
1

A LOGICIAN LOOKS AT PROGRAMMING
by
Harvey M. Friedman
http://www.math.ohio-state.edu/~friedman/
May 31, 2000

I would like to barge in, uninvited, with full naivete, to
design a programming environment, aimed especially at the
general mathematical community.

Before continuing, let me apologize in advance to the
distinguished software engineers who may have been curious
enough to be here.

I will look forward to your comments before I try to publish
in this area. Or alternatively, you and your colleagues in
software engineering may in fact stop me from publishing in
this area! But I think that there are some merits in having
someone in mathematical logic and the foundations of
mathematics tackle crucial issues in software engineering
from their own perspective, head on, with no fear, discarding
all of the talk about their being no magic bullets, etcetera.

I had some experience designing music performance software,
and working with programmers. I was convinced that my specs
had a rigor of their own, and certainly small changes could
be made very easily in my specs. However, the implementation
bills were not small. My specs just got translated into C and
there was grossly inadequate communication. Nevertheless, the
products got done and sold in small numbers. There were
marketing problems, and so I proved that it is possible to
lose serious money in high tech.

I have been talking to the software engineering group at Ohio
State University, led by Bruce Weide and Bill Ogden. They
don’t think I am crazy, and in fact keep inviting me back to
talk to them and their students.

1. Design a programming environement especially friendly
for the general mathematical community.

2. Maximally leverage the thought processes of
mathematicians.

3. Present environments are not so friendly in two ways.
4. First there is a lot of computerese. This is perhaps

not too serious and special sugar for mathematicians
should cure this.

2

5. More fundamentally, there are stages of computation
which do not correspond cleanly to standard
mathematical objects.

6. And there is the responsibility of memory management
in many languages.

7. The closer programming is to the way mathematicians
construct standard mathematical objects the easier it
is to specificy and verify programs, either
informally, semiformally, or formally.

8. Let us concentrate on basic programming of this type.
One is programming a mathematical function which
takes as input objects that are to be stored in the
computer, and outputs objects to be stored in the
computer. There is no interaction with the outside
world.

9. The most mathematically friendly setup already goes
back to Kleene’s work on primitive recursive
functions. Of course, implementation is completely
impractical, and does not support data structures
except natural numbers.

10. In the most friendly style of programming, the code
consists of successive introduction of functions by
explicit definition, each one defined explicitly in
terms of previous ones. Go back to some primitives.

11. This is an extremely modular setup which supports
verification at the informal, semiformal, and formal
levels.

12. Of course, informal is not all that reliable,
semiformal more reliable but time consuming, and
formal extremely time consuming.

13. However, this reduces it to more or less mathematics,
where projects like Mizar are busy at work. There are
reasons to be somewhat optimistic about verifiers for
math, even though it remains expensive.

14. But they are trying to verify serious math. Whereas
the overwhelming majority of general purpose
programming leads only to mathematical trivialities.

15. In fact, special software that is very good at the
commonly occurring mathematical trivialities seems
like a reasonable goal.

16. Want to unleash the great untapped power of the
general mathematical community.

17. The programming style that is closest to what we have
in mind is functional programming.

3

18. However, most people other than functional
programming people think that it is unacceptably
inefficient.

19. And that in order to fix the efficiency problems, one
has to add control statements for greater control of
computation, thereby defeating the purpose of
functional programming.

20. These inefficiencies are connected with the usual
implementation of functional programming, where
copying of objects is necessary whenever those
objects are the result of subroutines even if such
objects are created from objects that are only
incrementally different.

21. In imperative languages, one takes advantage of
sharing of common locations when storing multiple
objects. You directly control the form of storage and
the location of storage.

22. We are optimistic about solving the efficiency
problem for functional programming.

23. Since we are certainly not going to add control
statements, we need to have provisions for the
sharing of locations in incrementally different
objects something that is supported in the
primitives.

24. Thus we must set things up so that this sharing is
propogated upward properly in a complex program.

25. We accomplish this through an appropriate choice of
data structures at two layers: the semantic layer
where the mathematician is most comfortable, and the
implementational level where we view the machine is
manipulating implementations of the semantic objects.

26. This requires the development of an implementational
calculus that gives upper estimates on the resources
used in the implementation as a function of the
inputs.

27. This plan requires a careful inductive argument on
the structure of a functional program.

28. Furthermore, it is important that in order to keep
such an analysis honest, one uses a finite RAM model
with reasonable word length and number of words of
memory.

29. We then plan to write an informal compilier from
functional programs into
finite RAM machine.

4

30. We then have to prove that the actual resources used
are within the limits set by the implementational
calculus.

31. Fast automatic memory management is used, which
avoids time consuming garbage collection.

32. We must also import externally written code; i.e., we
need to support relativized programming.

33. For this we must be careful to always make the
distinction between functions to be implemented
versus objects to be held at once in the computer.

34. We must also support processing data coming in from
the outside world which may be time critical.

35. For the mathematical objects visible to the
mathematician, we use hypersequences. At the bottom
there are integers with exact arithmetic, and then we
close off hierarchically with finite sequences of.

36. At the lower implementational level, we use a 2-3
tree representation of hypersequences, a convenient
balanced tree scheme.

