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We have discovered an unexpectedly close connection between the 
logic of mathematical concepts and the logic of informal concepts 
from common sense thinking. Our results indicate that they are, in a 
certain precise sense, the same. 

This connection is new and there is the promise of establishing 
similar connections involving a very wide range of informal 
concepts. 

We call this development the Concept Calculus.

We begin with some background concerning the crucial notion of 

interpretation between theories

that is used to state results in Concept Calculus. We then give a 
survey of major results in Concept Calculus. 

In particular, we establish the mutual interpretability of formal 
systems for set theory and formal systems for a variety of 
informal concepts from common sense thinking. 



INTERPRETATION POWER

The notion of interpretation plays a crucial role in Concept 
Calculus. 

Interpretability between formal systems was first precisely 
defined by Alfred Tarski. We work in the usual framework of first 
order predicate calculus with equality.

An interpretation of S in T consists of 

• A one place relation defined in T which is meant to carve out 
the domain of objects that S is referring to, from the point of 
view of T.
• A definition of the constants, relations, and functions in the 
language of S by formulas in the language of T, whose free 
variables are restricted to the domain of objects that S is 
referring to (in the sense of the previous bullet).
• It is required that every axiom of S, when translated into the 
language of T by means of i,ii, becomes a theorem of T. 

In ii, we usually allow that the equality relation in S need not 
be interpreted as equality – but rather as an equivalence 
relation. 



INTERPRETATION POWER

CAUTION: Interpretations do not necessarily preserve truth. They 
only preserve provability. 

We give two illustrative examples. Let S consist of the axioms for 
strict linear order together with “there is a least element”.

• ¬(x < x)
• x < y ∧ y < z ⇒ x < z.
• x < y ∨ y < x ∨ x = y.
• (∃x)(∀y)(x < y ∨ x = y).

Let T consist of the axioms for strict linear order together with 
“there is a greatest element”. I.e., 

• ¬(x < x)
• x < y ∧ y < z ⇒ x < z.
• x < y ∨ y < x ∨ x = y.
• (∃x)(∀y)(y < x ∨ y = x).



INTERPRETATION POWER
S  

• ¬(x < x)
• x < y ∧ y < z ⇒ x < z.
• x < y ∨ y < x ∨ x = y.
• (∃x)(∀y)(x < y ∨ x = y).

T

• ¬(x < x)
• x < y ∧ y < z ⇒ x < z.
• x < y ∨ y < x ∨ x = y.
• (∃x)(∀y)(y < x ∨ y = x).

CLAIM: S is interpretable in T and vice versa. Obvious interpretation 
of S in T: In T, take the objects of S to be everything (according to 
T). Define x < y of S to be y < x in T. 

Interpretations of the axioms of S become 

• ¬(x < x).
• y < x ∧ z < y ⇒ z < x. 
• y < x ∨ x < y ∨ x = y.
• (∃x)(∀y)(y < x ∨ y = x). 

These are obviously provable in T.  



INTERPRETATION POWER

We now present a much more sophisticated example. 

PA = Peano Arithmetic, is a well known first order theory with 
equality, with symbols 0,S,+,•.

The axioms of PA consists of 

• successor axioms
• defining equations for +,• 
• the scheme of induction for all formulas in this language. 

Now consider “finite set theory”. Ambiguous: could mean either 

• ZFC without the axiom of infinity: ZFC\I; or
• ZFC with the axiom of infinity replaced by its negation; i.e., 
ZFC\I + ¬I.

THEOREM (well known). PA, ZFC\I, ZFC\I + ¬I are mutually 
interpretable. 

PA in ZFC\I: nonnegative integers become finite von Neumann 
ordinals. 

ZFC\I + ¬I in PA: Sets of ZFC\I + ¬I, are coded by the natural 
numbers in PA – in an admittedly ad hoc manner. 



INTERPRETATION POWER

In many such examples of mutual interpretability, the considerably 
stronger relation of synonymy holds - strongest normal notion of 
synonymy is: having a common definitional extension. Notions of 
synonymy and other topics are treated in a forthcoming book with 
Albert Visser, entitled INTERPRETATIONS BETWEEN THEORIES.

Every theory is interpretable in every inconsistent theory.
I.e., the most powerful level of interpretation power is 
inconsistency.

Fundamental fact: there is no maximal interpretation power – short 
of inconsistency. 

THEOREM. (In ordinary predicate calculus with equality). Let S be 
a consistent recursively axiomatized theory. There exists a 
consistent finitely axiomatized theory T such that S is 
interpretable in T and T is not interpretable in S. 

This is proved using Gödel’s second incompleteness theorem. 
Consider T = EFA + Con(S), where EFA is exponential function 
arithmetic. S is interpretable in T by the formalized completeness 
theorem. If T is interpretable in S then EFA proves Con(S) implies 
Con(EFA + Con(S)). By Gödel’s second incompleteness theorem, EFA + 
Con(S) is inconsistent, which is a contradiction.



INTERPRETATION POWER

COMPARABILITY(?). Let S,T be recursively axiomatized theories. 
Then S is interpretable in T or T is interpretable in S?

There are plenty of natural and interesting examples of 
incomparability for finitely axiomatized theories that are rather 
weak. 

To avoid trivialities, an example of incomparability with only 
infinite models:  

i) theory of discrete linear orderings without endpoints.
ii) theory of dense linear orderings without endpoints.  

Neither is interpretable in the other. 

THEOREM. Let S be a consistent recursively axiomatized theory. There 
exist consistent finitely axiomatized theories T1,T2, both in a 
single binary relation symbol, such that 
• S is provable in T1,T2;
• T1 not interpretable in T2;
• T2 is not interpretable in T1.



INTERPRETATION POWER

COMPARABILITY(?). Let S,T be recursively axiomatized theories. 
Then S is interpretable in T or T is interpretable in S?

There are plenty of natural and interesting examples of 
incomparability for finitely axiomatized theories that are rather 
weak. 

BUT, are there examples of incomparability between natural theories 
that are metamathematically strong? E.g., where PA is interpretable?

STARTLING OBSERVATION. Any two natural theories S,T, known to 
interpret PA, are known (with small numbers of exceptions) to 
have: S is interpretable in T or T is interpretable in S. The 
exceptions are believed to also have comparability. 

As a consequence, there has emerged a rather large linearly 
ordered table of “interpretation powers” represented by natural 
formal systems. Several natural systems may occupy the same 
position. 

We call this growing table the Interpretation Hierarchy. See my 
first Tarski lecture, on my website.



BETTER THAN
MUCH BETTER THAN

We use the informal notions: better than (>), and much better than 
(>>). These are binary relations. Passing from > to >> is an 
example of what we call concept amplification. Equality is taken 
for granted. 

We present some basic principles concerning Better Than and Much 
Better Than, that have a clear intuitive meaning, and inherent 
plausibility. Together, they form a formal system MBT (much better 
than), which is mutually interpretable with ZFC. 

We need to consider properties of things. The properties that we 
consider are to be given by first order formulas. Their extensions 
are called "ranges of things". 

When informally presenting axioms, we prefer to use "range of 
things" rather than "set of things", as we do not want to commit 
to set theory here.



BETTER THAN
MUCH BETTER THAN

We say that x is better than a given range of things iff it is 
better than all things in that range. 

We say that x is exactly better than a given range of things iff 
it is better than all things in the range, and all things that 
something in the range is better than, and nothing else.

BASIC. Nothing is better than itself. If x is better than y and y 
is better than z, then x is better than z. If x is much better 
than y, then x is better than y. If x is much better than y and y 
is better than z, then x is much better than z. If x is better 
than y and y is much better than z, then x is much better than z. 
There is something that is much better than any given x,y. If x is 
much better than y, then x is much better than something better 
than y. 

DIVERSE EXACTNESS. Let x be better than a given range of things. 
There is something that is exactly better than the given range of 
things, that x is not better than.  

In Diverse Exactness, ranges of things are given by formulas in 
L(>,>>,=). 



THE SYSTEM MBT (much better than)
BASIC + DIVERSE EXACTNESS + STRONG UNLIMITED IMPROVEMENT

DIVERSE EXACTNESS. Let x be better than a given range of things. 
There is something that is exactly better than the given range of 
things, that x is not better than. 

UNLIMITED IMPROVEMENT. Assume that x is much better than and 
related to y by a given binary relation. Then arbitrarily good x 
are related to y by the given binary relation.

Instead, we use the following natural sharpening:

STRONG UNLIMITED IMPROVEMENT. Let x and a ternary relation be 
given. There are arbitrarily good y such that x,y are related, by 
the given ternary relation, to the same two things that x is much 
better than. 

In UI and SUI, binary relations are given by formulas in L(>,=) 
with no side parameters. BUT, in Diverse Exactness, we use 
L(>,>>,=), with side parameters allowed.

THEOREM. MBT and ZFC are mutually interpretable. 

COROLLARY. Con(MBT) ↔ Con(ZFC) is provable in EFA (a very weak 
fragment of Peano Arithmetic). 



BETTER THAN
MUCH BETTER THAN

What happens to Russell’s Paradox in this context? In sets, we start 
with 

there is a set whose elements are exactly 
the sets with a given property 

and obtain a contradiction that Frege missed and Russell saw. The 
corresponding principle here is 

there is something which is better than, exactly, 
the things with a given property and 
those things they are better than.

This immediately leads to a contradiction. Even the much weaker 

there is something which is better than 
the things with a given property

gives an immediate contradiction, because there cannot be anything 
which is better than all things - by irreflexivity.

THus Russell’s Paradox now becomes entirely transparent and never 
would have trapped anyone: it disappears as a Paradox. 



MBT

INTERPRETATION OF MBT IN ZFC
BASIC. ... There is something that is much better than any given x,y. If x is much better 
than y, then x is much better than something better than y. 

DIVERSE EXACTNESS. Let x be better than a given range of things. There is something that is 
exactly better than the given range of things, that x is not better than. 

STRONG UNLIMITED IMPROVEMENT. Let x and a ternary relation be given. There are 
arbitrarily good y such that x,y are related, by the given ternary relation, to the same 
two things that x is much better than. 

We define pairs (Dα,>α), for all ordinals. Define (D0,>0) = (∅,∅). 
Suppose (Dα,>α) has been defined, and is transitive and 
irreflexive. Define (Dα+1,>α+1) to extend (Dα,>α) by adding an exact 
upper bound of every >α transitive subset of D - even if this 
subset of D already has an exact upper bound over (Dα,>α). For 
limit ordinals λ, define Dλ = ∪β<λDβ, >λ = ∪β<λ>β. 

Let S be an unbounded set of limit ordinals < λ. Define x >>S y if 
and only if 

x,y ∈ Dλ ∧ (∃α,β ∈ S)(α < β ∧ y ∈ Dα ∧ (∀w ∈ Dβ)(x >λ w)).

Then Basic + Diverse Exactness holds in (Dλ,>λ,>>S).

If S has a familiar set theoretic property, then MBT holds:



INTERPRETATION OF MBT IN ZFC

BASIC. ... There is something that is much better than any given x,y. If x is much better 
than y, then x is much better than something better than y. 

BASIC’. ... There is something that is much better than any given x,y. If x is much better 
than y,z then x is much better than something better than y,z. 

DIVERSE EXACTNESS. Let x and a ternary relation be given. There are arbitrarily good y such 
that x,y are related, by the given ternary relation, to the same two things that x is much 
better than. 

STRONG UNLIMITED IMPROVEMENT. Let x be much better than something, as well as everything 
x is related to by a given binary relation. Then arbitrarily good x are related to the 
same things that x is related to, by the given binary relation.

We define pairs (Dα,>α), for all ordinals. 
Let S be an unbounded set of limit ordinals < λ. Define x >>S y if 
and only if 

x,y ∈ Dλ ∧ (∃α,β ∈ S)(α < β ∧ y ∈ Dα ∧ (∀w ∈ Dβ)(x >λ w)).

Suppose S ⊆ λ has order type ω, and the V(α), α ∈ S, form an 
elementary chain (under epsilon) in the usual sense of model theory. 
Then MBT = Basic + Diverse Exactness + Strong Unlimited Improvement 
holds in (Dλ,>λ,>>S).

Actually, this needs a little more than ZFC. But there is a standard 
technical elaboration of the argument that shows that ZFC suffices.



WHAT CORRESPONDS TO Z?
BASIC’. ... There is something that is much better than any given x,y. If x is much better 
than y,z then x is much better than something better than y,z. 

DIVERSE EXACTNESS. Let x be better than a given range of things. There is something that is 
exactly better than the given range of things, that x is not better than. 

STRONG DIVERSE EXACTNESS. Let x be much better than something better 
than a given range of things. Then x is better than some, but not 
all, things exactly better than the given range of things.

VERY STRONG DIVERSE EXACTNESS. Let x be much better than something 
better than a given range of things. THen x is much better than 
some, but not all, things exactly better than the given range of 
things.

SUPER STRONG DIVERSE EXACTNESS. Let x be much better than something, 
and a given range of things. Then x is better than some, but not 
all, things exactly better than the given range of things.

Use L(>,>>,=), with side parameters allowed.

THEOREM. The following are provable in Basic. SSDE → SDE → DE. VSDE 
→ SDE → DE. 

THEOREM. B’ + VSDE + SSDE is interpretable in Z. Z is interpretable 
in B + SDE. Hence B(B’) + SDE, B(B’) + VSDE + SSDE are both mutually 
interpretable in Z.



ALTERNATIVE CORRESPONDING TO ZFC

The system MBT = 

Basic + Diverse Exactness + Strong Unlimited Improvement

is mutually interpretable with ZFC. 

MBT proves Strong Diverse Exactness. Hence 

Basic + Strong Diverse Exactness + Unlimited Improvement

is a fragment of MBT. 

THEOREM. Basic + Strong Diverse Exactness + Unlimited Improvement is 
mutually interpretable with ZFC. 



STAR AXIOM

STAR. There is a Star. I.e., something that is better than something, 
and much better than everything that it is better than.

MBT + Star is not interpretable in ZF(C). It interprets a pretty 
significant large cardinal (at least indescribable cardinals), and is 
interpretable using subtle cardinals. 



VARYING QUANTITY
COMMON SCALE

We now consider a single varying quantity – where the time and 
quantity scales are the same, and are linearly ordered. 
This is common in ordinary physical science, where the time scale 
and the quantity scale may both be modeled as nonnegative real 
numbers.

The associated language has >,>>,=,F, where F is a unary function. 

When thinking of time, >,>> is later than and much later than. 
When thinking of quantity, >,>> is greater than and much greater 
than.

BASIC. Nothing is larger than itself. If x is larger than y and y 
is larger than z, then x is larger than z. If x is much larger 
than y, then x is larger than y. If x is much larger than y and y 
is larger than z, then x is much larger than z. If x is larger 
than y and y is much larger than z, then x is much larger than z. 
There is something that is much larger than any given x,y. For any 
x ≠ y, x is larger than y or y is larger than x. If y is much 
larger than x, then y is much larger than something larger than x.



VARYING QUANTITY
COMMON SCALE

BOUNDED RANGES. If x is much larger than a range of values, then 
that range of values is the actual range of values over some 
interval with right endpoint smaller than x.  

Here we use L(>,>>,=,F) to present the bounded range of values.

AMPLIFICATION. If a value is related, in a given way, to a much 
large value, then the value is related to arbitrarily large 
values.

Here we use L(>,=,F) to present the relation, with no side 
parameters.

THEOREM. Basic + Bounded Ranges is mutually interpretable with ZC. 

THEOREM. Basic + Bounded Ranges + Amplification is mutually 
interpretable with ZFC. 



VARYING BIT
FLASHING LIGHT

We now use a bit varying over time. Physically, this is like a 
flashing light. This corresponds to having a time scale with a 
unary predicate. 

In order to get logical power out of this particularly elemental 
situation, we need to use forward translations of time. 

We think of b+c so that the amount of time from b to b+c is the 
same as the amount of time before c.

BASIC. As before. 

BOUNDED TIME TRANSLATION. Let t be much later that a given range 
of times. There is a translation time c < t such that a time r 
lies in the range of times if and only the bit at time r+c is 1. 
Use L(>,>>,F,+).

AMPLIFICATION. Same as before. Use L(>,F,+).

THEOREM. Mutual interpretability with ZC and ZFC, as before. 



PERSISTENTLY VARYING BIT
FLASHING LIGHT WITH PERSISTENCE 

A reasonable objection can be raised about the Varying Bit: a 
varying bit must have persistence.  I.e., if the bit is 1 then it 
remains 1 for a while, and if the bit is 0 then it remains 0 for a 
while. Define a persistent range of times in the obvious way. 

BASIC. Same as before.

PERSISTENT BOUNDED TIME TRANSLATION. Same as before, but only for 
a persistent range of times. 

AMPLIFICATION. Same as before.

We obtain the same results, (mutual interpretability with ZC and 
ZFC), but we need to add two additional axioms. 

ADDITION. y < z ⇒ x+y < x+z. 
ORDER COMPLETENESS. Every nonempty range of times with an upper 
bound has a least upper bound. 

Use the full language for Order Completeness.


