up to k-similarity.  
 
THEOREM 3.3. The function θ'(k) is not recursive. 
 
But this is algorithmic unsolvability. We now turn to the 
deeper issue of incompleteness, which is our main 
motivation. 
 
THEOREM 3.3. Assume that ZFC does not prove that ZFC is 
inconsistent. ZFC does not correctly compute θ(12). This 
also holds for the extensions of ZFC and ZF by any of the 
finitely many standard large cardinal hypotheses (standard 
extensions). 
 
We can measure how well a standard extension does in 
computing θ(12). Specifically, let θ(12,T) be the least n 
such that T proves that θ(12) ≤ n.  
 
THEOREM 3.4. Let T,T' be standard extensions as in Theorem 
3.3, neither proving the inconsistency of itself. If T' 
proves the consistency of T then θ(12,T') < θ(12,T).  
 
We have not been precise about the exact finite list of 
standard extensions (of ZFC and ZF by large cardinal 
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hypotheses) that we are using. This will be presented at a 
later time. The list definitely includes  
 
ZFC + "there is a nontrivial elementary embedding from some 
V(λ+1) into V(λ+1)". 
 
NBG + "there is a nontrivial elementary embedding from V 
into V".  
 
  
 
 
 
 
 


