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1. INTRODUCTION.

We focus on an unexpectedly close connection between the
logic of mathematical concepts and the logic of informal
concepts from common sense thinking.

This connection is new and there is the promise of
establishing similar connections involving a very wide
range of informal concepts.

We call this development the Concept Calculus. It is in a
very early stage of development.

The results in Concept Calculus are rather specific. For
the initial result, we identify the “logic of mathematical
concepts” to be the usual axioms of set theory that provide
the usual foundations of mathematics - the ZFC axioms
(Zermelo Frankel with the axiom of choice).

And for the initial result, we focus on a two particular
informal concepts from common sense thinking. These are the
binary relations
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BETTER THAN.
MUCH BETTER THAN.

In the initial result, we present some axioms involving
only “better than”, “much better than”, and identity
between objects. These axioms are of a simple basic
character, and range from obvious to plausible.

The initial result asserts the following. Let T be the
system of axioms involving better than and much better
than, presented below.

THEOREM. ZFC and T are mutually interpretable. I.e., there
is an interpretation of ZFC in T, and there is an
interpretation of T in ZFC.

COROLLARY. ZFC is consistent if and only if T is
consistent.

It should be noted that both of these results are proved in
an extremely weak fragment of ordinary mathematics. If we
use Gödel numberings throughout, then these results are
proved in a very weak fragment of PRA = primitive recursive
arithmetic, which is itself a very weak fragment of PA =
Peano Arithmetic. In particular, EFA = exponential function
arithmetic = I∑0(exp), suffices. With some care, PFA =
polynomial function arithmetic = bounded arithmetic = I∑0,
suffices. There are corresponding weak theories of finite
strings that suffice if we treat formal systems more
directly, without Gödel numberings.

We also show that certain extensions of ZFC via so called
“large cardinal hypotheses” correspond in the same way to
certain very natural extensions of T, still using only
better than and much better than.

2. INTERPRETATION POWER.

The notion of interpretation plays a crucial role in
Concept Calculus.

Interpretability between formal systems was first precisely
defined by Tarski. We work in the usual framework of first
order predicate calculus with equality. See [4].

An interpretation of S in T consists of
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i. A one place relation defined in T which is meant to
carve out the domain of objects that S is referring to,
from the point of view of T.

ii. A definition of the constants, relations, and functions
in the language of S by formulas in the language of T,
whose free variables are restricted to the domain of
objects that S is referring to (in the sense of i).

iii. It is required that every axiom of S, when translated
into the language of T by means of i,ii, becomes a theorem
of T.

In ii, we usually allow that the equality relation in S
need not be interpreted as equality – but rather as an
equivalence relation.

We give two illustrative examples.

S consists of the axioms for linear order, together with
“there is a least element”.

i. ¬(x < x).
ii. (x < y ∧ y < z) → x < z.
iii. x < y ∨ y < x ∨ x = y.
iv. (∃x)(∀y)(x < y ∨ x = y).

T consists of the axioms for linear order, together with
“there is a greatest element”.

i. ¬(x < x).
ii. (x < y ∧ y < z) → x < z.
iii. x < y ∨ y < x ∨ x = y.
iv. (∃x)(∀y)(y < x ∨ x = y).

Note that S,T are theories in first order predicate
calculus with equality, in the same language: just the
binary relation symbol <.

CLAIM: S is interpretable in T and T is interpretable in S.
They are mutually interpretable.

Here is the obvious interpretation of S in T. In T, take
the objects of S to be everything (according to T).

Define x < y of S to be y < x in T.
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Interpretation of the axioms of S formally yields

i’. ¬(x < x).
ii’. (y < x ∧ z < y) → z < x.
iii’. y < x ∨ x < y ∨ x = y.
iv’. (∃x)(∀y)(y < x ∨ x = y).

These are obviously theorems of T.

Here is a more sophisticated example. PA = Peano Arithmetic
is the first order theory with equality, using 0,S,+,•. The
axioms: successor axioms, defining equations for +,•, and
the scheme of induction for all formulas in this language.

Now consider “finite set theory”. This is a bit ambiguous:
could mean either

ZFC without the axiom of infinity; i.e., or ZFC\I; or

ZFC with the axiom of infinity replaced by its negation;
i.e., ZFC\I + ¬I.

THEOREM (well known). PA, ZFC\I, ZFC\I + ¬I are mutually
interpretable.

PA in ZFC\I: nonnegative integers become finite von Neumann
ordinals. Induction in PA gets translated to a consequence
of foundation and separation.

ZFC\I + ¬I in PA: Sets of ZFC\I + ¬I, are coded by the
natural numbers in PA – in an admittedly ad hoc manner.

The various axioms of ZFC\I + ¬I get translated into
theorems of PA.

In many such examples of mutual interpretability, the
considerably stronger relation of synonymy holds. We will
not delve into this further here.

3. BASIC FACTS ABOUT INTERPRETATION POWER.

We begin with the observation that for any two S,T, if T is
inconsistent (proves a sentence and its negation) then S is
interpretable in T. I.e., the most powerful level of
interpretation power is inconsistency. Of course, this
level is to be avoided.
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A very fundamental fact about interpretation power is that
there is no greatest interpretation power – short of
inconsistency.

THEOREM 3.1. (In ordinary predicate calculus with
equality). Let S be a consistent recursively axiomatized
theory. There exists a consistent finitely axiomatized
extension T of S which is not interpretable in S.

The above is most easily proved using Gödel’s second
incompleteness theorem. This tells us that, roughly
speaking, S + Con(S) is never interpretable in S (assuming
S is consistent). There are some problems with using this,
as S may prove its own inconsistency. These problems can be
overcome.

COMPARABILITY(?). Let S,T be recursively axiomatized
theories. Then S is interpretable in T or T is
interpretable in S?

There are plenty of natural and interesting examples of
incomparability for finitely axiomatized theories that are
rather weak. To avoid trivialities, we give an example of
incomparability where there are only infinite models.

S is the theory of discrete linear orderings without
endpoints.

T is the theory of dense linear orderings without
endpoints.

We get plenty of incomparability arbitrarily high up:

THEOREM 3.2. Let S be a consistent recursively axiomatized
theory. There exist consistent finitely axiomatized
theories T1,T2, both in a single binary relation symbol,
such that
i) S is provable in T1,T2;
ii) T1 is not interpretable in T2;
iii) T2 is not interpretable in T1.

BUT, are there examples of incomparability between natural
theories that are metamathematically strong? Say in which
PA is interpretable?
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STARTLING OBSERVATION. Any two natural theories S,T, known
to interpret PA, are known (with small numbers of
exceptions) to have: S is interpretable in T or T is
interpretable in S. The exceptions are believed to also
have comparability.

Because of this observation, there has emerged a rather
large linearly ordered table of “interpretation powers”
represented by natural formal systems. Generally, several
natural formal systems may occupy the same position.

We call this growing table, the Interpretation Hierarchy.

See [4] for much more information about Tarski
interpretations.

4. INITIAL DEVELOPMENT OF CONCEPT CALCULUS.

We begin with the notions: better than (>), and much better
than (>>). These are binary relations. This is an example
of what we call concept amplification.

One can also view > and >> mereologically, as

x > y iff y is a “proper part of x”.

x >> y iff y is a “small proper part of x”.

An important idea is that of minimality. We say that x is
minimal if and only if x is not better than anything.

We say that x is minimally better than y if and only if x
is better than y and the things y is better than, and
nothing else.

BASIC. Nothing is better than itself. If x is better than y
and y is better than z, then x is better than z. If x is
much better than y, then x is better than y. If x is much
better than y and y is better than z, then x is much better
than z. If x is better than y and y is much better than z,
then x is much better than z. There is something that is
much better than any given x,y.

MINIMAL. If x is much better than y, then x is much better
than some, but not all, things that are minimally better
than y.
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EXISTENCE. Let x be a thing better than a given range of
things. There is something that is better than the given
range of things and the things that they are better than,
and nothing else. Here we use L(>,>>) to present the range
of things.

AMPLIFICATION. Let x,y be given, as well as a true
statement about x, using the two binary relations >,=, and
the unary relation >> x. The corresponding statement about
x, using the two binary relations >,=, and the unary
relation >> x,y, is also true.

i. MIINIMAL says that if x is much better than y, then y
can be slightly improved so that x remains much better.
However, there is great diversity among these slight
improvements, so that nothing is much better than all of
them.
ii. From BASIC and MINIMAL, we get lots of incomparables.
iii. EXISTENCE says that there is something of any bounded
level of goodness. This corresponds to the Separation Axiom
in set theory.
iv. AMPLIFICATION is a particular way of saying this: “I
cannot tell the difference (using >,=), collectively,
between the things that are much better than me, and the
things that are much better than both you and me”.
v. AMPLIFICATION embodies both the Power Set Axiom and the
Replacement Axiom of set theory. It makes “much better
than” correspond to “jumping up greatly in cardinality”.
vi. The last axiom of BASIC corresponds to the Infinity
Axiom in set theory.

THEOREM 4.1. BASIC + MINIMAL + EXISTENCE + AMPLIFICATION is
mutually interpretable with ZFC. This is provable in EFA.

COROLLARY 4.2. ZFC is consistent if and only if BASIC +
MINIMAL + EXISTENCE + AMPLIFICATION is consistent. This is
provable in EFA.

There are several tricky points involved in establishing
these results. Careful investigation reveals that many of
the above axioms can be strengthened, weakened, or dropped.

AMPLIFIED LIMIT. There is something that is better than
something, and also much better than everything it is
better than.
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vii. AMPLIFIED LIMIT postulates the existence of a kind of
STAR. Stars correspond to certain large cardinals.

THEOREM 4.3. BASIC + MINIMAL + EXISTENCE + AMPLIFICATION +
AMPLIFIED LIMIT interprets ZFC + “there is an almost
ineffable cardinal” and is interpretable in ZFC + “there
exists an ineffable cardinal”.

BINARY AMPLIFICATION. Let x,y be given, as well as a true
statement about x, using the three binary relations >,=,
and z >> w >> x. The corresponding statement about x, using
the three binary relations >,=, and z >> w >> x,y, is also
true.

viii. BINARY AMPLIFICATION is a powerful extension of
AMPLIFICATION that throws us far beyond ZFC, even with
“small large cardinals” such as ineffable cardinals.

ix. BINARY AMPLIFICATION is a particular way of saying
this: “I cannot tell the difference (using >,=) between the
much better relation among the things that are much better
than me, and the much better relation among the things that
are much better than both you and me”.

THEOREM 4.4. BASIC + MINIMAL + EXISTENCE + BINARY
AMPLIFICATION interprets ZFC + “there exists a Ramsey
cardinal” and is interpretable in ZFC + “there exists a
measurable cardinal”.

THEOREM 4.5. BASIC + MINIMAL + EXISTENCE + AMPLIFIED LIMIT
+ BINARY AMPLIFICATION interprets ZFC + “there exists a
measurable cardinal with arbitrarily large lesser
measurable cardinals” and is interpretable in ZFC + “there
exists a measurable cardinal with a normal measure 1 set of
lesser measurable cardinals”.

Can we reason confidently within this world of abstract
“better than and much better than”?

We anticipate a logical analysis of all of the “simple”
propositions (and schemes) involving “better than, much
better than”. There should emerge a handful of preferred,
divergent, “complete views”, which determine the truth
values of all of these “simple” propositions (and schemes).
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A major preliminary step is to analyze all of the “simple”
statements that hold in a fundamental model of the kind
that we discuss below.

What happens to Russell’s Paradox? In sets, we start with

THERE IS A SET WHOSE ELEMENTS ARE EXACTLY THE SETS WITH A
GIVEN PROPERTY

and obtain a contradiction that Frege missed and Russell
saw.

The corresponding principle here is

THERE IS SOMETHING WHICH IS BETTER THAN, EXACTLY, THE
THINGS WITH A GIVEN PROPERTY AND THOSE THINGS THEY ARE
BETTER THAN.

This immediately leads to a contradiction, even before
"and". This is because there cannot be anything which is
better than all things - by irreflexivity. I.e., nothing
can be better than itself.

Thus Russell’s Paradox now becomes entirely transparent and
never would have trapped anyone. In fact, it disappears as
a Paradox. Clearly there is no residual feeling of mystery
as there is in the context of sets and properties.

Sections 5,6,7 below discuss examples of might be thought
of as “naïve physics”.

5. SINGLE VARYING QUANTITY.

We now consider a single varying quantity – where the time
and quantity scales are the same, and are linearly ordered.

This is common in ordinary physical science, where the time
scale and the quantity scale may both be modeled as
nonnegative real numbers.

The language has >,>>,=,F, where >,>> are binary relations,
and F is a one place function.

F(x) is the value of the varying quantity at time x.
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When thinking of time, >,>> is later than and much later
than. When thinking of quantity, >,>> is greater than and
much greater than.

BASIC. Nothing is better than itself. If x is better than y
and y is better than z, then x is better than z. If x is
much better than y, then x is better than y. If x is much
better than y and y is better than z, then x is much better
than z. If x is better than y and y is much better than z,
then x is much better than z. There is something that is
much better than any given x,y. For any x ≠ y, x is better
than y or y is better than x.

MINIMAL. If x is much better than y, then x is much better
than something minimally better than y.

ARBITRARY BOUNDED RANGES. Every bounded range of values is
the range of values over some bounded interval. Here we use
L(>,>>,=,F) to present the bounded range of values.

AMPLIFICATION. Let x,y be given, as well as a true
statement about x, using F, the two binary relations >,=
and the unary relation >> x. The corresponding statement
about x, using F, the two binary relations >,= and unary
relation >> x,y, is also true.

THEOREM 5.1. Using the above versions, BASIC + MINIMAL +
ARBITRARY BOUNDED RANGES + AMPLIFICATION is mutually
interpretable with ZFC. This is provable in EFA.

We can strengthen as before:

AMPLIFIED LIMIT. There is something that is greater than
something, and also much greater than everything it is
greater than.

THEOREM 5.2. Using the above versions, BASIC + MINIMAL +
ARBITRARY BOUNDED RANGES + AMPLIFICATION + AMPLIFIED LIMIT
interprets ZFC + “there is an almost ineffable cardinal”
and is interpretable in ZFC + “there exists an ineffable
cardinal”.

BINARY AMPLIFICATION. Let x,y be given, as well as a true
statement about x, using F and the three binary relations
>,=, and z >> w >> x. The corresponding statement about x,
using F, the three binary relations >,=, and z >> w >> x,y,
is also true.
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THEOREM 5.3. Using the above versions, BASIC + MINIMAL +
ARBITRARY BOUNDED RANGES + BINARY AMPLIFICATION interprets
ZFC + “there exists a Ramsey cardinal” and is interpretable
in ZFC + “there exists a measurable cardinal”.

THEOREM 5.4. Using the above versions, BASIC + MINIMAL +
ARBITRARY BOUNDED RANGES + AMPLIFIED LIMIT + BINARY
AMPLIFICATION interprets ZFC + “there exists a measurable
cardinal with arbitrarily large lesser measurable
cardinals” and is interpretable in ZFC + “there exists a
measurable cardinal with a normal measure 1 set of lesser
measurable cardinals”.

As before, these latter two principles push the
interpretation power well into the large cardinal
hierarchy.

There are versions where we do not assume that the time
scale is the same as the quantity scale. Some of these
versions use two varying quantities, and there are three
separate scales (time, first quantity, second quantity).

6. SINGLE VARYING BIT.

We now use a bit varying over time. Physically, this is
like a flashing light. Mathematically, it corresponds to
having a time scale with a unary predicate.

In order to get logical power out of this particularly
elemental situation, we need to use forward translations of
time. We think of b+c so that the amount of time from b to
b+c is the same as the amount of time before c.

We use >,>>,=,+,P, where P(t) means that the varying bit at
time t is 1.

Instead of a time scale, we can think of one dimensional
space with a direction. P(t) means that there is a
pointmass at position t.

In the earlier contexts, we did not support continuity.
Here we simultaneously support discreteness and continuity.

BASIC. Nothing is better than itself. If x is better than y
and y is better than z, then x is better than z. If x is
much better than y, then x is better than y. If x is much
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better than y and y is better than z, then x is much better
than z. If x is better than y and y is much better than z,
then x is much better than z. There is something that is
much better than any given x,y. If x is much better than y,
then x is much better than something better than y. For any
x ≠ y, x is better than y or y is better than x.

BOUNDED TIME TRANSLATION. For every given range of times
before a given time b, there exists a translation time c
such that a time before b lies in the range of times if and
only the bit at time b+c is 1. Here we use L(>,>>,=,+,P) to
present the range of times.

The idea is our usual one: the behavior of P over bounded
intervals is arbitrary, up to translation.

AMPLIFICATION. Let x,y be given, as well as a true
statement about x, using P, the binary function +, the two
binary relations >,= and the unary relation >> x. The
corresponding statement about x, using P, the binary
function +, the two binary relations >,= and the unary
relation >> x,y, is also true.

AMPLIFIED LIMIT. There is something that is greater than
something, and also much greater than everything it is
greater than.

BINARY AMPLIFICATION. Let x,y be given, as well as a true
statement about x, using P, the binary function +, and the
three binary relations >,=, and z >> w >> x. The
corresponding statement about x, using P, the binary
function +, and the three binary relations >,=, and z >> w
>> x,y, is also true.

THEOREM 6.1. Using the above versions, BASIC + ARBITRARY
BOUNDED RANGES + AMPLIFICATION is mutually interpretable
with ZFC. This is provable in EFA.

AMPLIFIED LIMIT. There is something that is greater than
something, and also much greater than everything it is
greater than.

THEOREM 6.2. Using the above versions, BASIC + BOUNDED TIME
TRANSLATION + AMPLIFICATION + AMPLIFIED LIMIT interprets
ZFC + “there is an almost ineffable cardinal” and is
interpretable in ZFC + “there exists an ineffable
cardinal”.
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BINARY AMPLIFICATION. Let x,y be given, as well as a true
statement about x, using F and the three binary relations
>,=, and z >> w >> x. The corresponding statement about x,
using F, the three binary relations >,=, and z >> w >> x,y,
is also true.

THEOREM 6.3. Using the above versions, BASIC + BOUNDED TIME
TRANSLATION + BINARY AMPLIFICATION interprets ZFC + “there
exists a Ramsey cardinal” and is interpretable in ZFC +
“there exists a measurable cardinal”.

THEOREM 6.4. Using the above versions, BASIC + BOUNDED TIME
TRANSLATION + AMPLIFIED LIMIT + BINARY AMPLIFICATION
interprets ZFC + “there exists a measurable cardinal with
arbitrarily large lesser measurable cardinals” and is
interpretable in ZFC + “there exists a measurable cardinal
with a normal measure 1 set of lesser measurable
cardinals”.

7. PERSISTENTLY VARYING BIT.

The objection can be raised that a varying bit
realistically has to have persistence. It cannot be varying
“densely”. Specifically, if the bit is 1 then it remains 1
for a while, and if the bit is 0 then it remains 0 for a
while.

Define a persistent range of times in the obvious way.

PERSISTENT TIME TRANSLATION. For any time b and persistent
range of times before b, there exists a translation time c
such that any time before b lies in the range of times if
and only if the bit at time b+c is 1. Here we use
L(>,>>,=,P,+) to present the range of times.

We need to have two additional time principles.

ADDITION. y < z → x+y < x+z.

ORDER COMPLETENESS. Every nonempty range of times with an
upper bound has a least upper bound. Here we use
L(>,>>,=,P,+) to present the nonempty range of times.

We also have BASIC, AMPLIFICATION, AMPLIFIED LIMIT, BINARY
AMPLIFICATION as in section 6.
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We get the analogous results.

There are also versions that treat the idea of an expanding
universe, where expansion is internal, and not just at the
end. This leads to the logical strength of elementary
embedding hypotheses from large cardinal theory.

8. AN INTERPRETATION IN SET THEORY.

We present a set theoretic interpretation of BASIC +
MINIMAL + EXISTENCE + AMPLIFICATION, for {BETTER THAN, MUCH
BETTER THAN}. The other direction is too technical for this
talk.

We first form an underlying structure (D,>,=).

We define pairs (Dα,>α), for all ordinals α. Define (D0,>0) =
(∅,∅). Suppose (Dα,>α) has been defined, and is transitive
and irreflexive. Define (Dα+1,>α+1) to extend (Dα,>α) by
adding an exact strict upper bound for every subset of Dα -
even if it already has an exact strict upper bound. For
limit ordinals λ, define Dλ = ∪α<λDα, >λ = ∪α<λ>α. Let D = ∪αDα,
> = ∪α>α.

The new elements introduced at each stage are incomparable,
and never below ("worse than") previously introduced
elements. Thus the (eventual) predecessors of x are
introduced earlier than x. Each exact upper bound
introduced remains valid later.

LEMMA 8.1. (D,>) is irreflexive and transitive, satisfies
Minimality, and also Existence in second order form. The
same claims are true for (Dκ,>κ), where κ is a limit ordinal.

Now fix S to be a nonempty set of limit ordinals, with no
greatest element, whose union is κ. We define M[S] to be
(Dκ,>κ,>>S), where Dκ,>κ is as above. We define x >>S y if and
only if

x,y ∈ Dκ ∧ (∃α,β ∈ S)(α < β ∧ y ∈ Dα ∧ (∀w ∈ Dβ)(x > w)).

LEMMA 8.2. M[S] satisfies Basic.

LEMMA 8.3. MK proves that there exists a set S of limit
ordinals, with no greatest element, with the following
indiscernibility property. For all α < β < γ from S, β,γ
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have the same first order properties over V, relative to
any parameters from V(α).

LEMMA 8.4. Let n < ω. ZF proves that there exists a set S
of limit ordinals, with no greatest element, with the
following indiscernibility property. For all α < β < γ from
S, β,γ have the same first order properties over V, with at
most n quantifiers, relative to any parameters from V(α).

LEMMA 8.5. Let S to be a nonempty set of limit ordinals,
with no greatest element. In M[S], x >> y if and only if
(∀w ∈ Dβ)(x > w), where β is the least ordinal in S after α,
and α is the least ordinal in S such that y ∈ Dα.

LEMMA 8.6. Suppose S has the indiscernibility property in
Lemma 8.3. Then M[S] satisfies BASIC + MINIMAL + EXISTENCE
+ AMPLIFICATION.

THEOREM 8.7. BASIC + MINIMAL + EXISTENCE + AMPLIFICATION is
interpretable in ZF.

For AMPLIFIED LIMIT, we need S to contain a limit point of
S. This can be obtained from an ineffable cardinal.

For BASIC + MINIMAL + EXISTENCE + BINARY AMPLIFICATION, we
need S of type ω satisfying a more powerful form of
indiscernibility.

LEMMA 8.8. Suppose there is a countable transitive model of
ZC + “there exists a measurable cardinal”. There is a
countable transitive model A of ZF, and an unbounded S ⊆ A
consisting of limit ordinals, of order type ω, with the
following indiscernibility property. Let α < β < γ be from
S. Then S\β and S\γ have the same first order properties
over A, relative to any parameters from the V(α) of A.

Let A be a transitive model of ZF, and S be an unbounded
subset of A consisting of limit ordinals. Define M[A,S] as
follows. The domain and the > is defined internally in M,
as proper classes of M, as before. We write these as DM, >M.
The >>, which is a binary relation on DM, is then defined as
before. We write this as >>S.

LEMMA 8.9. M[A,S] satisfies Basic + Minimality + Existence.

LEMMA 8.10. Let A,S be as in the conclusion of Lemma 8.8.
Then M[A,S] satisfies BINARY AMPLIFICATION.
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THEOREM 8.11. BASIC + MIIMALITY + EXISTENCE + BINARY
AMPLIFCATION interprets ZFC + “there exists a Ramsey
cardinal” and is interpretable in ZFC + “there exists a
measurable cardinal”.
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PRINCIPLE OF PLENITUDE

From Wikipedia, Plenitude Principle.

The principle of plenitude asserts that everything that can
happen will happen.

The historian of ideas Arthur Lovejoy was the first to
discuss this philosophically important Principle
explicitly, tracing it back to Aristotle, who said that no
possibilities which remain eternally possible will go
unrealized, then forward to Kant, via the following
sequence of adherents:

Augustine of Hippo brought the Principle from Neo-Platonic
thought into early Christian Theology.

St Anselm 's ontological arguments for God's existence used
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the Principle's implication that nature will become as
complete as it possibly can be, to argue that existence is
a 'perfection' in the sense of a completeness or fullness.

Thomas Aquinas's belief in God's plenitude conflicted with
his belief that God had the power not to create everything
that could be created. He chose to constrain and ultimately
reject the Principle.

Giordano Bruno's insistence on an infinity of worlds was
not based on the theories of Copernicus, or on observation,
but on the Principle applied to God. His death may then be
attributed to his conviction of its truth.

Leibniz believed that the best of all possible worlds would
actualize every genuine possibility, and argued in
Théodicée that this best of all possible worlds will
contain all possibilities, with our finite experience of
eternity giving no reason to dispute nature's perfection.

Kant believed in the Principle but not in its empirical
verification, even in principle.

The Infinite monkey theorem and Kolmogorov's zero-one law
of contemporary mathematics echo the Principle. It can also
be seen as receiving belated support from certain radical
directions in contemporary physics, specifically the many-
worlds interpretation of quantum mechanics and the
cornucopian speculations of Frank Tipler on the ultimate
fate of the universe.


