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Thanks Tom for the unexpected invitation! I'm on a family 
based trip right t now, but thought I would see if I could 
run my thoughts about how f.o.m. = foundations of 
mathematics can productively interact with many diverse 
areas of Philosophy, including those areas for which the 
researchers thought that they were protected from such 
invasions. 
 
My idea is that f.o.m. can be viewed as having grown out of 
considerations from Philosophy of Mathematics, Philosophy 
of language, Philosophical Logic, metaphysics, and 
epistemology, into an autonomous philosophically informed 
and motivated mathematically oriented rich and deep area of 
great power of depth. I view f.o.m. as a singular success 
story for Philosophical Thinking. 
 
I don't have the time to talk here about f.o.m. in general, 
but I do want to make some small points so that you have a 
better idea of where I am coming from. Am I a mathematician 
or a philosopher? Well, depending on just what you mean, I 
am arguably both and arguably neither. 
 
I like to draw a distinction between f.o.m. and 
mathematical logic. The latter is a focused area of 
mathematics that investigates the great fundamental f.o.m. 
systems and structures for their own sake or for the sake 
of interactions with other areas of mathematics. There have 
also been notable interactions with computer science. 
 
On the other hand, f.o.m. is primarily philosophically 
motivated, and shines most brightly in the general 
philosophical realm of "foundations of subjects". I of 
course look to Kurt Gödel as the great seminal figure in 
f.o.m. at least post 1900. He represented that exquisite 
delicate balance between the philosophical and the 



	 2	

mathematical that is so required and so effective for 
f.o.m. 
 
It has been highly challenging to seriously build on the 
great legacies of Kurt Gödel. The most famous, but by no 
means the only, of these legacies, is Incompleteness. This 
is where I have put my greatest efforts. 
 
Incompleteness, in a general sense, started long before 
Gödel, although not commonly referred to as such. The 
arguably most shocking revelation in f.o.m., given the 
context in which it appeared, can be naturally formulated 
as the first monumental event in Incompleteness. 
 
Consider the well known standard ordered field axioms, OFA. 
This is based on 0,1,+,-,x,1/,<. These familiar axioms are 
at the heart of the elementary school math curriculum. Now 
consider 
 
    There exists b such that b x b = 1+1. 
 
It was more or less discovered 2000 years ago that, in 
modern terms, the above statement is neither provable nor 
refutable in OFA. I.e., the above is independent of OFA. In 
modern terms, we have a model of OFA in which this is true, 
and a model of OFA in which this is false. It is true in 
the real numbers, and false in the rational numbers. 
 
Fast forward around 2000 years, and we know how to fix this 
Incompleteness. There are two well known ways. 
 
1. Add: If b > 0 then there exists c such that b = c x c. 
Every polynomial of odd degree in one variable has a root. 
2. Add: The least upper bound principle for all first order 
formulas. 
 
Both 1,2 use infinitely many axioms and this is 
unavoidable. They are both equivalent and this is not at 
all obvious. They entirely stamp out all incompleteness: 
the resulting systems prove or refute all statements in its 
LANGUAGE. And note that 1,2 are satisfactory in the sense 
that instances are easily algorithmically recognized. 
 
There are similar developments, more involved, connected 
with elementary geometry instead of this elementary 
algebra, with a particularly famous example of the parallel 
postulate in Euclidean geometry. The Incompletenesses are 
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again fixable. In many cases in geometry, however, there is 
a much stronger kind of Incompleteness - and also fixable. 
This is the so called second order Incompleteness, and 
relationships between first order and second order 
Incompleteness is itself worthy of at least several talks 
here. We will confine ourselves to first order 
incompleteness. 
 
Now let us turn to the discrete ordered ring axioms, DORA. 
This is very much like OFA except that we only think of 
integers - no reciprocal or division. This is also an 
elementary school system, with 0,1,+,-,x,<. But instead of 
anything about reciprocal/division, we add 
 
    Nothing is strictly between 0 and 1. 
 
Now consider this very basic 
 
    For all b there exists c such that c+c = b or c+c = 
b+1. 
 
This statement is independent of DORA. Let's use idea #2 
for trying to fix this Incompleteness: 
 
2*. Add: The least upper bound principle for all first 
order formulas. 
 
GOEDEL. DORA + 2* still has Incompleteness. In fact, there 
is no way to add further axioms to appropriately fix this 
Incompleteness. 
 
DORA + 2* is essentially a rewrite of what is normally 
called PA = Peano Arithmetic. 
 
PA may well be strong enough to prove or refute all 
individual mathematical statements that have, as of January 
24, 2017, been published in accepted mathematical venues by 
mathematicians operating as mathematicians according to 
normal mathematical culture, as opposed to acting as f.o.m. 
investigators (like me). E.g., it is widely believed that 
FLT = Fermat's Last Theorem is provable in PA, although 
this has not yet been firmly established. 
 
Nevertheless, this leaves open the possibility that f.o.m. 
investigators may be able to discover a statement in the 
language of PA that is independent of PA, that can be 
argued to be fully compatible with normal mathematical 
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culture, perhaps enough so that the statement can be argued 
to be inevitable over the realistically far out future of 
mathematics. 
 
In fact, we now have a growing body of ever more convincing 
examples of this - what I call CONCRETE MATHEMATICAL 
INCOMPLETENESS. 
 
The early examples of such Concrete Mathematical 
Incompleteness at the PA level are Goodstein's Theorem 
(1944, 1982), Paris/Harrington Theorem (1977), Hydra Game 
(1982). There are some later examples at the PA level that 
are arguably more aligned with ordinary mathematical 
culture, discussed in PA Incompleteness on FOM at 
http://www.cs.nyu.edu/pipermail/fom/2016-
September/020083.html. At this point, my favorite is  
 
DEFINITION. For x,y ∈ Nk, x <adj y means x,y are each 
strictly increasing and (x2,...,xk) = (y1,...,yk-1). Note 
that this proscribes a single order type for the 2k-tuple 
(x,y). x ≤c y means that each xi ≤ yi. 
 
ADJACENT LIFTING. Every f:Nk → Nk has some x <adj y with 
f(x) ≤c f(y). 
 
RECURSIVE ADJACENT LIFTING. Every recursive f:Nk into Nk has 
some x <adj y with f(x) ≤c f(y). 
 
ELEMENTARY RECURSIVE ADJACENT LIFTING. Every elementary 
recursive f:Nk → Nk has some x <adj y with f(x) ≤c f(y). 
 
POLYNOMIAL ADJACENT LIFTING. Every surjective polynomial 
P:Nk → Nk has some x ≤c y with P(x) <adj P(y). 
 
The first is equivalent to ∈0 is well ordered, the second to 
2-Con(PA), the third to 1-Con(PA), the fourth to 2-Con(PA). 
These four results use base theory RCA0 for the first and 
EFA for the remaining. For the first three results, see  
http://cage.ugent.be/~pelupessy/ARPH.pdf Reference [7] 
there has the wrong URL. It should be 
http://u.osu.edu/friedman.8/files/2014/01/PA-incomp082910-
2lgh5wm.pdf  
 
For the fourth result, see PA Incompleteness/2, FOM email 
list, February, 2017, http://www.cs.nyu.edu/pipermail/fom/ 
This improves on 
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http://www.cs.nyu.edu/pipermail/fom/2013August/017469.html 
 
There is a 250 page Introduction to a book draft at 
https://u.osu.edu/friedman.8/foundational-
adventures/boolean-relation-theory-book/ covering the state 
of Concrete Mathematical Incompleteness through BRT = 
Boolean Relation Theory. 
 
This history includes a variety of natural concrete 
mathematical examples of Incompleteness at various levels 
from below PA to mostly around "uncountably many iterations 
of the power set operation", a very substantial fragment of 
ZFC. It also includes BRT, and has not been updated to 
include EMULATION THEORY - its fleshing out is my highest 
priority for 2017. A full picture of Concrete Mathematical 
Incompleteness can only be properly covered in a series of 
talks. 
 
In every single existing case of Concrete Mathematical 
Incompleteness, we have the following common situation. A 
natural Concrete Mathematical statement A is shown, over an 
appropriately very weak system, to be provably equivalent 
to the consistency of an unexpectedly strong system T - or 
some standard variant of consistency (such as 1-
consistency).  
 
Assuming T is "OK", this establishes the independence of A 
from T. For if A were refutable from T then T would not be 
OK. And if A were provable from T then T would prove its 
consistency, and then by Gödel's Second Incompleteness 
Theorem, T would be inconsistent - definitely not OK.  
 
We now jump to EMULATION THEORY. We need to shorten the 
full story some and so for good reason we are going to work 
in Q[0,1]k. Here Q[0,1] is the closed unit internal in the 
rationals Q. 
 
DEFINITION 1.1. We say that S ⊆ Q[0,1]2 is drop equivalent 
at (x,y),(x',y) if and only if for all z < y, (x,z) in S 
iff (x',z) in S. 
 
Let's draw a picture for this crucial drop equivalence.  
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 _______________ 
|               | 
|    A   B      | 
|    |   |      | 
|    |   |      | 
|____|___|______| 
 
This rectangle is Q[0,1]2 with the points A = (x,y), B = 
(x',y). We have a set S ⊆ Q[0,1]2 in the background. As we 
drop from A and from B, we want each point below A to lie 
in S if and only if the corresponding point below B lies in 
S.  
 
THEOREM 1.1. There exists S ⊆ Q[0,1]2 where drop equivalence 
holds only trivially. I.e., S is drop equivalent at 
(x,y),(x',y) if and only if x = x' ∨ y = 0.   
 
We can repair Theorem 1.1 at some cost. 
 
THEOREM 1.2. Every S ⊆ Q[0,1]2 is drop equivalent at some 
(x,y),(x',y), x ≠ x' ∧ y > 0, if we replace Q[0,1] by some 
other dense linear ordering with endpoints 0,1. These 
replacements can be of any uncountable cardinality but not 
countable. 
 
So far we are not threatening ZFC. However, look at this: 
 
THEOREM 1.3. Every S ⊆ Q[0,1]2 is drop equivalent at some 
(x,x),(x',x), 0 < x < x', provided we replace Q[0,1] by 
some gigantic dense linear ordering with endpoints 0,1. The 
size required here is far beyond anything that can be 
proved to exist in ZFC. 
 
 _______________ 
|               | 
|          A  B | 
|          |  | | 
|          |  | | 
|__________|__|_| 
 
Here A is on the diagonal. Don't get excited yet! This is 
an example of Mathematical Incompleteness that is closely 
related to well known developments in large cardinal 
theory. The statement is intensely set theoretic, and we 
already have a range of Mathematical Incompleteness in the 
highly set theoretic realm. 
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Emulation Theory gets to the essence of Theorem 1.3 while 
staying in Q[0,1]! Obviously we are going to have to add 
some very potent special sauce to pull this off, and the 
idea is to make this special sauce delicious. So delicious 
that ultimately mathematicians will want to use this 
special sauce across the whole realm of Concrete 
Mathematics! OK, we are still preparing the sauce, and we 
are looking out to the future. 
 
The large cardinals involved in Theorem 1.3 are treated in 
 
H. Friedman, Subtle Cardinals and Linear Orderings, Annals 
of Pure and Applied Logic, Volume 107, Issues 1–3, 15 
January 2001, Pages 1–34. 
https://u.osu.edu/friedman.8/files/2014/01/subtlecardinals-
1tod0i8.pdf 
 
PROTOTYPE 1. For subsets of Q[0,1]2, some MAXIMAL EMULATION 
is drop equivalent at some (x,x),(x',x), 0 < x < x'. 
 
Thus we don't use any old subset of Q[0,1]2, but rather some 
sort of cousin. 
 
Maximal Emulations, yet to be defined, will be allowed to 
move rationals around in order preserving ways. We will be 
using only the order on Q[0,1], and NOTHING more. This 
means that we have a very nice SIMPLIFICATION here. We can 
say what x,x' are IN ADVANCE. We will use the friendly 
numbers 1/2,1. It is by no means automatic that we can 
use the endpoint 1 for this purpose, but it turns out that 
we can with good effect. So we have the following 
SIMPLIFIED prototype: 
 
PROTOTYPE 2. For subsets of Q[0,1]2, some MAXIMAL EMULATION 
is drop equivalent at (1/2,1/2),(1,1/2). 
 
The above is the Lead Statement in Emulation Theory for 
dimension 2! A Maximal Emulation is an emulation which is 
not a proper subset of any emulation. 
 
Of course, I haven't yet told you what an emulation is. 
Emulation is given by a fundamental equivalence relation 
between subsets of Q[0,1]2 that only involves the ordering 
on Q[0,1]. 
 
DEFINITION 1.2. x,y ∈ Qk are order equivalent if and only if 
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their coordinates have the same relative order. I.e., for 
all 1 ≤ i,j ≤ k, xi < xj iff yi < yj. S is a 1-emulation of E 
⊆ Q[0,1]2 if and only if E,S have the same elements up to 
order equivalence. 
 
THEOREM 1.4. There are exactly 8 equivalence classes of 
subsets of Q[0,1]2 under 1-emulation. 
 
Proof: The number of equivalence class of elements of 
Q[0,1]2 under order equivalence is 3. So the count is 23 = 
8. QED 
 
MED/1. For subsets of Q[0,1]2, some maximal 1-emulation is 
drop equivalent at (1/2,1/2),(1,1/2). 
 
MED is read "maximal emulation drop" and /1 indicates that 
it is the first in the MED series. 
 
But MED/1 is actually very easy to prove. This is because 
maximal 1-emulations are so simple. Every maximal 1-
emulation (regardless of what it is 1-emulating) is merely 
an equivalence class under the equivalence relation of 
order equivalence on Q[0,1]2. And it is an easy exercise 
that every such equivalence class is automatically drop 
equivalent at (1/2,1/2),(1,1/2), and in fact at any 
(p,p),(p',p), 0 < p < p'.   
 
Also every subset of Q[0,1]2 has a maximum 1-emulation. So 
we get this extremely strong form of MED/1: 
 
MED/2. For subsets of Q[0,1]2, the maximum 1-emulation is 
drop equivalent at every (p,p),(p',p), 0 < p < p'.  
 
But that is just 1-emulation. The official definition of 
Emulation, also written as 2-emulation, is as follows. 
 
DEFINITION 1.3. S is an emulation of E ⊆ Q[0,1]2 if and 
only if E,S have the same pairs of elements (pairs of 
pairs!) up to order equivalence of 4-tuples. More 
generally, S is an r-emulation of E ⊆ Q[0,1]2 if and only if 
E,S have the same r-tuples of elements up to order 
equivalence of 2r-tuples. 
 
The idea behind emulation is that emulations have the same 
pairs (of pairs) up to order equivalence. 
 
An exact count on the number of equivalence classes of 
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subsets of Q[0,1]2 under emulation is not straightforward. 
Here we will only give a rough estimate, although we 
believe that an exact count is definitely achievable as a 
nice piece of elementary finite combinatorics. 
 
Exact counts for small k of the number of equivalence 
classes of elements of Q[0,1]k under order equivalence - a 
much simpler and prior problem - are listed in 
https://u.osu.edu/friedman.8/foundational-
adventures/downloadable-manuscripts/ 
#76 page 7 (lifted from another source). 
 
THEOREM 1.5. The number of equivalence classes of subsets 
of Q[0,1]2 under Emulation is at least 230 and at most 239. 
 
MED/3. For subsets of Q[0,1]2, some maximal emulation is 
drop equivalent at (1/2,1/2),(1,1/2). 
 
MED/4. For subsets of Q[0,1]2, some maximal r-emulation is 
drop equivalent at (1/2,1/2),(1,1/2). 
 
What is the status of MED/3 and MED/4? Are these provable 
in ZFC? 
 
Don't get exited yet. I know how to prove MED/4 using the 
existence of an uncountable set. My proof does not go 
through in countable set theory, which is essentially 
ZFC\P. I suspect that MED/3 can be proved in ZFC\P but 
MED/4 cannot. 
 
Now I am going to put the Fasten Seat Belt Sign On. We are 
going to lift off to THREE DIMENSIONS! 
 
Emulations (2-emulations) in 3 dimensions involves 6 tuples 
just like emulations (2-emulations) in 2 dimensions 
involves 4 tuples. Instead of using (1/2,1/2),(1,1/2), we 
use (1/2,1/3,1/3),(1,1/2,1/3). 
 
We find it more readable to switch these two triples.  
 
MED/5. For sunsets of Q[0,1]3, some maximal emulation is 
drop equivalent at (1,1/2,1/3),(1/2,1/3,1/3). 
 
Thus we are requiring that for all p < 1/3, (1,1/2,p) ∈ S ↔ 
(1/2,1/3,p) ∈ S. Thus we are dropping vertically from the 
two points (1,1/2,1/3),(1/2,1/3,1/3) in the cube Q[0,1]3 
down to the base z = 0.  
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The only proof that we have of MED/5 uses the large 
cardinals mentioned before in connection with the set 
theoretic Theorem 1.3 above. We judge about a 50//50 chance 
that MED/5 can be proved in ZFC. However, consider 
 
MED/6. For sunsets of Q[0,1]3, some maximal 8-emulation is 
drop equivalent at (1,1/2,1/3),(1/2,1/3,1/3). 
 
Here we expect that far more than ZFC is required to prove 
MED/6. The only definite claim we are making at this point 
is that 
 
MED/7. For sunsets of Q[0,1]k, some maximal r-emulation is 
drop equivalent at (1,1/2,...,1/k),(1/2,...,1/k,1/k). 
 
cannot be proved in ZFC, and in fact is provably 
equivalent, over WKL0, to the consistency of the system SRP. 
This is ZFC + {there exists a subtle cardinal of order k}k. 
We hope that the situation clarifies this calendar year. 
 
Note that these statements still quantify over countably 
infinite objects. So we can naturally demand more and much 
more Concreteness. Emulation Theory addresses this in three 
different ways. 
 
1. The Implicit way. The logical form of, e.g., MED/7 is 
such that it is an easy undergraduate math logic exercise 
to reformulate it as asserting that an effectively given 
list of sentences in first order predicate calculus with 
equality each have a countable model. Then by Gödel's 
famous Completeness (not Incompleteness) Theorem, MED/7 is 
equivalent to an explicitly finite statement, with the 
infinite objects removed. Of course, we are still 
quantifying over infinitely many finite objects. The 
explicitly finite statement obtained in this way is in Π0

1 
form. 
 
2. A consequence of 1 is the hallmark property of Π0

1 
statements such as FLT. We know, a priori, that if the 
statement is false then it can in principle be verified to 
be false. 
 
3. However, the Π0

1 forms using 1 lose their purely 
mathematical character. We also have a way of dissecting 
maximal emulations via finite approximations, to directly 
obtain explicitly Π0

1 forms which, at least arguably, 
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maintain the purely mathematical character. 
 
Emulation Theory also touches practically the strongest of 
the large cardinal hypotheses that have been proposed. At 
this point, some extra ingredients are needed for this, 
which are steadily becoming more compatible with ordinary 
concrete mathematical culture. 


