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Abstract. This is an introduction to the most primitive form
of the new Boolean relation theory, where we work with only
one function and one set. We give eight complete
classifications. The thin set theorem (along with a slight
variant), and the complementation theorem are the only
substantial cases that arise in these classifications.

INTRODUCTION.

Let f be a multivariate function of arity k. Let A be a set.
We write fA for f[Ak].

Z = set of all integers, N = set of all nonnegative integers.

THEOREM. Let f be a multivariate function from Z into Z.
There exists an infinite A Õ Z such that ????.

QUIZ: Find four common mathematical symbols so that this is
true and highly nontrivial.

Here is the answer to the quiz.

THIN SET THEOREM. Let f be a multivariate function from Z
into Z. There exists an infinite A Õ Z such that fA ≠ Z.

DIGRESSION: TST is provable in ACA0’ = RCA0 + "for all x,n,
the n-th jump of x exists". We have shown that TST is not
provable in ACA0. See [FS00] or the proof below, which is
better. It is open whether RCA0 proves TST ´ ACA0’, or even
whether RCA0 proves TST Æ ACA0. RCA0 cannot prove TST ´ ACA0
since ACA0 is not finitely axiomatizable. We have also shown
that TST for k = 2 is not provable in WKL0. See [CGH00].

Proof of TST: Use RT = Ramsey’s theorem. Wlog, replace Z by
N. Let p be the number of order types of k-tuples. Set H(x) =
f(x) if f(x) £ p; p+1 otherwise. Let A Õ N be infinite and H-
homogeneous in the sense that the value of H at tuples from A
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depend only on their order types. Then the values of f at
tuples of any given order type from A are either all the same
number £ p, or all > p. In any event, at least one of the
numbers {0,...,p} is omitted by f on A. QED

We can immediately ask what else can be put there other than
the Boolean inequation fA ≠ Z. Think of Z as the universal
set.

This is what BRT = Boolean relation theory is all about. In
these lecture notes, we only consider “baby” BRT, where we
have just one function and one set.

1. SOME BOOLEAN ALGEBRA.

The notion of Boolean algebra is a very robust concept with
several different definitions. We give a particularly elegant
definition.

By way of motivation, the clearest examples of Boolean
algebras are the Boolean fields of sets. These are structures
(W,∅,S,»,«,’), where W is a family of subsets of the set S
closed under pairwise union, pairwise intersection, and
complement relative to S. Here ’ is complementation relative
to S.

We let 2 be the structure ({0,1},0,1,+,•,-), where x+y =
min(1,x+y), x•y is multiplication, and -x = 1-x.

A Boolean algebra is a structure B = (B,0,1,+,•,-), where 0,1
Œ B, +,•:B2 Æ B, -:B Æ B, such that every equation that
holds universally in 2 also holds universally in B.

THEOREM 1.1. (Stone’s Representation Theorem). Every Boolean
algebra is isomorphic to a field of sets.

The idea is to use the family of all ultrafilters on the
Boolean algebra as the field of sets.

THEOREM 1.2. Let s = t be a Boolean equation. The following
are equivalent.
i) s = t is universally true in all Boolean algebras;
ii) s = t is universally true in 2;
iii) s = t becomes a tautology in the usual classical
propositional calculus with 0 replaced by T, 1 replaced by F,
+ replaced by ⁄, • replaced by Ÿ, and = replaced by ´.
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We say that s,t are Boolean equivalent if and only if s = t
holds universally in all Boolean algebras.

We say that s,t are 2 equivalent if and only if s = t holds
universally in 2.

We say that two Boolean equations s = t and s’ = t’ are
Boolean equivalent if and only if

s = t iff s’ = t’

holds universally in all Boolean algebras.

We say that two Boolean equations s = t and s’ = t’ are 2
equivalent if and only if

s = t iff s’ = t’

holds universally in 2.

THEOREM 1.3. Let s,t,s’,t’ be Boolean terms. The following
are equivalent.
i) s = t and s’ = t’ are Boolean equivalent;
ii) s = t and s’ = t’ are 2 equivalent;
iii) (-s + t)•(s + -t),(-s’ + t’)•(s’ + -t’) are Boolean
equivalent.

Proof: Suppose iii). Let B be a Boolean algebra with an
assignment to variables making s = t. Then (-s + t)•(s + -t)
= 1, and so (-s’ + t’)•(s’ + -t’) = 1. Hence s’ = t’. This
establishes i).

Obviously i) Æ ii).

Suppose ii). We want to derive iii). Suppose iii) is false.
Then (-s + t)•(s + -t),(-s’ + t’)•(s’ + -t’) are not {0,1}
equivalent. So there is a 2 assignment which makes the first
term 1 and the second term 0 (the other possibility is
handled analogously). Hence this assignment makes (-s + t) =
1, (s + -t ) = 1, and also makes (-s’ + t’) = 0 or (s’ + -t’)
= 0. Therefore the assignment makes s = t and s’ ≠ t’. This
contradicts ii). QED
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COROLLARY 1.4. Let s,t be Boolean terms. Then s,t are Boolean
equivalent if and only if s = 1, t = 1 are Boolean
equivalent.

Proof: By Theorem 1.3. QED

THEOREM 1.5. The number of Boolean terms in x1,...,xn up to
Boolean equivalence is the same as the number of Boolean
equations in x1,...,xn up to Boolean equivalence, which is
2^2^n.

Proof: By Theorem 1.2, the first quantity is the same as the
number of propositional formulas in n propositional letters
up to tautological equivalence, which is well known to be
2^2^n. By Theorem 1.3, the second quantity is no greater than
the first quantity. It follows from Corollary 1.4, that it is
no smaller, either. QED

THEOREM 1.6. Any finite set of Boolean equations, interpreted
conjunctively, is Boolean equivalent to a single Boolean
equation.

Proof: We can write the equations in the form s1 = 1, ... , sn
= 1. And then we can write this as s1•...•sn = 1. QED

It will be very useful to have a normal form for Boolean
equations. We give what amounts to conjunctive normal form.

We will now assume that the Boolean algebra is given as a
field of sets. This is the situation throughout Boolean
relation theory.

We now use « for •, » for +, ∅ for 0, and U for 1. We can
use Õ with its usual meaning between sets.

A basic inclusion is an inclusion of the form

y1 « ... « yp Õ z1 » ... » zq

where p,q ≥ 0, and y1,...,yp,z1,...,zq consists of p+q
distinct variables.

If p = 0 and q > 0 then we write this basic inclusion as

z1 » ... » zq = U.
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If q = 0 and p > 0 then we write this basic inclusion as

y1 « ... « yp = ∅.

If p = q = 0 then we write this basic inclusion as

U = ∅

THEOREM 1.7. Let Y be a finite set of Boolean equations. Then
there is a finite set E of basic inclusions such that Y is
equivalent to E in all fields of sets.

Proof: By Theorem 1.6, we can assume that Y consists of a
single equation. We can write this equation in the form s =
1. We can move over to propositional calculus notation and
put s into conjunctive normal form; i.e., a conjunction of
disjunctions of variables and negated variables. Each of the
conjuncts corresponds to a basic inclusion. There are the
exceptional cases involving empty conjunctions or empty
disjunctions, which are handled with empty E, or using U = ∅.
QED

2. BABY BOOLEAN RELATION THEORY.

In “baby” BRT, or unary BRT, we start with a pair V,K, where
V is a set of multivariate functions and K is a set of sets.
To avoid ambiguities, a multivariate function is a pair
(f,k), k ≥ 1, where f is a function whose domain is of the
form Ek.

All brands of BRT are based on forward imaging. Let f be a
multivariate function and A be a set. Define

fA = {f(x1,...,xk): x1,...,xk Œ A}

where the arity of f is k.

In equational unary BRT, we seek to analyze all statements of
the form

“for all f Œ V there exists A Œ K such that a given Boolean
equation holds of A,fA”.

Here a Boolean equation is an equation between Boolean terms
in the two letters A,fA. Thus fA is treated in BRT as a
Boolean variable.
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But what is the relevant field of sets used to interpret
these Boolean equations?

We take the field of sets to be the power set of U, where U
is the union of the ranges of f and the elements of K.

In typical situations, we have U = »K.

In inequational unary BRT, we seek to analyze all statements
of the form

“for all f Œ V there exists A Œ K such that a given Boolean
inequation holds of A,fA”.

Here a Boolean inequation is just the denial of a Boolean
equation.

THEOREM 2.1. There are exactly 16 Boolean equations in unary
BRT.

Proof: Immediate from Theorem 1.5. QED

3. UNARY INEQUATIONAL BRT ON (MF(Z),INF(Z)).

MF(Z) is the set of all multivariate functions from Z into Z.
INF(Z) is the set of all infinite subsets of Z.

Note that TST from the Introduction is an instance of unary
inequational BRT on (MF(Z),INF(Z)).

We now analyze all 16 instances.

The first step is to analyze all of the basic inclusions.

Then one considers all sets of basic inclusions. This
exponentiates, but in the inequational theory, if a set of
basic equations is accepted, then all supersets are accepted.

Of course, in equational BRT, if a set of basic equations is
accepted, then all subsets are accepted.

In practice, this makes many classifications manageable.

However, in the unary situation we are working in, there are
only 16 things to look at anyways, so we could do things by
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brute force without even using basic inclusions. But this
would be uninformative, and certainly will not be manageable
when going to more functions and sets.

Here is the permanent set of basic inclusions. There is never
a need to consider the degenerate inclusion U = ∅.

In our context, the universal set U is simply Z.

A = Z
A = ∅
fA = Z
fA = ∅
A Õ fA
fA Õ A
A « fA = ∅
A » fA = Z

We now mark these yes or no, according to the truth value of
"f$Aÿj(A,fA), where j is in the above list of basic
inclusions.

A = Z  yes. TST.
A = ∅  yes.
fA = Z  yes.
fA = ∅  yes.
A Õ fA  no.  f(x) = x.
fA Õ A  no  f(x) = x.
A « fA = ∅.  yes
A » fA = Z  yes. Slight sharpening of TST.

As remarked earlier, we need not consider any set of these
that includes at least one that is marked yes, because such a
set will automatically be marked yes. I.e., we need only
consider nonempty sets of these that are marked no.

So we need only consider subsets of

A Õ fA
fA Õ A

The two together are no because of f(x) = x.

Obviously if a set is rejected, then so is any subset. So we
are done.
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4. UNARY EQUATIONAL BRT ON (MF(Z),INF(Z)).

Again the basic inclusions. Here we are analyzing
"f$Aj(A,fA).

A = Z  yes.
A = ∅  no.
fA = Z  no.
fA = ∅  no.
A Õ fA  no. f(x) = x2 + 1.
fA Õ A  yes.
A « fA = ∅  no.
A » fA = Z  yes.

Any set containing an element that is rejected is rejected.
So we only have to consider subsets of those that have been
accepted. I.e., subsets of

A = Z
fA Õ A
A » fA = Z

Any subset is yes because all three at once are yes.

5. UNARY EQUATIONAL BRT ON (MF(Z),BINF(Z)).

BINF(Z) is the set of all bi-infinite subsets of Z. These are
the subsets of Z with infinitely many positive and infinitely
many negative elements.

Bi-infinite subsets of Z are not only natural but turn out to
be important for BRT. Let’s see how BINF affects the theory.

Again, our basic inclusions. We are analyzing "f$Aj(A,fA).

A = Z  yes.
A = ∅  no.
fA = Z  no.
fA = ∅  no.
A Õ fA  no.  f(x) = x2 + 1.
fA Õ A  yes.
A « fA = ∅  no.
A » fA = Z  yes.

No change from section 4.
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6. UNARY INEQUATIONAL BRT ON (MF(Z),BINF(Z)).

What about the inequational theory?

A = Z  yes.
A = ∅  yes.
fA = Z  yes.
fA = ∅  yes.
A Õ fA  no. f(x) = x.
fA Õ A  no. f(x) = x.
A « fA = ∅. yes.
A » fA = Z. yes. slight sharpening of TST.

Again no change from section 4, because we can get a bi-
infinite set in TST and its sharpening.

7. UNARY EQUATIONAL BRT ON (SD(Z),INF(Z)).

A multivariate f from Z into Z is strictly dominating iff we
have |f(x)| > |x|, where | | is the sup norm. SD(Z) is the
set of all strictly dominating multivariate functions from Z
into Z.

A = Z  yes.
A = ∅  no.
fA = Z  no.
fA = ∅  no.
A Õ fA  no.  f(x) = x2 + 1.
fA Õ A  yes.
A « fA = ∅  yes.
A » fA = Z  yes.
 
Here we have a change from sections 4,5 at fA Õ A.

A = Z
fA Õ A
A « fA = ∅
A » fA = Z

The first, second, and fourth of these are jointly accepted.
So we need only to consider the subsets of these four that
have A « fA = ∅. Reject with 1, and reject with 2. It remains
to look at {A « fA = ∅, A » fA = Z}.
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COMPLEMENTATION THEOREM. Let f be a strictly dominating
multivariate function from Z into Z. There exists infinite A
Õ Z such that fA = Z\A. There is a unique A Õ Z such that fA
= Z\A.

Proof: Let n ≥ 0 and suppose that for all |m| < n, it has
been determined whether m Œ A. Then put n in A if and only if
n does not lie in the forward image of f on the numbers
already thrown into A. Done. Uniqueness from the fact that we
had no leeway in the construction. QED

8. UNARY INEQUATIONAL BRT ON (SD(Z),INF(Z)).

A = Z  yes.
A = ∅  yes.
fA = Z  yes.
fA = ∅  yes.
A Õ fA  yes.
fA Õ A  yes.
A « fA = ∅. yes.
A » fA = Z. yes. slight sharpening of TST.

Different at A Õ fA and fA Õ A from section 3. Any set
containing an accepted one is automatically accepted, and so
we do not have to look further.

9. UNARY EQUATIONAL BRT ON (SD(Z),BINF(Z)).

A = Z  yes.
A = ∅  no.
fA = Z  no.
fA = ∅  no.
A Õ fA  no.  f(x) = x2 + 1.
fA Õ A  yes.
A « fA = ∅  yes.
A » fA = Z  yes.

No change from section 7 so far. We need only look at the
subsets of the accepted ones.

A = Z
fA Õ A
A « fA = ∅
A » fA = Z
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As in section 7, the first, second, and fourth of these are
jointly accepted. So we need only to consider the subsets of
these four that have A « fA = ∅. Reject with 1, and reject
with 2. It remains to look at {A « fA = ∅, A » fA = Z}.

THEOREM 9.1. In the Complementation Theorem, we cannot
sharpen "infinite" to "bi-infinite".

Proof: Counterexample in one dimension. Set f(x) = |x|+1. Let
fA = Z\A. Then A includes all negative integers. Hence A
excludes all integers ≥ 2. So A is not bi-infinite. QED

Exercise: Give a counterexample for f obeying |f(x)| > |x|2.
How many dimensions do you need? What about functions
polynomially bounded, not polynomially bounded, etcetera?

10. UNARY INEQUATIONAL BRT ON (SD(Z),BINF(Z)).

A = Z  yes.
A = ∅  yes.
fA = Z  yes.
fA = ∅  yes.
A Õ fA  yes.
fA Õ A  yes.
A « fA = ∅. yes.
A » fA = Z. yes. slight sharpening of TST.

Same as section 8.
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