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BABY BRT

•

BRT is always based on a choice of BRT setting. A BRT setting 
is a pair (V,K), where 

V is an interesting family of multivariate functions.
K is an interesting family of sets.

In this talk, we will only consider V,K, where 

V is an interesting family of multivariate functions from N 
into N.

K is an interesting family of subsets of N.

Here N is the set of all nonnegative integers.

BRT is always based on the following dimension suppressing 
forward imaging operator. 

Let f be a k-ary function. I.e., all elements of dom(f) are k-
tuples. Let A be a set. 

fA = f[Ak] = {f(x1,...,xk): x1,...,xk ∈ A}.



BABY BRT

There are two flavors of Baby BRT. 

Equational BRT.
Inequational BRT.

In Equational BRT, we focus on all statements of the following form:

FOR ALL f ∈ V, THERE EXISTS A ∈ K, SUCH THAT 
A GIVEN BOOLEAN EQUATION HOLDS BETWEEN A,fA.

In Inequational BRT, we focus on all statements of the following 
form:

FOR ALL f ∈ V, THERE EXISTS A ∈ K, SUCH THAT 
A GIVEN BOOLEAN INEQUATION HOLDS BETWEEN A,fA.

Here we use N as the Universal Set for Boolean algebra purposes.



BABY BRT

We now give the two seminal examples of Equational and Inequational 
Baby BRT.

For the example of Inequational Baby BRT, we use V = MF, K = INF, 
where 

MF is the family of all functions f whose domain is some Nk and whose 
range is a subset of N.

INF is the family of all infinite subsets of N.

THIN SET THEOREM. (∀f ∈ MF)(∃A ∈ INF)(fA ≠ N).

For the example of Equational Baby BRT, we use V = SD, K = INF, where

SD is the family of strictly dominating f ∈ MF, in the sense that for 
all x1,...,xk ∈ N, f(x1,...,xk) > max(x1,...,xk).

COMPLEMENTATION THEOREM. (∀f ∈ SD)(∃A ∈ K)(fA = N\A).



THIN SET THEOREM

THIN SET THEOREM. (∀f ∈ MF)(∃A ∈ INF)(fA ≠ N).

Proof: Let f:Nk → N. Let p be the number of order types of k-tuples 
from N. By the infinite Ramsey theorem, we can find infinite A such 
that f assumes at most one value in {0,...,p} when using arguments 
from a single order type. Hence f omits at least one value from 
{0,...,p}. QED

We know that TST is provable in ACA’ but not in ACA0. Also TST for k 
= 2 is not provable in WKL0. These results of ours are proved in 

Peter Cholak, Mariagnese Giusto, Jeffry Hirst, and Carl Jockusch, 
Free sets and reverse mathematics, in: Reverse Mathematics, ed. S. 
Simpson, Lecture Notes in Logic, Association for Symbolic Logic, 
1905. http://www.nd.edu/~cholak/papers/preincollection.html

H. Friedman and S. Simpson, Issues and problems in reverse 
mathematics, 127-144, in: Computability Theory and Its 
Applications, ed. Cholak, Lempp, Lerman, Shore, American 
Mathematical Society, 2000.

It is open whether TST is equivalent to ACA’ over RCA0, or whether 
TST for k = 3 is equivalent to ACA’. 

http://www.nd.edu/~cholak/papers/preincollection.html
http://www.nd.edu/~cholak/papers/preincollection.html


COMPLEMENTATION THEOREM

COMPLEMENTATION THEOREM.  (∀f ∈ SD)(∃A ∈ INF)(fA = N\A). In fact, (∀f 
∈ SD)(∃!A ⊆ N)(fA = N\A).

Many ways to write fundamental equation fA = N\A. E.g., 
fA = N\A.
A = N\fA.

A ∪. fA = N.

Proof: Beautiful way to teach clutter free recursion. Suppose 
membership in A has been determined for 0,...,n-1. Put n ∈ A if and 
only if n ∉ fA so far. Since f is strictly dominating, n ∉ fA so far 
is the same as n ∉ fA after we are finished. For uniqueness, let A,B 
obey the equation. Let n be least such that n ∈ A ⇔ n ∉ B. Then n ∈ 

fA ⇔ n ∈ fB, and so n ∈ A ⇔ n ∈ B. QED

Closely related to dominators and kernels in graph theory. 

THEOREM (von Neumann 1944). Every finite dag has a unique kernel and 
unique dominator. 

J. Von Neumann and O. Morgenstern, Theory of Games and Economic 
Behavior, Princeton University Press, Princeton, (1944).



BABY BRT CLASSIFICATIONS

Note that there are 22^2 = 16 Boolean inequivalent Boolean 
expressions in two variables. From this, we see that, in two 
variables, there are 16 Boolean inequivalent Boolean equations, and 
16 Boolean inequivalent Boolean inequations. 

Hence on each BRT setting (V,K), there are 16 statements in 
equational Baby BRT, and 16 statements in inequational Baby BRT. 
This is because we are dealing with Boolean equations/inequations in 
A,fA.

The book treats them all for V = MF, SD, and with K = INF. There are 
no surprises. One variant of the Thin Set Theorem arises in this 
way.

(∀f ∈ MF)(∃A ∈ INF)(fA ∪ A ≠ N).

This can be easily derived from TST in RCA0. 

  



EXTENDED BABY BRT CLASSIFICATIONS

In Extended Baby BRT, we use A,fA, but also fU, where U is the 
universal set. In the present BRT settings, U is just N. 

The number of Boolean equations/inequations, up to Boolean 
equivalence, is 22^3 = 256. 

It begins to be important to have a good way to write and to organize 
Boolean equations. Inequations are replaced by equations, by moving 
to the dual statements

(∃f ∈ V)(∀A ∈ K)(s = t).

The best way to write a Boolean equation in B1,...,Bn is as a finite 
set of inclusions of the form 

Bi1 ∩ ... ∩ Bip ⊆ Bj1 ∪ ... ∪ Biq

where i1,...,ip,j1,...,jq is a permutation of 1,...,n, and i1 < ... < 
ip, and j1 < ... < jq. The degenerate cases are written 

Bi1 ∩ ... ∩ Bip = ∅

Bj1 ∪ ... ∪ Bjq = U



EXTENDED BABY BRT CLASSIFICATIONS

In the case at hand, we are using the three Boolean atoms A,fA,fN. 
The number of such Boolean inclusions is 23 = 8. These inclusions can 
be simplified using the obvious fA ⊆ fN. This reduces the number from 
8 to 6. Thus only 26 = 64 statements need be considered. 

In addition, we can organize the subsets of these 6 inclusions 
according to increasing cardinality. 

Then if the statement in equational/inequational BRT is incorrect 
with a given set of inclusions, then we do not have to consider any 
superset of this set of inclusions. 

This analysis was carried out for V = MF, SD (and more), and for K = 
INF. Some additional complications:

(∀f ∈ SD)(∃A ∈ INF)(A ∩ fA = ∅ ∧ A ⊆ fN ∧ fN ⊆ A ∪ fA).  



BEYOND BABY BRT

We now consider equational/inequational BRT on settings (MF,INF), 
(SD,INF), with one function and TWO sets. So we are looking at all 
statements of the form 

(∀f ∈ V)(∃A,B ∈ K)(s = t in A,B,fA,fB)
(∃f ∈ V)(∀A,B ∈ K)(s = t in A,B,fA,fB)

where we have again used the dual for inequational BRT.

The number of component inclusions is 24 = 16, and the number of sets 
of inclusions, which is the same as the number of statements, is 216 
= 65,536. 

We have not been able to handle all of these statements. However, we 
have been able to handle the easier statements 

(∀f ∈ V)(∃A,B ∈ K)(A ⊆ B ∧ s = t in A,B,fA,fB)
(∃f ∈ V)(∀A,B ∈ K)(A ⊆ B ⇒ s = t in A,B,fA,fB)

We refer to this as equational/inequational BRT in A,B,fA,fB,⊆. The 
number of relevant inclusions is cut from 16 to 9, so that there are 
a total of 512 sets of inclusions, or statements, to be analyzed. 

We use a tree like methodology to organize the work.  

 



A,B,fA,fB,⊆

Some new phenomena come up when we are in A,B,fA,fB,⊆, on (SD,INF). 

(∀f ∈ SD)(∃A,B ∈ INF)(A ⊆ B ∧ B ∪. fA = N ∧ A = B ∩ fB).
(∀f ∈ SD)(∃A,B ∈ INF)(A ⊆ B ∧ A ∪. fB = N ∧ fA ⊆ B ∧ B ∩ fB ⊆ fA).
¬(∀f ∈ SD)(∃A,B ∈ INF)(A ⊆ B ∧ A ∩ fB = ∅ ∧ fB ⊆ B).

We expect an explosion of new phenomena in the much harder A,B,fA,fB. 

We also worked out equational/inequational BRT in A,B,fA,fB,⊆ on the 
five BRT settings 

(SD,INF), (ELG ∩ SD,INF).
(ELG,INF), (EVSD,INF).

(MF,INF).

where ELG is “expansive linear growth”, and “EVSD is “eventually 
strictly dominating”. f in ELG if and only if f in MF and

there exist rational constants c,d > 1 such that for all but 
finitely many x ∈ dom(f),

c|x| ≤ f(x) ≤ d|x|

where |x| is the maximum coordinate of the tuple x. 



MAHLO CARDINALS

The strongly 0-Mahlo cardinals are the strongly inaccessible 

The strongly 0-Mahlo cardinals are the strongly inaccessible 
cardinals cardinals (uncountable regular strong limit cardinals). 
The strongly n+1-Mahlo cardinals are the infinite cardinals all of 
whose closed unbounded subsets contain a strongly n-Mahlo 
cardinal.

These cardinals have delicious combinatorial properties going back to 
James Schmerl’s Ph.D. thesis under Jack Silver in the 1970s. 

Here is the particular combinatorial principle tailor made for 
applications to BRT: 

Let n,m ≥ 1, κ a strongly n-Mahlo cardinal, and A ⊆ κ unbounded. 
For all i ∈ ω, let fi:An+1 → κ , and let gi:Am → ω. There exists E   
of order type ω such that 
i) for all i ≥ 1, fiE is either a finite subset of sup(E), or of 
order type ω with the same sup as E;
ii) for all i ≥ 1, giE is finite.

SMAH+ = ZFC + (∀n < ω)(∃κ)(κ is a strongly n-Mahlo cardinal). 
SMAH = ZFC + {(∃κ)(κ is a strongly n-Mahlo cardinal)}n<ω.



EQUATIONAL BRT 
TWO FUNCTIONS, THREE SETS

A,B,C,fA,fB,fC,gA,gB,gC

With two functions and three sets, we have Boolean inequations in 
nine Boolean variables. There are 512 basic inclusions, and 2512 sets 
of basic inclusions, or statements. Without major new ideas, this is 
ridiculously hopeless. 

THEOREM. There is an instance of equational BRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) that is provable in SMAH+ but 
not in SMAH. 

CONJECTURE. Every instance of equational BRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) is provable or refutable in 
SMAH+. However, we cannot replace SMAH+ by SMAH.  

So we must investigate this Conjecture for fragments. We have 
explored one particular fragment, but there are others that remain 
to be investigated. 

Firstly, the independent example only uses A,B,C,fA,fB,gB,gC. So the 
numbers are reduced from 512,2512, down to 128,2128. Still daunting. 
Also, the independent example stays independent with A ⊆ B ⊆ C 
added. 



EQUATIONAL BRT
TWO FUNCTIONS,  THREE SETS

FRAGMENTS OF A,B,C,fA,fB,fC,gA,gB,gC

THEOREM. There is an instance of equational BRT in 
A,B,C,fA,fB,gB,gC,⊆ on (ELG,INF) that is provable in SMAH+ but not in 
SMAH. 

CONJECTURE. Every instance of equational BRT in A,B,C,fA,fB,gB,gC,⊆ 
on (ELG,INF) is provable or refutable in SMAH+, However, we cannot 
replace SMAH+ by SMAH. 

Obviously, this Conjecture is a lot more amenable than the one with 
A,B,C,fA,fB,fC,gA,gB,gC, but absent a number of new ideas, it still 
looks out of reach. 

Our BRT book is based on an entirely different fragment. We go back 
to A,B,C,fA,fB,fC,gA,gB,gC as the starting point, without ⊆. Instead 
we work with inclusions among disjoint unions. 

For background, let us rewrite the Complementation Theorem with ‘∪.’.

COMPLEMENTATION THEOREM. (∀f ∈ SD)(∃A ∈ INF)(A ∪. fA = N). 



EQUATIONAL BRT
2 FUNCTIONS, 3 SETS

DISJOINT UNION INCLUSIONS

TEMPLATE. For all f,g ∈ ELG, there exist A,B,C ∈ INF such that 
X ∪. fY ⊆ V ∪. gW
P ∪. fR ⊆ S ∪. gT

where X,Y,V,W,P,R,S,T are among the letters A,B,C.

This Template has 38 = 6561 instances. There is an obvious symmetry: 
permute A,B,C, and switch the two disjoint union inclusions. This 
defines an equivalence relation on Template instances, whose 
equivalence classes generally have 12 elements. 

THEOREM. All but 12 instances of the Template are provable or 
refutable in RCA0. The 12 exceptions are symmetric, and are provable 
in SMAH+.

PRINCIPAL EXOTIC CASE. For all f,g ∈ ELG, there exist A,B,C ∈ INF 
such that 

A ∪. fA ⊆ C ∪. gB
A ∪. fB ⊆ C ∪. gC

 
There are 12 Exotic Cases, one Principal Exotic Case. 



EQUATIONAL BRT
2 FUNCTIONS, 3 SETS

DISJOINT UNION INCLUSIONS

PRINCIPAL EXOTIC CASE. For all f,g ∈ ELG, there exist A,B,C ∈ INF 
such that 

A ∪. fA ⊆ C ∪. gB
A ∪. fB ⊆ C ∪. gC

THEOREM. The Exotic Cases are provably equivalent to 1-Con(SMAH) 
over ACA’. 

The remaining 6561-12 = 6549 cases involve numerous tricky 
combinatorial arguments. There are a total of 574 cases up to 
symmetry, of which only one cannot be decided in RCA0 - the 12 Exotic 
Cases. 

TEMPLATE*. For all f,g ∈ ELG, there exist arbitrarily large finite 
A,B,C ⊆ N such that 

X ∪. fY ⊆ V ∪. gW
P ∪. fR ⊆ S ∪. gT

where X,Y,V,W,P,R,S,T are among the letters A,B,C.

THEOREM. All instances of Template* are provable or refutable in 
RCA0.
 



EQUATIONAL BRT
2 FUNCTIONS, 3 SETS

DISJOINT UNION INCLUSIONS

TEMPLATE. For all f,g ∈ ELG, there exist A,B,C ∈ INF such that 
X ∪. fY ⊆ V ∪. gW
P ∪. fR ⊆ S ∪. gT

TEMPLATE*. For all f,g ∈ ELG, there exist arbitrarily large finite 
A,B,C ⊆ N such that 

X ∪. fY ⊆ V ∪. gW
P ∪. fR ⊆ S ∪. gT

BRT TRANSFER. Template and Template* are equivalent. 

THEOREM. BRT Transfer is provably equivalent to 1-Con(SMAH) over 
ACA’.

TEMPLATE2. For all f,g ∈ ELG, there exist A,B,C ∈ INF such that 
X ∪. fY ⊆ V ∪. gW
P ∪. fR ⊆ S ∪. gT
D ∪. fE ⊆ J ∪. gK

CONJECTURE. Results extend to Template2.



EQUATIONAL BRT
2 FUNCTIONS, 3 SETS

DISJOINT UNION INCLUSIONS

TEMPLATE3. For all f,g ∈ ELG, there exist A,B,C ∈ INF such that 
X ∪. Y ⊆ V ∪. W
P ∪. R ⊆ S ∪. T

where X,Y,V,W,P,R,S,T are among A,B,C,fA,fB,fC,gA,gB,gC.

We think that the analogous results hold for Template3. However, the 
difficulty substantially increases as we move on to triples and more. 
We can of course add A ⊆ B ⊆ C to the conclusion, lessening the 
difficulties substantially. 

DISJOINT UNION INCLUSION THEORY is a branch of BOOLEAN RELATION 
THEORY.



PROOF OF PRINCIPAL EXOTIC CASE

PRINCIPAL EXOTIC CASE. For all f,g ∈ ELG, there exist A,B,C ∈ INF 
such that 

A ∪. fA ⊆ C ∪. gB
A ∪. fB ⊆ C ∪. gC

We have refuted the Principal Exotic Case for SD, and some other 
classes of functions. We actually prove the sharper

PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist infinite sets 
A1 ⊆ ... ⊆ An ⊆ N such that 
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1;
ii) A1 ∩ fAn = ∅.

Fix n,f,g. Also fix a strongly pn-1-Mahlo cardinal k, where p is 
the arity of f. We start with the structure M = (N,<,0,1,+,f,g). 
By using the infinite Ramsey theorem infinitely many times, we 
expand M to the structure 

M* = (N*,<*,0*,1*,+*,f*,g*,c0*,...)

where the constants generate M*, and the c*’s are indiscernible 
with respect to all atomic formulas. 



PROOF OF PROPOSITION B

PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist infinite sets 
A1 ⊆ ... ⊆ An ⊆ N such that 
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1;
ii) A1 ∩ fAn = ∅.

M = (N,<,0,1,+,f,g)
M* = (N*,<*,0*,1*,+*,f*,g*,c0*,...)

where the constants generate M*, and the c*’s are indiscernible 
with respect to all atomic formulas. The way this is done, any 
partial subsystem of M* generated r times over the c*’s, can be 
isomorphically embedded back into M. 

Using the indiscernibility, we can transfinitely extend 
canonically to

M** = (N**,<**,0**,1**,+**,f**,g**,...,cα**,...)α<κ.

Unfortunately, M*,M** are not well founded. However, the relevant 
ordering is tx < y, where t is some rational > 1. In M*,M**, this 
ordering is well founded, exploiting f,g ∈ ELG.



PROOF OF PROPOSITION B

PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist infinite sets 
A1 ⊆ ... ⊆ An ⊆ N such that 
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1;
ii) A1 ∩ fAn = ∅.

M = (N,<,0,1,+,f,g)
M* = (N*,<*,0*,1*,+*,f*,g*,c0*,...)

M** = (N**,<**,0**,1**,+**,f**,g**,...,cα**,...)α<κ.

tx < y, t > 1, is well founded in M,M*,M**. 

The Complementation Theorem has an obvious generalization to well 
founded structures. So we obtain a unique A ⊆ N** such that 

A ∪. g**A = N**.
{...,cα**,...} ⊆ A. 

f**A ∩ {...,cα**,...} = ∅.

This is much stronger than Proposition B (no straddling!) EXCEPT that 
it lives in M** and not in M. 



PROOF OF PROPOSITION B

PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist infinite sets A1 ⊆ ... ⊆ An ⊆ N such 
that 
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1;
ii) A1 ∩ fAn = ∅.

M = (N,<,0,1,+,f,g)
M* = (N*,<*,0*,1*,+*,f*,g*,c0*,...)

M** = (N**,<**,0**,1**,+**,f**,g**,...,cα**,...)α<κ
A ∪. g**A = N**.

{...,cα**,...} ⊆ A. 
f**A ∩ {...,cα**,...} = ∅.

We can build a tower of subsets of A, of length n, starting with the 
cα’s, which is like a Skolem hull construction. We can define Skolem 
functions whose arguments are the cα’s, that generate all of the 
elements in this tower, and also generates all of the cα’s that are 
used in terms representing the elements of A. 

We now apply the indiscernibility property of kappa. This enables us 
to cut down the Skolem hull construction, starting with a set of 
indiscernible transfinite constants of order type omega.

From the indiscernibility, the cα’s that arise have order type ω. 
Since the elements in the tower are generated by a bounded number of 
steps from these cα’s, we see that the tower is isomorphically 
embeddable in the original structure M. 

 



EFFECTIVITY OF PRINCIPAL EXOTIC CASE

PRINCIPAL EXOTIC CASE. For all f,g ∈ ELG, there exist A,B,C ∈ INF 
such that 

A ∪. fA ⊆ C ∪. gB
A ∪. fB ⊆ C ∪. gC

THEOREM. The Principal Exotic Case holds in the arithmetic sets. This 
fact is provably equivalent to 1-Con(SMAH) over ACA.

OPEN QUESTION. Does the Principal Exotic Case hold in the recursive 
sets?

We know that the Principal Exotic Case is just as strong even for 
rather concrete f,g. 

We let BAF (basic functions) be the least family of multivariate 
functions from N into N which are closed under composition and which 
contain the functions +,-,×,↑,log. Here +,×,↑ are the usual addition, 
multiplication, and base 2 exponentiation on N. x-y is raised to 0 if 
negative. log(x) is the base 2 logarithm, where we take the floor. By 
convention, log(0) = 0. 

THEOREM. The Principal Exotic Case holds in the recursive sets - or 
even the sets with primitive recursive enumeration functions. This 
fact is provably equivalent to 1-Con(SMAH) over RCA0.


