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Chapter 1 Introduction to BRT
1.1. General Formulation

We begin with two Theorems at the heart of BRT = Boolean 
Relation Theory. 

THIN SET THEOREM. Let k ≥ 1 and f:Nk ➞ N. There exists 
an infinite set A ⊆ N such that f[Ak] ≠ N.

COMPLEMENTATION THEOREM. Let k ≥ 1 and f:Nk ➞ N. Suppose 
that for all x ∈ Nk, f(x) > max(x). There exists an 
infinite set A ⊆ N such that f[Ak] = N\A. 

Proof of TST: Let f:Nk ➞ N. Color every x ∈ Nk with f(x) 
if f(x) ∈ [0,ot(k)]; ot(k)+1 otherwise. By Ramsey’s 
theorem, let A ⊆ N be infinite, where the color of x ∈ Ak 
depends only on the order type of x. Then the possible 
colors of x ∈ Ak form a subset of [0,ot(k)] of 
cardinality ≤ ot(k), together with, possibly ot(k)+1. 
Hence f[Ak] does not even include [0,ot(k)]. QED



TST IMPLIES INFINITE RAMSEY THEOREM?

This is still wide open. We showed that TST is not 
provable in ACA0. 

SHARP THIN SET THEOREM. Let k ≥ 1 and f:Nk ➞ N. There 
exists an infinite set A ⊆ N such that f[Ak] does not 
include [0,ot(k)].

THEOREM. Sharp TST implies infinite Ramsey theorem.

Proof: Assume TST. Let a 2-coloring of strictly 
increasing x ∈ Nk be given, with colors 0,1. Color x ∈ Nk 
by the order type of x if x is not strictly increasing 
(as an integer in [2,ot(k)]); the color of x otherwise. 
QED 

We proved that TST in dimension 2 is not provable in WKL0. 
It is open whether TST in dimension 3 implies ACA0.

An old result of ours is that infinite Ramsey theorem is 
equivalent to ACA’ over RCA0. 

ACA’ = ACA0 + (∀n,x)(the n-th Turing jump of x exists).



COMPLEMENTATION THEOREMS

COMPLEMENTATION THEOREM. Let k ≥ 1 and f:Nk ➞ N. Suppose 
that for all x ∈ Nk, f(x) > max(x). There exists an 
infinite set A ⊆ N such that f[Ak] = N\A.

In fact, A is unique. Build A by recursion. Suppose we 
have decided membership in A for all 0 ≤ i < n. Put n in 
A if and only if n ∉ f[A] up to now. These decisions are 
stable because f is strictly dominating.

Every for simple f, the unique A may be complicated. 

For a study of this, it is better to use the upper 
image. Let f:Nk ➞ Z. Write fA for f[Ak], and f<A for 
{f(x) > max(x): x ∈ Ak}. 

COMPLEMENTATION THEOREM’. Let k ≥ 1 and f:Nk ➞ Z. There 
exists an infinite set A ⊆ N such that f<A = N\A. A is 
unique.

What is the structure of A if f is integral affine? 
Integral polynomial? 



BACK TO BOOLEAN RELATION THEORY

We now use suggestive notation to restate the Thin Set 
Theorem and the Complementation Theorem. 

Let MF = {f: dom(f) is some Nk and rng(f) ⊆ N}. 
Let SD = {f ∈ MF: (∀x)(f(x) > max(x))}.
Let INF = {A ⊆ N: A is infinite}.

THIN SET THEOREM. (∀f ∈ MF)(∃A ∈ INF)(fA ≠ N). 

COMPLEMENTATION THEOREM. (∀f ∈ SD)(∃A ∈ INF)(fA = N\A). 

Here fA is the forward imaging used throughout BRT: fA = 
{f(x): x ∈ Ak}. 

Formally, a multivariate function is a pair (k,f), k ≥ 
1, where dom(f) consists of k-tuples. fA is defined 
using k. 

Usually the k is clear from the f. But no matter what f 
is, we can write (1,f), since everything is considered a 
1-tuple. 



BRT SETTINGS 

A BRT setting is a pair (V,K), where V is a set of 
multivariate functions, and K is a set of sets. 

For the purposes of Boolean algebra, we extract the 
“universal set” U from (V,K). It is the least set U 
such that 

i) for all A ∈ K, A ⊆ U;
ii) for all f ∈ V, fU ⊆ U.

Note that U may or may not lie in K. Recall:

THIN SET THEOREM. (∀f ∈ MF)(∃A ∈ INF)(fA ≠ N). 

COMPLEMENTATION THEOREM. (∀f ∈ SD)(∃A ∈ INF)(fA = N\A).

Thin Set Theorem: IBRT in A,fA on (MF,INF).
Complementation Theorem: EBRT in A,fA on (SD,INF). 

(∀f ∈ V)(∃A ∈ K)(Boolean inequation in A,fA). 
(∀f ∈ V)(∃A ∈ K)(Boolean equation in A,fA). 

This is BRT with one function and one set. 



BRT SETTINGS CONSIDERED

The book works with five main BRT settings. 

(MF,INF) and (SD,INF) have already been defined. 

EVSD = {f ∈ MF: f is eventually strictly dominating}.

ELG = {f ∈ MF: f is of expansive linear growth}. 

ELG ∩ SD
SD ELG
EVSD
MF 

f:Nk ➞ N is in ELG iff there exists c,d > 1 such that 

cmax(x) ≤ f(x) ≤ dmax(x)

for all but finitely many x ∈ Nk.



BRT FRAGMENTS ANALYZED 
ONE FUNCTION AND ONE SET

EBRT in A,fA on (MF,INF), (SD,INF), (ELG,INF), 
(EVSD,INF), (ELG ∩ SD,INF).

IBRT in A,fA on (MF,INF), (SD,INF), (ELG,INF), 
(EVSD,INF), (ELG ∩ SD,INF).

Then more intense:

EBRT in A,fA,fU on (MF,INF), (SD,INF), (ELG,INF), 
(EVSD,INF), (ELG ∩ SD,INF).

IBRT in A,fA,fU on (MF,INF), (SD,INF), (ELG,INF), 
(EVSD,INF), (ELG ∩ SD,INF).

A,fA gives rise to 16 cases on each setting.
A,fA,fU gives rise to 256 cases on each setting.

The EBRT classifications are conducted within RCA0. The 
IBRT classifications are conducted within ACA’, where 
the Thin Set Theorem can be proved. 



ONE FUNCTION AND ONE SET

From general Boolean algebra considerations: 
There are four “elementary inclusions”, and then we 
consider all subsets, for a total of 16. 

A ∩ fA = ∅

A ∪ fA = U
A ⊆ fA
fA ⊆ A

For A,fA,fU, we consider subsets of the pruned list 
A ∩ fA = ∅

A ∪ fA = U
A ⊆ fA
fA ⊆ A

fU ⊆ A ∪ fA
A ∩ fU ⊆ fA

For EBRT, we analyze (∀f ∈ V)(∃A ∈ K)(conjunction).
For IBRT, we analyze (∃f ∈ V)(∀A ∈ K)(conjunction). 

This is the convenient dual of (∀f ∈ V)(∃A ∈ K)
(¬conjunction).



ONE FUNCTION AND ONE SET

(∀f ∈ MF)(∃A ∈ INF)(A ∪ fA ≠ N). This is just a trivial 
variant of the Thin Set Theorem. 

The following lemmas arise in the classification:

THEOREM 2.3.1. Let f ∈ SD and B ∈ INF. There exists A 
∈ INF, A ⊆ B, such that A ∩ fA = ∅ and B ⊆ A ∪ fA. 
Moreover, this is provable in RCA0.

THEOREM 2.3.2. For all f ∈ EVSD there exists A ∈ INF 
such that A ∩ fA = ∅, A ∪ fN = N. Moreover, this is 
provable in RCA0.

THEOREM 2.3.3. Let k ≥ 2. There exists k-ary f ∈ ELG ∩  
SD such that N\fN = {0}. There exists k-ary f ∈ ELG 
such that fN = N. 

THEOREM 2.3.7. Let f ∈ ELG[1]. Then N\fN is infinite.

LEMMA 2.3.8. No element of EVSD[1] is surjective.

Here [1] means 1-ary.



EBRT IN A,B,fA,fB,⊆ ON (SD,INF)
We analyze (∀f ∈ V)(∃A ∈ K)(A ⊆ B and conjunction).
Full classification is given, within RCA0. 

A serious challenge: do this without A ⊆ B. 

There are nine elementary inclusions.

A ∩ fA = ∅.
B ∪ fB = N.
B ⊆ A ∪ fB.
fB ⊆ B ∪ fA.

A ⊆ fB.
B ∩ fB ⊆ A ∪ fA.

fA ⊆ B.
A ∩ fB ⊆ fA.
B ∩ fA ⊆ A. 

All subsets of these nine: 29 = 512. 

We use a treelike methodology in the book. 



EBRT IN A,B,fA,fB,⊆ ON (SD,INF)
Here is what comes up:

LEMMA 2.4.1. Let f ∈ SD. There exist infinite A ⊆ B ⊆ 
N such that B ∪. fA = N and A = B ∩ fB. 

LEMMA 2.4.2. Let f ∈ SD. There exist infinite A ⊆ B ⊆ 
N such that A ∪. fB = N, fA ⊆ B, and B ∩ fB ⊆ fA.

LEMMA 2.4.3. Let f ∈ SD and X ⊆ N. There exists a 
unique A such that A ⊆ X ⊆ A ∪. fA. 

LEMMA 2.4.4. The following is false. For all f ∈ ELG ∩  
SD there exist infinite A ⊆ B ⊆ N such that A ∩ fB = ∅ 
and fB ⊆ B.

LEMMA 2.4.5. Let f ∈ SD. There is no nonempty A ⊆ N 
such that A ⊆ fA. 

THEOREM 2.4.6. EBRT in A,B,fA,fB, on (SD,INF) is RCA0 
secure.

Here (SD,INF) and (ELG ∩ SD,INF) behave the same here. 



EBRT IN A,B,fA,fB,⊆ ON (ELG,INF)
Same nine elementary inclusions. But classification 
takes on a different, asymptotic, character. Identical 
to (EVSD,INF). This only seen by carrying out 
classification. Without ⊆, are they the same (test 
problem)?

Here is what comes up:

LEMMA 2.5.3. Let f:[0,n]k ➞ [0,n] be partial, n ≥ 0. 
There exist A ⊆ B ⊆ [0,n] such that A = [0,n]\fB and B 
= [0,n]\fA. 

LEMMA 2.5.4. For all f ∈ EVSD there exist infinite A ⊆ 
B ⊆ N such that B ∪. fA = A ∪ fB = N.

LEMMA 2.5.5. For all f ∈ EVSD there exist infinite A ⊆ 
B ⊆ N such that A ∪. fB = N and B ∩ fA = ∅. 

LEMMA 2.5.6. There exists f ∈ ELG such that f-1(0) = 
{(0,...,0)}, f(N\{0}) ⊆ 2N+1, and for all A ⊆ N 
containing 0, fA ∩ 2N ⊆ A ➞ fA is cofinite.



EBRT IN A,B,fA,fB,⊆ ON (ELG,INF)
More comes up:

LEMMA 2.5.7. The following is false. For all f ∈ ELG 
there exist infinite A ⊆ B ⊆ N such that A ∩ fB = ∅, 
B ∪ fB = N, and fB ⊆ B ∪ fA. 

LEMMA 2.5.8. The following is false. For all f ∈ ELG 
there exist infinite A ⊆ B ⊆ N such that B ∪. fA = N 
and A ∩ fB = ∅.

LEMMA 2.5.9. For all f ∈ EVSD there exist infinite A ⊆ 
B ⊆ N such that B ∪. fA = N and A ⊆ fB. 

LEMMA 2.5.10. The following is false. For all f ∈ ELG 
there exist infinite A ⊆ B ⊆ N such that A ∩ fA = ∅, 
B ∪ fB = N, B ∩ fB ⊆ A ∪ fA.

LEMMA 2.5.11. For all f ∈ EVSD there exist infinite A 
⊆ B ⊆ N such that A ∪. fB = N and fA ⊆ B. 

LEMMA 2.5.12. Let f ∈ EVSD. There exist infinite A ⊆ B   
⊆ N such that fB ⊆ B ∪. fA and A = B ∩ fB. 



EBRT IN A,B,fA,fB,⊆ ON (ELG,INF)

And yet more comes up:

LEMMA 2.5.13. Let f ∈ EVSD. There exist infinite A ⊆ N 
such that A ∩ f(A ∪ fA) = ∅.  

LEMMA 2.5.14. Let f ∈ EVSD and let X ⊆ N, where min(X) 
is sufficiently large. There exists a unique A such 
that A ⊆ X ⊆ A ∪. fA. If X is infinite then A is 
infinite. 

THEOREM 2.5.15. EBRT in A,B,fA,fB,⊆ on (ELG,INF), 
(EVSD,INF) have the same correct formats. EBRT in 
A,B,fA,fB, on (ELG,INF) and (EVSD,INF) are RCA0 
secure.



EBRT IN A1,...,Ak,fA1,...,fAk,⊆ 
on (MF,INF)

Classifications in EBRT on (MF,INF) are substantially 
easier than on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), 
and (EVSD,INF), at least under ⊆. 

We have been able to completely analyze one function 
and k sets under ⊆ on (MF,INF). 

Again, the classification is conducted in RCA0, and we 
see that again every instance of this BRT fragment is 
provable or refutable in RCA0.

We begin with a listing of the elementary fifteen 
convenient types of inclusions based on simple 
inequalities on the subscripts. Five of these are 
easily eliminated, leaving a sublist of ten. The 
conjunction of all of these is accepted.

Without ⊆, we have an incomparably more difficult 
challenge, which we have not examined.  



IBRT IN A1,...,Ak,fA1,...,fAk,⊆ 
on (MF,INF)

Here we give a complete classification of IBRT in 
A1,...,Ak,fA1,...,fAk, on (SD,INF), (ELG ∩ SD,INF), 
(ELG,INF), (EVSD,INF), (MF,INF). We work entirely 
within RCA0, except for the BRT setting (MF,INF), 
where we work within ACA'. (MF,INF) presents 
difficulties; the rest are trivial.  

Start with the A1,...,Ak,fA1,...,fAk, elementary 
inclusions, grouped as before based on simple 
inequalities of subscripts.

For each of these elementary inclusions, ρ, we will 
provide a useful description of the witness set for ρ, 
in this sense: The set of all f ∈ MF such that 

(∀A1,...,Ak ∈ INF)(A1 ⊆ ... ⊆ Ak ➞ ρ).

We then calculate the witness sets for the sets of 
elementary inclusions by taking intersections.

The corresponding IBRT statement is true if and only 
if the witness set is empty. This is given a decision 
procedure by inspection.  
 This is a much greater challenge without ⊆.  



MORE BRT SETTINGS
We conjecture that the behavior of BRT fragments in BRT 
settings depends very delicately on the choice of BRT 
setting. Thus the expectation that BRT is a 
mathematically fruitful problem generator of 
unprecedented magnitude and scope. 

Even within MF, we can place a large variety of growth 
conditions. 

Another line is Topological BRT, where we use 
multivariate continuous functions on various topological 
spaces, with the family of open subsets. 

We can use, e.g., the set of all bounded linear 
operators on L2, with the set of all nontrivial closed 
subspaces of L2. The invariant subspace problem becomes 

(∀f ∈ V)(∃A ∈ K)(fA = A).

In section 1.2, an estimated 1,000,000 significantly 
different BRT settings are discussed. 

The book barely scratches the surface of only 5 BRT 
settings within (MF,INF).



THIN SET THEOREMS
The Thin Set Theorem in (V,K) asserts 

(∀f ∈ V)(∃A ∈ K)(fA ≠ U)
 where U is the universal set for (V,K). 
FCN(ℜ,ℜ). All functions from ℜ to ℜ.
BFCN(ℜ,ℜ).  All Borel functions from ℜ to ℜ.
CFCN(ℜ,ℜ). All continuous functions from ℜ to ℜ.
C1FCN(ℜ,ℜ). All C1 functions from ℜ to ℜ.
C∞FCN(ℜ,ℜ). All C∞ functions from ℜ to ℜ.
RAFCN(ℜ,ℜ). All real analytic functions from ℜ to ℜ.
SAFCN(ℜ,ℜ). All semialgebraic functions from ℜ to ℜ.
CSAFCN(ℜ,ℜ). All continuous semialgebraic functions 
from ℜ to ℜ. 

cSUB(ℜ). All subsets of ℜ of cardinality c.
UNCLSUB(ℜ). All uncountable closed subsets of ℜ.
NOPSUB(ℜ). All nonempty open subsets of ℜ. 
UNOPSUB(ℜ). All unbounded open subsets of ℜ.
DEOPSUB(ℜ). All open dense subsets of ℜ.
FMOPESUB(ℜ). All open subsets of ℜ of full measure.
CCOPSUB(ℜ). All open subsets of ℜ whose complement is 
countable.
FCSUB(ℜ). All subsets of ℜ whose complement is finite.
≤1CSUB(ℜ). All subsets of ℜ whose complement has at 
most one element.
 We determine status of TST in all 72 BRT settings.



MORE THIN SET THEOREMS

We also consider the corresponding 8 families of 
multivariate functions from ℜ to ℜ. We use the same 9 
families of subsets of ℜ.

FCN(ℜ*,ℜ). All multivariate functions from ℜ to ℜ.
BFCN(ℜ*,ℜ).  All multivariate Borel functions from ℜ 
to ℜ.
CFCN(ℜ*,ℜ). All multivariate continuous functions from 
ℜ to ℜ.
C1FCN(ℜ*,ℜ). All multivariate C1 functions from ℜ to ℜ.
C∞FCN(ℜ*,ℜ). All multivariate C∞ functions from ℜ to ℜ.
RAFCN(ℜ*,ℜ). All multivariate real analytic functions 
from ℜ to ℜ.
SAFCN(ℜ*,ℜ). All multivariate semialgebraic functions 
from ℜ to ℜ.
CSAFCN(ℜ*,ℜ). All multivariate continuous 
semialgebraic functions from ℜ to ℜ. 

We again determine the status of TST in all 72 BRT 
settings. 



CONJECTURES

Consider EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF).
I.e., Equational BRT in two functions and three sets on 
(ELG,INF). 

The number of elementary inclusions is 29 = 512, and the 
number of BRT statements is 2512. 

CONJECTURE. Every instance of EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) is provable or 
refutable from standard large cardinals. 

QUESTION. Is EBRT in infinitely many functions and 
infinitely many sets on (ELG,INF) algorithmically 
solvable? 

THEOREM. There is an instance of EBRT in 
A,B,C,fA,fB,gB,gC,⊆ that is provably equivalent to the 
1-consistency of SMAH over ACA’.

Even a complete analysis of EBRT in A,B,C,fA,fB,gB,gC,⊆ 
seems out of reach at this time. 

SMAH = ZFC + {there exists a strongly k-Mahlo 
cardinal}k. ACA’ = ACA0 + (n,x)(x(n) exists).



6561 CASES OF EQUATIONAL BOOLEAN 
RELATION THEORY

We have made a complete analysis of a natural fragment 
of EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF), rich 
enough to include an Exotic Case. 

We write A ∪. B for A ∪ B if A,B are disjoint; undefined 
otherwise. (Disjoint union). 

TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that 

X ∪. fY ⊆ V ∪. gW
 P ∪. fR ⊆ S ∪. gT.

Here X,Y,V,W,P,R,S,T are among the three letters A,B,C. 
There are obviously 38 = 6561 instances. 

There is symmetry: permute the three letters, and 
permute the two clauses. 

Thus most of the equivalence classes have cardinality 
12. 



6561 CASES OF EQUATIONAL BOOLEAN 
RELATION THEORY

TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that 

X ∪. fY ⊆ V ∪. gW
 P ∪. fR ⊆ S ∪. gT.

With exactly 12 exceptions, all of the 6561 instances 
are provable or refutable in RCA0. A myriad of ad hoc 
combinatorial arguments are used to establish this. 

The 12 exceptions are called the Exotic Cases. Here is 
the Principal Exotic Case - the other 11 obtained by 
symmetry. 

PRINCIPAL EXOTIC CASE. For all f,g ∈ ELG there exist 
A,B,C ∈ INF such that 

A ∪. fA ⊆ C ∪. gB
 A ∪. fB ⊆ C ∪. gC.

THEOREM. The Exotic Cases are each provably equivalent 
to 1-Con(SMAH) over ACA’. 



THE BRT TRANSFER THEOREM

BRT TRANSFER. Let X,Y,V,W,P,R,S,T be among the letters 
A,B,C. The following are equivalent.
i. for all f,g ∈ ELG and n ≥ 1, there exist finite 
A,B,C ⊆ N, each with at least n elements, such that X 
∪. fY ⊆ V ∪. gW, P ∪. fR ⊆ S ∪. gT. 
ii. for all f,g ∈ ELG, there exist infinite A,B,C ⊆ N, 
such that X ∪. fY ⊆ V ∪. gW, P ∪. fR ⊆ S ∪. gT.

I.e., arbitrarily large finite ⇔ infinite. 
THEOREM. BRT Transfer is provably equivalent to 1-
Con(SMAH) over ACA’. 

This is shown as follows. The entire classification of 
the Template with INF, other than the 12 Exotic Cases, 
is checked to verify that it remains unchanged if INF 
is replaced by “arbitrarily large finite”. 

The 12 Exotic Cases are proved in RCA0 with INF 
replaced by “arbitrarily large finite”.

This reduces BRT Transfer to merely the truth of the 
12 Exotic Cases. I.e., to 1-Con(SMAH) over ACA’. 



PROOF OF PRINCIPAL EXOTIC CASE

 We actually prove the PEC in a sharper form:

PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist 
infinite sets A1 ⊆ ... ⊆ An ⊆ N such that 
i. for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1;
ii. A1 ∩ fAn = ∅.

Let f,g ∈ ELG, n ≥ 1. Let κ be strongly Mahlo of 
sufficiently high finite order.

Form M = (N,<,0,1,+,f,g). First extend M to a 
countable structure 

M* = (N*,<,0*,1*,+*,f*,g*,c0*,...)

generated by the atomic indiscernibles ci*, i ∈ N. 
This uses the infinite Ramsey theorem, infinitely 
iterated. 

We now extend M* transfinitely to M**. 



PROOF OF PRINCIPAL EXOTIC CASE
M = (N,<,0,1,+,f,g).
M* = (N*,<,0*,1*,+*,f*,g*,c0*,...)
 Extend M* to 

M** = (N**,<**,0**,1**,+**,f**,g**,c0**,...,c**,...)

where the c**'s are indexed by the large cardinal κ. 
We verify that any partial substructure of M** 
boundedly generated by 0**, 1**, and a set of c**'s of 
order type ω, is embeddable back into M* and M. 

We verify that 2x < y is a well founded relation in 
M**, using that N** is generated by the c’s.
 We then apply the Complementation Theorem for well 
founded relations to obtain a unique set W of 
nonstandard elements of M** such that for all 
nonstandard x in M**, 

x ∈ W ⇔ x ∉ g**W.

There is a natural Skolem hull construction consist-
ing entirely of elements of W. Start with the set of 
all c**’s. Witnesses are thrown in from W that verify 
that values of f** at elements thrown in at previous 
stages do not lie in W (if true). Only the first n 
stages of the construction will be used.



PROOF OF PRINCIPAL EXOTIC CASE

M = (N,<,0,1,+,f,g).
M* = (N*,<,0*,1*,+*,f*,g*,c0*,...)
M** = (N**,<**,0**,1**,+**,f**,g**,c0**,...,c**,...)
For all nonstandard x in M**, x ∈ W ⇔ x ∉ g**W.

Skolem hull construction for n steps. Start with the 
set of all c**’s. Witnesses are thrown in from W that 
verify that values of f** at elements thrown in at 
previous stages do not lie in W (if true). 

Let S be an appropriate set of indiscernibles of order 
type ω, using combinatorial properties of k. Redo the 
Skolem hull construction starting only with the c**’s 
whose indices lie in S. 

By the indiscernibility, the n stage construction 
yields a subset of N** where the subscripts of all 
c**’s involved form a set of order type ω. Also, the 
c**’s in the first stage are not values of f** (or 
g**). 

Transfer this length n tower back to M* and back to M. 
The result is the tower that verifies the PEC (in the 
sharper form of Proposition B). 



REVERSAL OF PRINCIPAL EXOTIC CASE

We reverse PEC in more concrete form involving some 
simple functions. BAF (basic functions) are given by 
terms in 0,1,+,-,⋄,↑,log. These are functions from N 
(or N2) into N. 

1. 0,1,+,⋄ are as usual.
2. x-y is usual if x ≥ y; 0 otherwise.
3. ↑ is base 2 exponentiation.
4. log(x) is the floor of the usual base 2 logarithm, 
with log(0) = 0. 
 BAF is closed under definition by cases using <. 

PROPOSITION C. For all f,g ∈ ELG ∩ SD ∩ BAF, there 
exist A,B,C ∈ INF such that 

A ∪. fA ⊆ C ∪. gB
 A ∪. fB ⊆ C ∪. gC.

We construct, using C, a model of SMAH. The 
construction takes place in ACA’.
 PEC, and hence Proposition C, is true in the 
arithmetic sets. This is by examining the proof.

QUESTION: Is Proposition C (or even A) true in the 
recursive sets?



PROPOSITION C AND LENGTH 3 TOWERS

We start with 

PROPOSITION C. For all f,g ∈ ELG ∩ SD ∩ BAF, there 
exist A,B,C ∈ INF such that 

A ∪. fA ⊆ C ∪. gB
 A ∪. fB ⊆ C ∪. gC.

Note that Proposition C does not tell us that A ⊆ B ⊆ 
C. This is a very important condition to have, as we 
want to extend length 3 chains to chains of arbitrary 
finite length, and then apply compactness to get a 
single structure. 

So in section 5.1, we obtain a technical, weak form of 
Proposition C with A ⊆ B ⊆ C. This appears as Lemma 
5.1.7.



FROM LENGTH 3 TOWERS TO LENGTH n 
TOWERS 

In section 5.2, we obtain a variant of Lemma 5.1.7 
involving length n towers rather than length 3 towers. 

However, we have to pay a serious cost. As opposed to 
Lemma 5.1.7, we will only have that the sets in the 
length n towers have at least r elements, for any 
given r ≥ 1. 

So it is important to make sure that the first sets in 
these towers be a suitable set of indiscernibles 
before we relinquish that the first sets be infinite. 

In order to accomplish this, we first apply the 
infinite Ramsey theorem to shrink the infinite first 
sets coming from Lemma 5.1.7 to infinite subsets are 
sets of indiscernibles of the right kind. 

The indiscernibility has the flavor: given two r 
tuples of the same order type and the same min, they 
have the same atomic properties if we use the same 
parameters ≤ the common min.



COUNTABLE NONSTANDARD MODELS WITH 
LIMITED INDISCERNIBLES

Our basic standard structure is (N,<,0,1,+,-,⋄,↑,log) 
that provides the operations that generate BAF.

In section 5.3, we use Lemma 5.2.12 to create, for 
each r ≥ 3, a structure (N,<,0,1,+,-,⋄,↑,log,E1,...,Er) 
with a related set of properties. This is Lemma 5.3.2, 
which frees us from any further consideration of BAF. 
Here E1 ⊆ ... ⊆ Er.

The next major step is to consolidate all of the 
structures given by Lemma 5.3.2 relative to each r ≥ 
3, to a single countable nonstandard structure based 
on a single tower E1 ⊆ E2 ⊆ ... of infinite sets of 
infinite length. 

This consolidation is accomplished first by using the 
compactness theorem. Then by taking only the first ω 
elements of E1, and restricting to the associated cut. 

After some development of the structure, we take E to 
be the union of the E’s, and take c1,c2,... to be the 
enumeration of the old E1. 



LIMITED FORMULAS, LIMITED 
INDISCERNIBLES, x-DEFINABILITY, 

NORMAL FORM - SNAPSHOT
LEMMA 5.4.17. There exists a countable structure M = 
(A,<,0,1,+,-,•,,log,E,c1,c2,...), and terms t1,t2,... 
of L, where for all i, ti has variables among v1,...,vi
+8, such that the following holds.
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π01,L);
ii) E ⊆ A\{0};
iii) The cn, n ≥ 1, form a strictly increasing 
sequence of nonstandard elements in E\α(E;2,<∞) with 
no upper bound in A;
iv) Let r,n ≥ 1 and t(v1,...,vr) be a term of L, and 
x1,...,xr ≤ cn. Then t(x1,...,xr) < cn+1;
v) 2α(E;1,<∞)+1, 3(E;1,<∞)+1 ⊆ E;
vi) Let k,n ≥ 1 and R be a cn-definable k-ary 
relation. There exists y1,...,y8 ∈ E ∩ [0,cn+1] such 
that R = {(x1,...,xk) ∈ Ek ∩ [0,cn]k: 
tk(x1,...,xk,y1,...,y8) ∈ E};
vii) Let r ≥ 1 and φ(v1,...,v2r) be a formula of L(E). 
Let 1 ≤ i1,...,i2r < n, where (i1,...,ir) and (ir
+1,...,i2r) have the same order type and the same min. 
Let y1,...,yr ∈ E, y1,...,yr ≤ min(ci_1,...,ci_r). Then 
φ(ci_1,...,ci_r,y1,...,yr)c_n ⇔
φ(ci_r+1,...,ci_2r,y1,...,yr)c_n.



COMPREHENSION, INDISCERNIBLES

In section 5.5, we upgrade the bounded quantifier 
comprehension and indiscernibility to unbounded 
quantifier comprehension and indiscernibility. It is the 
indiscernibility itself that allows us to make this 
transition. 

The comprehension produces bounded relations on E only.

A very robust and useful notion of internal relation 
emerges. These are the bounded relations on E that are 
definable with parameters from E and quantifiers 
ranging over E. 

We pass to a second order structure where the internal 
relations are used to interpret the second order 
quantifiers. 

We retain comprehension and indiscernibility in the 
appropriate forms. 
 



Π01 CORRECT INTERNAL ARITHMETIC, 
SIMPLIFICATION

In section 5.6, we derive a suitable form of the axiom 
of infinity. The axiom of infinity takes the form of 
the existence of an internal set containing 1, and 
closed under +2c1. 

We then define I to be the intersection of all 
internal sets containing 1, and closed under +2c1. The 
set I will serve as the internal natural numbers. 

It is important to link the arithmetic operations that 
are uniquely defined, internally, on I, with the 
arithmetic operations given by our complicated second 
order structure M*. This is required in order to be 
able to use the fact that M* satisfies the true Π01 
sentences. It allows us to conclude that the internal 
arithmetic on I satisfies the true Π01 sentences. 

We then pass to a convenient linearly ordered set 
theory K(Π). Thus section 5.6 closes with the 
following:



LINEARLY ORDERED SET THEORY
LEMMA 5.6.20. There exists a countable structure M# = 
(D,<,,NAT,0,1,+,-,•,↑,log,d1,d2,...) such that 
i) < is a linear ordering (irreflexive, transitive, 
connected);
ii) x ∈ y ➞ x < y;
iii) The dn, n ≥ 1, form a strictly increasing 
sequence of elements of D with no upper bound in D;
iv) Let φ be a formula of L# in which v1 is not free. 
Then (∃v1)(∀v2)(v2 ∈ v1 ⇔ (v2 ≤ v3 ∧ φ));
v) Let r ≥ 1 and φ(v1,...,v2r) be a formula of L#. Let 
1 ≤ i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have 
the same order type and min. Let y1,...,yr ≤ 
min(di_1,...,di_r). Then φ(di_1,...,di_r,y1,...,yr) ⇔ 
φ(di_r+1,...,di_2r,y1,...,yr);
vi) NAT defines a nonempty initial segment under <, 
with no greatest element, and no limit point, where 
all points are < d1, and whose first two elements are 
0,1, respectively;
vii) (∀x)(if x has an element obeying NAT then x has a 
< least element); 
viii) Let φ ∈ TR(Π01,L). The relativization of φ to 
NAT holds. 
ix) +,-,•,↑,log have the default value 0 in case one 
or more arguments lie outside NAT.



TRANSFINITE INDUCTION, COMPREHENSION, 
INDISCERNIBLES, INFINITY, Π01 

CORRECTNESS

In M#, the < may not be internally well ordered. 
Moreover, we may not have extensionality. 

In section 5.7, we create a structure like M# but with 
an internally well founded <. This is not a model of a 
set theory, but rather a second order structure. I.e., 
we will have a linearly ordered set of points, with a 
family of relations on the points, of each arity. 

We have bounded comprehension, indiscernibility, 
infinity, well orderedness. 

The idea is to use equivalence classes of well founded 
relations under isomorphism. 



ZFC + V = L, INDISCERNIBLES, AND Π01 
CORRECT ARITHMETIC

We have a second order structure M^. In section 5.8, 
we move back to a model of set theory. This time, the 
model will be of ZFC + V = L + the true Π01 sentences, 
with an unbounded infinite sequence of ordinals with 
indiscernibility. 

We need to build the constructible hierarchy in order 
to fully utilize our indiscernibility. In particular, 
the definable well ordering arising from L is needed 
in order to derive power set from indiscernibility. 

Because of the internal well foundedness, the points 
in M^ already behave like ordinals. In M^, we can 
perform various transfinite recursions, resulting in 
second objects in M^. Sometimes in order to accomplish 
this, we need to make use of the indiscernibles in M^. 



ZFC + V = L + (∃κ)(κ IS STRONGLY k-
MAHLO)k + TR(Π01,L), AND 1-CON(SMAH)

James Schmerl in his thesis with Jack Silver was the 
first to establish the connection between the kind of 
indiscernibility we are using and strongly Mahlo 
cardinals of finite order. If we do not require the 
indiscernibles to be infinite ordinals, then this is 
just the indiscernibility in Paris/Harrington. 

In fact, we need only consider finite sets of infinite 
indiscernibles. 

We have, in essence, indiscernibles for all suitable 
light faced partitions. This can be turned into the 
existence of the same kind of indiscernibles for any 
partition, by taking the constructibly least partition 
without such indiscernibles. 

Thus our model of ZFC + V = L has the large cardinals in 
it that we are looking for. 

QED


