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1. INTRODUCTION. 
 
Concept Calculus seeks to 
isolate fundamental princi-
ples about informal concepts 
that are used in everyday 
reasoning outside mathemat-
ics, science, and engineer-
ing. This process creates 
formal systems associated 
with various groups of 
informal concepts.  
 
We have discovered that many 
of the formal systems that 
naturally arise have surpris-
ingly great interpretation 
power - sometimes as much as 
the most powerful systems of 
abstract set theory currently 
under investigation.   
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If a system interprets the 
usual ZFC axioms for mathe-
matics, then we say that the 
system provides a consistency 
proof for mathematics. This 
is because any purported 
inconsistency in ZFC is 
converted to an inconsistency 
in the system via the 
interpretation.  
 
Here we discuss a particular 
corner of Concept Calculus 
that was presented in the 
extended abstract  
 
http://www.cs.nyu.edu/piperma
il/fom/2013-
January/016898.html 515: 
Eight Supernatural 
Consistency Proofs for 
Mathematics, FOM, January 19, 
2013.  
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The following are our 
writings on Concept Calculus. 
All of these can be 
downloaded from 
http://www.math.osu.edu/~frie
dman.8/manuscripts.html  
 
There is one published paper, 
one (essentially) accepted 
paper, one submitted paper, 
and several abstracts, in 
addition to the above from 
FOM. We omit earlier versions 
of 515. 
 
Concept Calculus: Much Better 
Than, in: New Frontiers in 
Research on Infinity, ed. 
Michael Heller and W. Hugh 
Woodin, Cambridge University 
Press, 130-164, 2010. 
 
A Divine Consistency Proof 
for Mathematics, to appear. 
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Concept Calculus: universes. 
October 2, 2012, 33 pages, 
submitted for publication.  
'Concept Calculus', October 25, 
2006, 42 pages, abstract.  
 
'Concept Calculus', Mathematical 
Methods in Philosophy, Banff, 
Canada, February 21, 2007, 9 
pages. 
 
'Concept Calculus', APA Panel on 
Logic in Philosophy, APA Eastern 
Division Annual Meeting, 
Baltimore Maryland, January 2, 
2008, 17 pages.  
 
Concept Calculus, Carnegie 
Mellon University, March 26, 
2009, Pure and Applied Logic 
Colloquium. 
 
Concept Calculus, Department of 
Philosophy, MIT, November 4, 
2009, 22 pages. 
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These 8 Consistency Proofs 
show that, in various ways, 
we can very naturally 
interpret set theory in 
*flat* systems. I.e., in a 
very natural way, we do not 
have to rely on anything like 
the cumulative hierarchy, or 
an iterative notion of set. 
Objects and classes of 
objects suffice, and in this 
very limited two sorted 
context, membership is 
vividly understandable and 
universally familiar. 
 
Two general principles: 
 
i. The Supernatural World is 
more extensive than the Real 
World. 
ii. The Real World and the 
Supernatural World are 
similar in various respects. 
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NOTE: Obviously many of these 
systems have the flavor of 
very strong forms of nonstan- 
dard analysis. Gödel wrote a 
couple of paragraphs about 
Nonstandard Analysis. See 
 
K. Gödel, Remark on non-
standard analysis, 1974, in: 
Gödel's Collected Works, 
volume 2, p. 307-310 (J.E. 
Fenstad) and p. 311 (K. 
Gödel). 
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2. CORE SYSTEM, CORE. 
 
All systems presented here 
extend CORE, which is a two 
sorted system.  
 
L(CORE) 
 
1. variables vi over objects. 
2. variables Ai over classes 
of objects. 
3. = between objects. 
4. = between classes. 
5. binary function symbol P 
on objects (ordered pairing). 
6. binary relation symbol ∈ 
between objects and classes 
(membership). 
 
Note how flat L(CORE) is, with 
only objects and classes. We 
obtain great logical strength 
using only basic principles of a 
logical nature.  
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Here are the axioms of CORE. 
 
CORE  
 
1. Logic. The usual axioms 
and rules of logic for 
L(CORE). 
2. Pairing. P(v1,v2) = P(v3,v4) 
→ v1 = v3 ∧ v2 = v4. 
3. Extensionality. (∀v1)(v1 ∈ 
A1 ↔ v1 ∈ A2) → A1 = A2. 
4. Comprehension. 
(∃A1)(∀v1)(v1 ∈ A1 ↔ ϕ), 
where ϕ is a formula of the 
language of the system in 
which A1 is not free. 
 
Note that CORE has a trivial 
model where there is one 
object and two classes.  
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THEOREM 2.1. The system CORE 
+ (∃v1,v2)(v1 ≠ v2) is mutually 
interpretable with Z2.  
 
3. EQUIVALENCE SYSTEM, EQ. 
 
L(EQ)  
 
1. L(CORE). 
2. Unary function symbol CH 
from classes to objects 
(choice operator). 
3. Class constant symbol RO 
(class of all real objects). 
 
Thus in EQ, we have a real 
world and a supernatural 
world.  
 
For any formula ϕ in L(EQ), 
we let ϕ/RO be the result of 
replacing quantifiers (Qv), 
(QA) in ϕ, by (Qv ∈ RO), (QA 
⊆ RO).  
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We can expand ϕ/RO into 
primitive notation in the 
usual way. 
 
EQ 
 
1. CORE, expanded to allow 
all formulas in L(EQ). 
2. Choice. v1 ∈ A1 → CH(A1) ∈ 
A1. 
3. Supernatural Existence. 
(∃v1)(v1 ∉ RO). 
4. Real/Supernatural 
Equivalence. v1 ∈ RO → (ϕ ↔ 
ϕ*), where ϕ is a formula of 
L(EQ) without RO, where every 
free variable is v1. 
 
4 asserts that every real 
object has the same proper-
ties in the real world as it 
does in the supernatural 
world.  
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EQ gets well past ZFC.  
 
Recall λ is Π1

n indescribable: 
(V(λ),∈,R) |= ϕ → (∃κ < λ) 
((V(κ),∈,R ∩ V(α)) |= ϕ), 
where ϕ is a Π1

n sentence.  
 
Let T1 = ZFC + (∃κ)(κ is Π1

n 
indescribable) as a scheme 
indexed by n.  
 
Let T2 = ZFC + (∃κ < λ)(∃<)(< 
is a w.o. of V(λ) where V(κ) 
is an initial segment of <, 
and ((V(κ),∈) is a Π1

n elem-
entary substructure of 
(V(λ),∈)), as a scheme 
indexed by n.  
 
THEOREM 3.1. The following 
are mutually interpretable. 
1. EQ. 
2. T1. 
3. T2.  
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T1 proves T2. Assume T1, and 
let λ be Π1

n+1 indescribable. 
Let < be a w.o. of V(λ), in 
order of increasing rank. For 
R, use the n quantifier 
diagram for (V(λ),∈,<).  
 
To interpret T1 in T2, 
relativize to L. Let n be 
given, and let κ,λ,< be a 
witness for T2 with n+8, where 
< is <L. If λ is not Π1

n 
indescribable, take the L 
least counterexample. Now 
apply T2 with κ,λ,<, to show 
that this is not a 
counterexample.  
 
EQ is interpretable in T2 in 
the obvious way. The objects 
are elements of V(λ), the 
classes are elements of 
V(λ+1), and RO = V(κ).   
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It remains to interpret T2 in 
EQ. First one does some 
preliminary work concerning 
CORE + Choice. You get a well 
ordering of the objects 
definable from ∈,P,=, and a 
single real object. Then 
build the cumulative hierar-
chy as far as you can along 
the well ordering. The cumul-
ative hierarchy on a point is 
coded by a bounded class.  
 
Prove that the construction 
works at every point. If 
false, the construction fails 
at a real point x. But then 
compare the construction up 
to that real point, both in 
the full world and in the 
real world. Equivalence shows 
that the construction works 
at x, contradiction. 
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In this way, we get the 
cumulative hierarchy on all 
points, and we can compare it 
with the cumulative hierarchy 
just on the real points. Now 
apply equivalence.  
 
4. FIRST EXTENSION SYSTEM, 
EX1. 
 
L(EX1) 
 
1. L(CORE). 
2. Class constant symbol RO. 
3. Unary function symbol F 
from objects to classes. 
 
Note that we do not have the 
choice operator CH. 
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EX1 
 
1. CORE, expanded to allow 
all formulas in L(EX1). 
2. Supernatural Plenitude.  
3. Supernatural Extension.  
 
SUPERNATURAL PLENITUDE 
 
A1 ⊆ RO → (∃v1)(F(v1) = A1). 
 
SUPERNATURAL EXTENSION 
 
ϕ/RO ∧ A1 ⊆ RO → (∃A2 ⊇≠ 
A1)(ϕ[A1/A2]) 
 
where ϕ is a formula in =,∈,P 
in which all free variables 
are A1, and A2 is not bound in 
ϕ, and ϕ[A1/A2] is the result 
of replacing all free occur-
rences of A1 in ϕ by A2. 
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This asserts that "any true 
statement in the real world 
about a real class lifts to a 
true statement in the super-
natural world about some 
extension of the real class". 
 
I claimed in the FOM abstract 
that EX1 and EQ1 are mutually 
interpretable, but now I 
doubt this. In any case, I 
see that κ → ω is enough to 
give a model of EX1.  
 
That T2 is interpretable in 
EX1 seems correct. The issue 
is that instead of using 
choice to create a well 
ordering of the objects, we 
use Supernatural Plenitude, 
which is enough to develop L 
in the appropriate way.  
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Thus κ → ω is an upper 
bound, and second order 
indescribability is a lower 
bound. 
 
5. SECOND EXTENSION SYSTEM, 
EX2. 
 
L(EX2) = L(EQ1). 
 
EX2 
 
1. CORE, expanded to allow 
all formulas in L(EX2). 
2. Choice. v1 ∈ A1 → CH(A1) 
∈ A1. 
3. Supernatural Extension.  
 
Thus EX2 uses Choice, and EX1 
uses Supernatural Plenitude. 
 
Again, κ → ω is an upper 
bound, second order indescri-
bability is a lower bound. 
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6. THIRD EXTENSION SYSTEM, 
EX3. 
 
EX3 is the combining of EX1 
and EX2. Again, κ → ω is an 
upper bound, and second order 
indescribability is a lower 
bound. 
 
7. STRONG EQUIVALENCE SYSTEM, 
STEQ. 
 
L(STEQ)  
 
1. L(CORE). 
2. CH. 
3. RO. 
4. C, unary function symbol 
from objects to objects. 
 
Thus L(STEQ) is L(EQ) 
augmented with C. 
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STEQ 
 
1. CORE, expanded to allow 
all formulas in L(STEQ). 
2. Choice. 
3. Supernatural Existence. 
4. Real/Supernatural 
Equivalence. C not allowed. 
5. Correspondence. C(v1) ∈ RO) 
∧ (C(v1) = C(v2) → v1 = v2). 
 
Thus STEQ is EQ with the 
addition of Correspondence, 
asserting a one-one map from 
objects to real objects 
(where C allowed in CORE). 
 
We have got past (∀x ⊆ ω)(x# 
exists), but STEQ may be far 
stronger.   
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8. STRONG EXTENSION SYSTEM, 
STEX. 
 
L(STEX) = L(STEQ) 
 
1. L(CORE). 
2. CH. 
3. RO. 
4. C. 
 
STEX 
 
1. CORE, expanded to allow 
all formulas in L(STEX). 
2. Choice. 
3. Supernatural Extension. C 
not allowed. 
4. Correspondence.  
 
Thus STEX is EX1 with the 
addition of Correspondence, 
asserting a one-one map from 
objects to real objects 
(where C allowed in CORE). 
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We got past (∀x ⊆ ω)(x# 
exists), but STEX may be far 
stronger.   
 
9. DIVINE SYSTEM, DIV. 
 
L(DIV). 
 
1. L(CORE). 
2. CH. 
3. POS. Unary predicate on 
classes. 
4. DEF. Unary predicate on 
classes. 
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DIV 
 
1. CORE, for L(DIV). 
2. Choice. 
3. Positive Classes. 
(∀v1)(v1 ∈ A1 ∨ v1 ∈ A2) → 
POS(A1) ∨ POS(A2). POS(A1) ∧ 
POS(A2) → (∃v1 ≠ v2)(v1,v2 ∈ 
A1 ∧ v1,v2 ∈ A2). 
4. 0-Definable Classes. 
(∀v1)(v1 ∈ A1 ↔ ϕ) ∧ DEF(A2) 
∧ ... ∧ DEF(An) → DEF(A1), 
where ϕ is a formula of 
L(DIV) without DEF, with free 
variables among v1,A2,...,An. 
5. Divine Object. 
(∃v1)(∀A1)(DEF(A1) ∧ POS(A1) → 
v1 ∈ A1). 
 
Between measurable cardinals 
and arbitrarily large Ramsey 
cardinals with stationary 
homogenous set.  
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Note that DIV does not use 
any notion of real object. 
All objects are real.  
 
10. EXTREME EXTENSION SYSTEM, 
EXTEX. 
 
L(EXTEX) 
 
1. L(CORE). 
2. CH. 
3. Class constant symbol RO. 
5. Unary function symbol * 
from classes to classes 
(extension operator) 
6. Unary function symbol H 
from objects to classes. 
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EXTEX 
 
1. CORE, expanded to allow 
all formulas in L(EXTEX). 
2. Global Extension. v1,...,vn 
∈ RO ∧ A1,...,Am ⊆ RO → 
(ϕ/RO ↔ ϕ[A1/A1*,...,Am/Am*]), 
where all free variables of ϕ 
are among v1,...,vn,A1,...,Am, 
n,m ≥ 0. 
3. Bijection. H is a biject-
ion from the objects onto the 
A contained in RO such that 
A* = A. 
 
NOTE: Under this formaliza-
tion, the * operator is 
relevant only applied to 
subclasses of RO. 
 
NOTE: An alternative 
axiomatization that is 
equivalent, and perhaps 
closer to intuition, is to 
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have a symbol for a one-one 
map from objects, to objects 
in RO, and also a symbol for 
a one-one map from the A 
contained in RO with A* = A, 
into objects. 
 
THEOREM. The Extreme 
Extension System, EXTEX, 
interprets ZFC + "there 
exists a nontrivial 
elementary embedding from 
some V(λ) into V(λ), and even 
I2 (and somewhat more). 
 
 


