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What This Is About:
The Search

When I was a student (long time ago), I was fascinated 
by the drama created by the great legendary figure Kurt 
Gödel (died 1978):

there are mathematical statements that cannot be proved 
or refuted using the usual axioms and rules of inference 
of mathematics. 

Furthermore, Gödel showed that this cannot be repaired, 
in the following sense:

even if we add finitely many new axioms to the usual 
axioms and rules of inference of mathematics, there will 
remain mathematical statements that cannot be proved or 
refuted. 

These startling results are taught in the usual 
mathematical logic curriculum. One common way of proving 
these results provides no examples. 

So what about the examples? I.e., examples of such 
INCOMPLETENESS?



STANDARD EXAMPLES OF INCOMPLETENESS

1. That “the usual axioms and rules of inference for 
mathematics does not lead to a contradiction”.  
 I.e., “ZFC does not have a contradiction” is neither 
provable nor refutable in ZFC. 

2. That “every infinite set of real numbers is either in 
one-one correspondence with the integers or in one-one 
correspondence with the real line”. 
 I.e., “the continuum hypothesis of Cantor” is neither 
provable nor refutable in ZFC.
 
These and related examples appear in the mathematical 
logic curriculum. 
 Note that these examples are very much associated with 
abstract set theory, and unusually far removed in spirit 
and content from traditional down to earth mathematics. 
 I was very aware of this disparity, even as a student, 
which was reinforced in conversations with other students 
and Professors. 
 For several decades I have been seeking examples of a 
new “down to earth” kind. This has been an ongoing 
process. Recently, there has been some particularly clear 
progress. I will highlight the main events up through 
now.  



WHAT IS AN UNPROVABLE THEOREM?

All of the examples of Concrete Incompleteness that we 
are going to talk about, come under the category of what 
we call UNPROVABLE THEOREMS.

An Unprovable Theorem is a theorem that is 

i. proved using a by now well studied hierarchy of 
additional axioms for mathematics called the “large 
cardinal hierarchy”.

ii. cannot be proved (or refuted) with only the usual 
axioms for mathematics. 

A highlight of this talk is the presentation of some 
examples of Unprovable Theorems of a radically new kind. 

These will take the form of structural properties of 
kernels in digraphs. 



DOES THIS TALK HAVE ANYTHING TO DO 
WITH THE AXIOM OF CHOICE?

Many mathematicians think that if somebody is talking 
about Unprovability, they are talking about an axiom of 
choice (AxC) issue. 

This talk has nothing to do with AxC for the following 
interesting reason.

THEOREM (Gödel). If a reasonably concrete sentence can 
be proved using the AxC, then it can also be proved 
without using the AxC. 

Since we are talking exclusively about reasonably - and 
often very - concrete sentences, the axiom of choice is 
entirely irrelevant. 

In any case, we will always assume that the axiom of 
choice is available to be used. 

This talk has everything to do with how big a dose of 
infinite thinking that we need to use. 



HOW DO PREVIOUS UNPROVABLE THEOREMS 
DIFFER FROM NORMAL MATHEMATICS? 

I have addressed this question earlier. I want to repeat 
what I said in more specific terms.

Previous examples of Unprovable Theorems have one or 
more of the following features. 

1. They are about formal systems for doing mathematics. 
If reformulated in terms of usual mathematical objects, 
they become hopelessly artificial. 

2. They involve uncountable objects of a pathological 
nature. If the Unprovable Theorem is specialized to 
objects of limited pathological nature, then it becomes 
a Theorem of ZFC. 

For more than 40 years, I have been developing examples 
of Unprovable Theorems which do not have these features. 

The ongoing research has been driven by the issue of the 
quality of the examples. 



BORROWING FROM THE FUTURE

Are there clearly stated propositions of a concrete 
(especially discrete and finite) nature, from the 
existing literature, which cannot be proved or refuted 
from ZFC?

We believe that there is not such a proposition.

We will present some examples from the literature - and 
some that are implicit in the literature - that are 
discrete/finite, and cannot be proved or refuted in 
substantive fragments of ZFC. More later...

Accordingly, we look to the future. We identify what we 
believe to be inevitable future mathematical 
investigations that lead directly to such examples.

Boolean Relation Theory, and Kernel Structure Theory. 



WHAT METHOD IS USED TO ESTABLISH 
UNPROVABILITY HERE?

Concrete Mathematical Incompleteness cannot be 
established through the usual methods for showing 
unprovability in set theory - via Gödel’s constructible 
set construction, or Cohen’s method of forcing. 

Suppose we want to show sentence A is not provable in 
ZFC. Start by assuming A. Then construct a model of ZFC 
through a long series of gradual refinements. Thus:

ZFC + A proves that ZFC is consistent.

If ZFC proves A, then 

ZFC proves ZFC is consistent. 

However, Gödel shows that this is impossible (assuming 
ZFC is in fact consistent). Hence ZFC does not prove A.

Note that we have assumed that ZFC is consistent for 
this unprovability result. This is of course a necessary 
assumption.



HOW ARE LARGE CARDINALS USED TO PROVE 
CONCRETE THEOREMS?

Roughly as follows. 

Start with your concrete problem in the integers or 
rationals. 

Blow up the data to an enormous space of size a large 
cardinal. 

Do large cardinal combinatorics to build a structure of 
size the large cardinal. 

Build countable, or even finite, approximations to the 
enormous structure. 

At the end, the large cardinal and large cardinal sized 
structures and constructions disappear. 

In the relevant situations, we know that use of the 
large cardinals is unavoidable. 



WHAT ARE SOME EARLIER EXAMPLES OF 
WEAKLY UNPROVABLE THEOREMS?

Over the years, we have developed a number of Weakly 
Unprovable Theorems, in this sense:

Although the Theorems can be proved in ZFC, they use 
portions of ZFC that are unexpectedly large compared to 
their statements. 

These examples were originally from Borel measurable 
mathematics, and later in discrete and finite 
mathematics. 



LONG FINITE SEQUENCES FROM A FINITE 
ALPHABET

Is there a longest finite sequence x1,...,xn from {1,2} 
such that a certain pattern is avoided?

PATTERN TO BE AVOIDED. xi,...,x2i is a subsequence of 
xj,...,x2j, where i < j ≤ n/2. 

E.g., (2,1,2) is a subsequence of (1,2,2,2,1,1,1,2). 

ANSWER: Yes. n = 11. Gifted high school students in Paul 
Sally’s summer program can sometimes prove this. 

Is there a longest finite sequence x1,...,xn from {1,2,3} 
such that this pattern is avoided?

ANSWER: Yes. I gave a lower bound for n in 

Long Finite Sequences, Journal of Combinatorial Theory, 
Series A 95, 102-144 (2001).

n(3) > A7198(158386)

where Ap is the p-th Ackermann function from Z+ to Z+.



WHAT IS THE ACKERMANN HIERARCHY OF 
FUNCTIONS?

There are many versions that differ slightly. Most 
convenient: functions A1,A2,... from Z+ to Z+ such that 
i. A1(n) = 2n.
ii. Ai+1(n) = AiAi...Ai(1), where there are n Ai’s. 

We make some derivations. 

Ak(1) = 2. Ak(2) = 4. 

A2(n) = 2n. A3(n) is an exponential stack of n 2’s.

A3(3) = A2A2A2(1) = A2(4) = 16. A3(4) = A2(A3(3)) = A2(16) 
= 216 = 65,536. 

A4(3) = A3A3A3(1) = A3(4) = 216 = 65,536. 

A4(4) = A3A4(3) = A3(65,536), which is an exponential 
stack of 2’s of height 65,536.

Ackermann function is A(n) = An(n). A(5) = hard to 
“see”.

Recall n(3) > A7198(158386).



LONG FINITE SEQUENCES FROM A FINITE 
ALPHABET

Is there a longest sequence x1,...,xn from {1,...,k} 
avoiding this pattern?

ANSWER: Yes, for any k ≥ 1. However n(k), as a function 
of k, grows faster than all multiply recursive 
functions. The Ackermann function is a 2-recursive 
function. 

This Theorem can be proved using just Induction (Peano 
Arithmetic).

It can be proved in 3 quantifier induction but not in 2 
quantifier induction. This is an example of a Weakly 
Unprovable Theorem. See

Long Finite Sequences, Journal of Combinatorial Theory, 
Series A 95, 102-144 (2001).

Also: n(4) > AA...A(1), where there are A5(5) A’s. 

A(n) = An(n).



COUNTABLE SETS OF REALS AND RATIONALS

After you teach pointwise continuity of functions from a 
set of reals into the reals, you can state the following 
theorem. 

COMPARABILITY THEOREM. If A,B are countable sets of real 
numbers, then there is a one-one pointwise continuous 
function from A into B, or a one-one pointwise 
continuous function from B into A. 

This was well known from the early 20th century if A,B 
are countable and closed. 

Despite the elementary statement, my proof uses 
transfinite induction on all countable ordinals. I 
proved that this is required. See

Metamathematics of comparability, in: Reverse 
Mathematics, ed. S. Simpson, Lecture Notes in Logic, 
vol. 21, ASL, 201-218, 2005. 

Transfinite induction on all countable ordinals is 
required even if for just sets of rationals A,B.



HOW DO WE SAY MATHEMATICALLY THAT 
TRANSFINITE INDUCTION ON ALL 

COUNTABLE ORDINALS IS REQUIRED?

There are good proof theoretic ways of saying this, but 
here is a mathematical way. Experience shows that if we 
have a Theorem of the form 

*) (∀x ∈ X)(∃y ∈ X)(R(x,y)) 

where X is a complete separable metric space and R is a 
Borel relation, and if the proof is “normal”, then there 
is a Borel function H:X ➞ X such that 

**) (∀x ∈ X)(R(x,H(x)).

A huge number of Theorems of analysis can be put in form 
*), where **) holds for some Borel H. 

The Comparability Theorem can be put in form *), via 
infinite sequences of reals (R∞). Yet there is no Borel 
H with **). 



f(x1,...,xk) ≤ f(x2,...,xk+1)

THEOREM A. For all k,r ≥ 1 and f:Nk ➝ Nr, there exist 
distinct x1,...,xk+1 such that f(x1,...,xk) ≤ 
f(x2,...,xk+1) coordinatewise.

THEOREM B. For all k ≥ 1 and f:Nk ➝ N, there exist 
distinct x1,...,xk+2 such that f(x1,...,xk) ≤ 
f(x2,...,xk+1) ≤ f(x3,...,xk+2).

THEOREM C. For all k ≥ 1 and f:Nk ➝ N, there exist 
distinct x1,...,xk+1 such that f(x2,...,xk+1)-
f(x1,...,xk) ∈ 2N. 

For f given by an algorithm, A,B,C are statements in 
the language of Peano Arithmetic (PA). 

We have shown that A,B,C cannot be proved in PA for 
(even very efficiently) computable functions f. For 
any fixed k, the can be proved in PA for computable f.  

If we require that max(f(x)) ≤ max(x), then we obtain 
the existence of a uniform upper bound on the 
x1,...,xk+1. This yields a finite statement that is not 
provable in Peano Arithmetic. 



HOMEOMORPHIC EMBEDDINGS BETWEEN 
FINITE TREES

We use finite rooted trees. Each forms a topological 
space, with a notion of homeomorphic embedding between 
them. For our purposes, this is almost the same as an 
inf preserving one-one map from vertices into vertices. 

J.B. KRUSKAL. In any infinite sequence of finite trees, 
one is homeomorphically embeddable in a later one.

Kruskal’s proof and all subsequent proofs use 
uncountable sets. in particular, an infinite sequence of 
finite trees is constructed with reference to all such. 

We proved that this is necessary. In fact, necessary 
even for very computable infinite sequences. See

Internal finite tree embeddings, in: Lecture Notes in 
Logic, volume 15, 62-93, 2002, ASL.

There are stronger results related to the Graph Minor 
Theorem of Robertson and Seymour. See

(with N. Robertson and P. Seymour), The Metamathematics 
of the Graph Minor Theorem, AMS Contemporary Mathematics 
Series, vol. 65, 1987, 229-261. 



BOREL SETS IN THE PLANE AND ONE 
DIMENSIONAL BOREL FUNCTIONS

In any topological space, the Borel sets form the least 
σ algebra of sets containing the open sets. For 
uncountable Polish spaces (complete separable metric 
spaces), this leads to a hierarchy of Borel sets of 
length ω1. However, most delicate issues arise at the 
finite levels, or even at the third level. 

THEOREM. (Using a result of D.A. Martin from Infinitely 
Long Game Theory). Every Borel set in ℜ2, symmetric about 
the line y = x, contains or is disjoint from the graph 
of a Borel function from ℜ into ℜ.

We proved that it is necessary and sufficient to use 
uncountably many iterations of the power set operation. 
For finite level Borel sets in ℜ2, it is necessary and 
sufficient to use infinitely many iterations of the 
power set operation. See

On the Necessary Use of Abstract Set Theory, Advances in 
Math., Vol. 41, No. 3, September 1981, pp. 209-280.



BOOLEAN RELATION THEORY

Boolean Relation Theory concerns Boolean relations 
between sets and their images under functions. This 
leads to Unprovable Theorems. There is a book draft on 
my website - Boolean Relation Theory and Incompleteness. 

The two starting points of BRT are the ZFC theorems

THIN SET THEOREM. For all f:Nk ➝ N, there exists 
infinite A ⊆ N such that f[Ak] ≠ N.

COMPLEMENTATION THEOREM. For all strictly dominating 
f:Nk → N, there is a unique A ⊆ N such that A ∪. f[Ak] = 
N.

Strictly dominating means f(x1,...,xk) > x1,...,xk. Also 
∪. is disjoint union.
 We restate as a Fixed Point Theorem:

COMPLEMENTATION THEOREM. For all strictly dominating 
f:Nk ➝ N, there is a unique A ⊆ N such that A = N\f[Ak].

There are some mildly exotic features of proofs, more so 
with the Thin Set Theorem. 



BOOLEAN RELATION THEORY
Let ELG be the set of all f:Nk ➝ N, k ≥ 1, where there 
exist c,d > 1 such that 

cmax(x) ≤ f(x) ≤ dmax(x)

holds for all but finitely many x ∈ Nk.

TEMPLATE. For all f,g ∈ ELG, there exists infinite A,B,C 
⊆ N such that 

X ∪. fY ⊆ V ∪. gW
 P ∪. fQ ⊆ R ∪. gS.

where the letters X,Y,V,W,P,Q,R,S are among the letters 
A,B,C. fE is f[Ek], where dom(f) = Nk, and ∪. means 
“disjoint union”. 

There are 38 = 6561 instances of the Template. All but 
12 are provable/refutable in a very weak fragment of 
ZFC. The 12 are provable using strongly Mahlo cardinals 
of finite order, but not in ZFC.

A ∪. fA ⊆ C ∪. gB
 A ∪. fB ⊆ C ∪. gC.



DIGRAPHS AND KERNELS

A digraph is a pair G = (V,R), where R ⊆ V × V. The 
elements of V are the vertices, and the elements of R 
are the edges. 

E is a kernel in G if and only if 

i. No element of E is connect to any element of E.
ii. Every x ∈ V\E is connected to an element of E.  

A dag is a digraph with no cycles. 

THEOREM. von Neumann. There is a unique kernel in every 
finite dag. 

Extensive literature on kernels in digraphs. Dual notion 
is: dominators in digraphs. 



DIGRAPHS ASSOCIATED WITH SETS OF 
RATIONALS

Now fix A ⊆ Q, where Q is the rationals. 

We are interested in a basic family of digraphs 
associated with A. These are the digraphs (Ak,E), where 
E ⊆ A2k is order invariant. 

We call these the A-digraphs.  

We say that (Ak,E) is downward if and only if for all x 
E y, we have max(x) > max(y). 

FACT. There exists A ⊆ Q such that every downward A-
digraph has a kernel. In fact, it suffices that A is 
well ordered. The kernel will be unique. 

PROTOTYPE. There exists A ⊆ Q such that every downward 
A-digraph has a kernel with a structural property.   



THE UPPER SHIFT

The upper shift on Q is defined by 

ush(q) = q if q < 0; q+1 if q ≥ 0.

Note the singularity at 0. The upper shift extends to 
vectors coordinatewise. The upper shift of a set of 
vectors is the set of the upper shifts of its elements.

AN UNPROVABLE THEOREM

UPPER SHIFT KERNEL THEOREM. There exists 0 ∈ A ⊆ Q such 
that every downward A-digraph has a kernel containing 
its upper shift. 



SEMILINEAR KERNEL TEMPLATE

Let T:Q ➝ Q. Then T extends to Qk coodinatewise. 

Rational semilinear subsets of Qk are Boolean 
combinations of linear inequalities with rational 
coefficients. 

SEMILINEAR KERNEL TEMPLATE. Let T:Q ➝ Q be rational 
semilinear. There exists 0 ∈ A ⊆ Q such that every A-
digraph has a kernel containing its diagonal image under 
T.  

The Kernel Structure Theorem is the instance where T = 
ush (the upper shift). 

We should be able to prove or refute each instance of 
this Template, with the help of a suitable large 
cardinal axiom. 



FINITE FORM

UPPER SHIFT KERNEL THEOREM. There exists 0 ∈ A ⊆ Q such 
that every downward A-digraph has a kernel containing 
its upper shift.

FINITE UPPER SHIFT KERNEL THEOREM. Let n ≥ 1. There 
exists finite 0 ∈ A ⊆ Q such that every downward A-
digraph has an n-kernel containing its bounded upper 
shift. We can require that every element of A has norm 
at most 8n2.

We say that S is an n-kernel if and only if 

i. No element of S is connected to an element of S. 
ii. Every x ∈ Ak\S of norm p ≤ n is connected to an 
element of S of norm ≤ 8p2. 

The bounded upper shift of S is the set of elements of 
its upper shift whose max is at most the max of some 
element of S.

This equivalent finite form is still just as unprovable. 



WHAT ARE THE LARGE CARDINALS USED FOR 
BOOLEAN RELATION THEORY?  

strongly inaccessible cardinals
not enough!

An (von Neumann) ordinal is the set of its predecessors, 
and a (von Neumann) cardinal is an ordinal not 
equinumerous with any predecessor.
 
κ is a strong limit cardinal iff for all α < κ, 

card(℘(α)) < κ. 

κ is a regular cardinal iff κ is not the sup of a subset 
of κ of cardinality < κ. 

κ is an inaccessible cardinal iff κ is a regular strong 
limit cardinal > ω.

ZFC does not suffice to prove the existence of a 
strongly inaccessible cardinal.

Grothendieck Topoi (strong kind).



WHAT ARE THE LARGE CARDINALS USED FOR 
BOOLEAN RELATION THEORY? 

strongly k-Mahlo cardinals

κ is a strongly 0-Mahlo cardinal iff κ is a strongly 
inaccessible cardinal.

κ is a strongly n+1-Mahlo cardinal iff κ is a strongly 
n-Mahlo cardinal such that every closed and unbounded 
subset of κ has an element that is a strongly n-Mahlo 
cardinal.

The 12 exotic cases in Boolean Relation Theory are 
provable in 

SMAH+ = ZFC + “for all k there exists a strongly k-Mahlo 
cardinal”, 

but (assuming SMAH is consistent) not in 

SMAH = ZFC + {there exists a strongly k-Mahlo cardinal}.

In fact, they are provably equivalent, in a weak 
fragment of ZFC, to the 1-consistency of SMAH.



WHAT ARE THE LARGE CARDINALS USED FOR 
THE UPPER SHIFT KERNEL THEOREM? 

k-SRP ordinals

Let λ be a limit ordinal. We say that E ⊆ λ is 
stationary if and only if E meets every closed and 
unbounded subset of λ. 

We say that a limit ordinal λ has the k-SRP if and only 
if every 2 coloring of its k element subsets is 
monochromatic on a stationary subset of λ. 

The Upper Shift Kernel Theorem is provable in 

SRP+ = ZFC + “for all k there exists a k-SRP ordinal”, 

but (assuming SRP is consistent) not in 

SRP = ZFC + {there exists a k-SRP ordinal}k.

In fact, they are provable equivalent, in a weak 
fragment of ZFC, to the consistency of SRP.


