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We have discovered an unexpectedly close connection between the 
logic of mathematical concepts and the logic of informal concepts 
from common sense thinking. Our results indicate that they are, in a 
certain precise sense, the same. 

This connection is new and there is the promise of establishing 
similar connections involving a very wide range of informal 
concepts. 

We call this development the Concept Calculus. 

We begin with some background concerning the crucial notion of 

interpretation between theories

that is used to state results in Concept Calculus. We then give a 
survey of major results in Concept Calculus. 

In particular, we establish the mutual interpretability of formal 
systems for set theory and formal systems for a variety of 
informal concepts from common sense thinking. 



INTERPRETATION POWER

The notion of interpretation plays a crucial role in Concept 
Calculus. 

Interpretability between formal systems was first precisely 
defined by Alfred Tarski. We work in the usual framework of 
first order predicate calculus with equality. 

An interpretation of S in T consists of 

• A one place relation defined in T which is meant to carve out 
the domain of objects that S is referring to, from the point of 
view of T.
• A definition of the constants, relations, and functions in the 
language of S by formulas in the language of T, whose free 
variables are restricted to the domain of objects that S is 
referring to (in the sense of the previous bullet).
• It is required that every axiom of S, when translated into the 
language of T by means of i,ii, becomes a theorem of T. 
In ii, we usually allow that the equality relation in S need not 
be interpreted as equality – but rather as an equivalence 
relation. 



INTERPRETATION POWER

CAUTION: Interpretations do not necessarily preserve truth. They 
only preserve provability. 
We give two illustrative examples. Let S consist of the axioms for 
strict linear order together with “there is a least element”.  

• ¬(x < x)
• x < y ∧ y < z ⇒ x < z.
• x < y ∨ y < x ∨ x = y.
• (∃x)(∀y)(x < y ∨ x = y).

Let T consist of the axioms for strict linear order together with 
“there is a greatest element”. I.e., 

• ¬(x < x)
• x < y ∧ y < z ⇒ x < z.
• x < y ∨ y < x ∨ x = y.
• (∃x)(∀y)(y < x ∨ y = x).



INTERPRETATION POWER

S  
• ¬(x < x)
• x < y ∧ y < z ⇒ x < z.
• x < y ∨ y < x ∨ x = y.
• (∃x)(∀y)(x < y ∨ x = y).
T
• ¬(x < x)
• x < y ∧ y < z ⇒ x < z.
• x < y ∨ y < x ∨ x = y.
• (∃x)(∀y)(y < x ∨ y = x).
CLAIM: S is interpretable in T and vice versa. Obvious interpretation 
of S in T: In T, take the objects of S to be everything (according to 
T). Define x < y of S to be y < x in T. 
Interpretations of the axioms of S become 
• ¬(x < x).
• y < x ∧ z < y ⇒ z < x. 
• y < x ∨ x < y ∨ x = y.
• (∃x)(∀y)(y < x ∨ y = x). 
These are obviously provable in T.  



INTERPRETATION POWER
We now present a much more sophisticated example. 

PA = Peano Arithmetic, is a well known first order theory with 
equality, with symbols 0,S,+,•. 

The axioms of PA consists of 
• successor axioms
• defining equations for +,• 
• the scheme of induction for all formulas in this language. 

Now consider “finite set theory”. Ambiguous: could mean either 
• ZFC without the axiom of infinity: ZFC\I; or
• ZFC with the axiom of infinity replaced by its negation; i.e., 
ZFC\I + ¬I.

THEOREM (well known). PA, ZFC\I, ZFC\I + ¬I are mutually 
interpretable. 

PA in ZFC\I: nonnegative integers become finite von Neumann 
ordinals. 

ZFC\I + ¬I in PA: Sets of ZFC\I + ¬I, are coded by the natural 
numbers in PA – in an admittedly ad hoc manner. 



INTERPRETATION POWER

In many such examples of mutual interpretability, the considerably 
stronger relation of synonymy holds - strongest normal notion of 
synonymy is: having a common definitional extension. Notions of 
synonymy and other topics are treated in a forthcoming book with 
Albert Visser, entitled INTERPRETATIONS BETWEEN THEORIES.

Every theory is interpretable in every inconsistent theory. 
I.e., the most powerful level of interpretation power is 
inconsistency. 

Fundamental fact: there is no maximal interpretation power – short 
of inconsistency. 

THEOREM. (In ordinary predicate calculus with equality). Let S be 
a consistent recursively axiomatized theory. There exists a 
consistent finitely axiomatized extension T of S which is not 
interpretable in S. 

This is proved using Gödel’s second incompleteness theorem. 
Consider T = EFA + Con(S), where EFA is exponential function 
arithmetic. If T is interpretable in S then EFA proves Con(S) 
implies Con(EFA + Con(S)). By Gödel’s second incompleteness 
theorem, EFA + Con(S) is inconsistent, which is a contradiction.



INTERPRETATION POWER
COMPARABILITY(?). Let S,T be recursively axiomatized theories. 
Then S is interpretable in T or T is interpretable in S?

There are plenty of natural and interesting examples of 
incomparability for finitely axiomatized theories that are rather 
weak. 

To avoid trivialities, an example of incomparability with only 
infinite models:  

i) theory of discrete linear orderings without endpoints.
ii) theory of dense linear orderings without endpoints.  

Neither is interpretable in the other. 

THEOREM. Let S be a consistent recursively axiomatized theory. There 
exist consistent finitely axiomatized theories T1,T2, both in a 
single binary relation symbol, such that 
• S is provable in T1,T2;
• T1 not interpretable in T2;
• T2 is not interpretable in T1.



INTERPRETATION POWER
COMPARABILITY(?). Let S,T be recursively axiomatized theories. 
Then S is interpretable in T or T is interpretable in S?

There are plenty of natural and interesting examples of 
incomparability for finitely axiomatized theories that are rather 
weak. 

BUT, are there examples of incomparability between natural theories 
that are metamathematically strong? E.g., where PA is interpretable?

STARTLING OBSERVATION. Any two natural theories S,T, known to 
interpret PA, are known (with small numbers of exceptions) to 
have: S is interpretable in T or T is interpretable in S. The 
exceptions are believed to also have comparability. 

As a consequence, there has emerged a rather large linearly 
ordered table of “interpretation powers” represented by natural 
formal systems. Several natural systems may occupy the same 
position. 

We call this growing table, the Interpretation Hierarchy. See my 
first Tarski lecture, on my website.



BETTER THAN
MUCH BETTER THAN

We use the informal notions: better than (>), and much better than 
(>>). These are binary relations. Passing from > to >> is an 
example of what we call concept amplification. Equality is taken 
for granted. 

We present some basic principles concerning Better Than and Much 
Better Than, that have a clear intuitive meaning, and inherent 
plausibility. Together, they form a formal system MBT (much better 
than), which is mutually interpretable with ZFC. 

We need to consider properties of things. The properties that we 
consider are to be given by first order formulas. Their extensions 
are called "ranges of things". 

When informally presenting axioms, we prefer to use "range of 
things" rather than "set of things", as we do not want to commit 
to set theory here.



BETTER THAN
MUCH BETTER THAN

We say that x is (much) better than a given range of things iff it 
is (much) better than all things in that range. 

We say that x is exactly (much) better than a given range of 
things iff it is (much) better than all things in the range, and 
all things that something in the range is better than, and 
nothing else. 

MBT0
BASIC. Nothing is better than itself. If x is better than y and y 
is better than z, then x is better than z. If x is much better 
than y, then x is better than y. If x is much better than y and y 
is better than z, then x is much better than z. If x is better 
than y and y is much better than z, then x is much better than z. 
Something is much better than x,y. If x is much better than y, 
then x is much better than something better than y. 

DIVERSE EXACTNESS. Everything much better than a given range of 
things is better than some, but not all, things exactly better 
than the range.  

In Diverse Exactness, ranges of things are given by formulas in 
L(>,>>,=). 



BETTER THAN
MUCH BETTER THAN

We now give the axioms of MBT0 (much better than) formally.

Let φ be a formula in L(>,>>,=), where y is not free in φ.
y > φ iff (∀x)(φ ⇒ y > x). 
y >> φ iff (∀x)(φ ⇒ y >> x).
y >ex φ iff (∀z)(y > z ⇔ (∃x)(φ ∧ x = z ∨ x > z)).
y >>ex φ iff (∀z)(y >> z ⇔ (∃x)(φ ∧ x = z ∨ x > z)).

BASIC. ¬(x > x). x > y ∧ y > z ⇒ x < z. x >> y ⇒ x > y. x >> y ∧ y > 
z ⇒ x >> z. x > y ∧ y >> z ⇒ x >> z. (∃z)(z >> x ∧ z >> y). x >> y 
⇒ (∃z)(x >> z ∧ z > y).

DIVERSE EXACTNESS. y >>ex φ ⇒ (∃z)(y > z ∧ z >ex φ) ∧ (∃z)(¬(y > z) ∧ 
z >ex φ), where φ is a formula in L(>,>>,=) in which y,z are not free.



BETTER THAN
MUCH BETTER THAN

THEOREM. MBT0 and Z (Zermelo set theory) are mutually interpretable.

Here are three additional principles.

UNLIMITED IMPROVEMENT. If a thing is related, in a given way, to a 
much better thing, then the thing is related to arbitrarily good 
things.

PAIR IMPROVEMENT. If a thing is related, in a given way, to two much 
better things, then the thing is related to two things that are yet 
much better than both.

REDUCTION. Let x,y be related in a given way, where x is much better 
than y. Then x is much better than something related to y.

In all three, the relation is given by a formula in L(>,=), with no 
side parameters. 

Over MBT0, Unlimited Improvement and Pair Improvement are equivalent, 
and both follow from Reduction.



MBT

BASIC. (x > x). x > y ∧ y > z ⇒ x < z. x >> y ⇒ x > y. x >> y ∧ y > z ⇒ x >> z. x > y ∧ y 
>> z ⇒ x >> z. (∃z)(z >> x ∧ z >> y). x >> y ⇒ (∃z)(x >> z ∧ z > y).
DIVERSE EXACTNESS. y >> φ ⇒ (∃z)(y > z ∧ z >ex φ) ∧ (∃z)(¬(y > z) ∧ z >ex φ), where φ is a 
formula in L(>,>>,=) in which y,z are not free.
UNLIMITED IMPROVEMENT. φ ∧ y >> x implies (∃y)(φ ∧ y > z), where φ is a formula in 
L(>,=) whose free variables are among x,y. 
We build a model of these axioms. 
We define pairs (Dα,>α), for all ordinals. Define (D0,>0) = (∅,∅). 
Suppose (Dα,>α) has been defined, and is transitive and 
irreflexive. Define (Dα+1,>α+1) to extend (Dα,>α) by adding an exact 
upper bound of every >α transitive subset of D - even if this 
subset of D already has an exact upper bound over (Dα,>α). For 
limit ordinals λ, define Dλ = ∪β<λDβ, >λ = ∪β<λ>β. 
Let S be an unbounded set of limit ordinals < λ. Define x >>S y if 
and only if 

x,y ∈ Dλ ∧ (∃α,β ∈ S)(α < β ∧ y ∈ Dα ∧ (∀w ∈ Dβ)(x >λ w)).
Then Basic + Diverse Exactness = MBT0 holds.
If S has a familiar set theoretic propety, then MBT holds.



MBT

The famiiar set theoretic property of the set S of limit ordinals 
unbounded in λ is this.

S has order type ω.
Each V(α), α < λ, is an elementary substructure of V(λ). 

This does not quite provide an interpretation of MBT in ZFC. 

Let n be fixed. We can build, in ZFC, such an S where we have 
elementary substructures with respect to n quantifier formulas. 

We then get a model, within ZFC, of n quantifier MBT (even with 
Reduction). 

Then, by standard techniques in the theory of interpretability, we 
get an interpretation of MBT in ZFC. 

We gave a model of MBT in a fragment of ZFC, but it was based on 
V(ω2), and so did not interpret MBT in Z = Zermelo set theory. 
However, there is a refined argument for that.

    



VARYING QUANTITY
COMMON SCALE

We now consider a single varying quantity – where the time and 
quantity scales are the same, and are linearly ordered. 
This is common in ordinary physical science, where the time scale 
and the quantity scale may both be modeled as nonnegative real 
numbers.

The assocaited language has >,>>,=,F, where F is a unary function. 

When thinking of time, >,>> is later than and much later than. 
When thinking of quantity, >,>> is greater than and much greater 
than.

BASIC. Nothing is larger than itself. If x is larger than y and y 
is larger than z, then x is larger than z. If x is much larger 
than y, then x is larger than y. If x is much larger than y and y 
is larger than z, then x is much larger than z. If x is larger 
than y and y is much larger than z, then x is much larger than z. 
There is something that is much lRger than any given x,y. For any 
x ≠ y, x is larger than y or y is larger than x. If y is much 
larger than x, then y is much larger than something larger than x.



VARYING QUANTITY
COMMON SCALE

BOUNDED RANGES. If x is much larger than a range of values, then 
that range of values is the actual range of values over some 
interval with right endpoint smaller than x.  

Here we use L(>,>>,=,F) to present the bounded range of values.

AMPLIFICATION. If a value is related, in a given way, to a much 
large value, then the value is related to arbitrarily large 
values.

Here we use L(>,=,F) to present the relation, with no side 
parameters.

THEOREM. Basic + Bounded Ranges is mutually interpretable with ZC. 

THEOREM. Basic + Bounded Ranges + Amplification is mutually 
interpretable with ZFC. 



VARYING BIT
FLASHING LIGHT

We now use a bit varying over time. Physically, this is like a 
flashing light. This corresponds to having a time scale with a 
unary predicate. 

In order to get logical power out of this particularly elemental 
situation, we need to use forward translations of time. 

We think of b+c so that the amount of time from b to b+c is the 
same as the amount of time before c.

BASIC. As before. 

BOUNDED TIME TRANSLATION. Let t be much later that a given range 
of times. There is a translation time c < t such that a time r 
lies in the range of times if and only the bit at time r+c is 1. 
Use L(>,>>,F,+).

AMPLIFICATION. Same as before. Use L(>,F,+).

THEOREM. Mutual interpretability with ZC and ZFC, as before. 



PERSISTENTLY VARYING BIT
FLASHING LIGHT WITH PERSISTENCE 

A reasonable objection can be raised about the Varying Bit: a 
varying bit must have persistence.  I.e., if the bit is 1 then it 
remains 1 for a while, and if the bit is 0 then it remains 0 for a 
while. Define a persistent range of times in the obvious way. 

BASIC. Same as before.

PERSISTENT BOUNDED TIME TRANSLATION. Same as before, but only for 
a persistent range of times. 

AMPLIFICATION. Same as before.

We obtain the same results, (mutual interpretability with ZC and 
ZFC), but we need to add two additional axioms. 

ADDITION. y < z ⇒ x+y < x+z. 
ORDER COMPLETENESS. Every nonempty range of times with an upper 
bound has a least upper bound. 

Use the full language for Order Completeness.


