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6.2. Effectivity.  
 
We begin with a straightforward effectivity result 
concerning Propositions A-H. Specifically, we show that 
Propositions A-H hold in the arithmetic sets. Later we will 
show that Propositions C,E-H hold in the recursive sets.  
 
We don’t know if any or all of Propositions A,B,D hold in 
the recursive sets. We conjecture that  
 
i. None of Propositions A,B,D hold in the recursive sets.  
ii. This fact can be proved in ACA’. 
 
DEFINITION 6.2.1. Let ACA+ be the formal system consisting 
of ACA0 and “for all x ⊆ ω, the ω-th Turing jump of x 
exists”.  
 
See [Si99,09], p. 404, where ACA+ is written as ACA0+. ACA+ 
is a proper extension of ACA’ that allows us to handle ω 
models of ACA0.  
 
Note that the countable ω models of ACA0, ACA', ACA are the 
same as the countable families of subsets of N that are 
closed under relative arithmeticity, as induction is 
automatic in ω models. (Here ACA is ACA0 with induction for 
all formulas, and is a proper extension of ACA').  
 
THEOREM 6.2.1. Let X be any of Propositions A-H. The 
following are provably equivalent in ACA+. 
i. X is true. 
ii. X is true in the arithmetic sets. 
iii. X is true in every countable ω model of ACA0. 
iv. X is true in some countable ω model of ACA0. 
v. 1-Con(MAH). 
vi. 1-Con(SMAH). 
 
Proof: Let X be as given. We argue in ACA+. By Theorems 
5.9.11, 6.1.2, and 6.1.10, X is equivalent to 1-Con(MAH), 
1-Con(SMAH). Hence i,v,vi are equivalent. It suffices to 
prove vi → iii → ii → iv → vi. 
 
Since ACA' proves X is equivalent to 1-Con(SMAH), we see 
that in any ω model of ACA0, X is equivalent to 1-Con(SMAH).  
 
For vi → iii, suppose 1-Con(SMAH). Then 1-Con(SMAH) is true 
in any ω model of ACA0. Hence X is true in every ω model of 
ACA0, and therefore iii,ii,iv.  
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iii → ii → iv is trivial.  
 
For iv → vi, suppose X is true in some countable ω model of 
ACA0. Then 1-Con(SMAH) is true in some ω model of ACA0. 
Hence 1-Con(SMAH). QED 
 
We are now going to show that Propositions C,E-H hold in 
the recursive subsets of N. Propositions C,E-H, when stated 
in the recursive sets, become Π0

4 statements. 
 
We shall see that Propositions C,E-H hold in the smaller 
family of infinite sets with primitive recursive 
enumeration functions.  
 
We also show that all of these variants of C,E-H are 
provably equivalent to 1-Con(SMAH) in ACA'. 
 
We conjecture that a more careful argument will show that 
Propositions C,E-H hold in the yet smaller family of 
infinite superexponentially Presburger sets. In light of 
the primitive recursive decision procedure for 
superexponential Presburger arithmetic, Propositions C,E-H, 
when stated in the superexponentially Presburger sets, 
become Π0

2 statements. This topic will be discussed at the 
end of this section. 
 
Recall TM(0,1,+,-,•,↑,log), ETM(0,1,+,-,•,↑,log), BAF, 
EBAF, from Definitions 5.1.1 - 5.1.7. According to Theorem 
5.1.4, BAF = EBAF.  
 
DEFINITION 6.2.2. Sometimes we will omit some items among 
0,1,+,-,•,↑,log when using this notation. E.g., terms in 
TM(0,1,+,-) use only 0,1,+,-, and not •,↑,log. E.g., terms 
and formulas in ETM(0,1,+) use only 0,1,+. In ETM(___) we 
always use <,= as the relations for the quantifier free 
formulas.   
 
We will develop explicit infinite sets of indiscernibles 
for functions in BAF, in the appropriate sense, using 
iterated base 2 exponentials. It is particularly convenient 
to use the following definition for our purposes.  
 
DEFINITION 6.2.3. Let f:Nk → N. An SOI for f is a set A ⊆ N 
such that for all x,y ∈ Ak,  
 

if x,y ∈ Ak are order equivalent  
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(i.e., have the same order type)  
then f(x) and f(y) have the same sign  

(i.e., either > 0 or = 0). 
 
We first define the set of functions Γ(ℜ). For this 
purpose, we take +’, 
-’,↑’ to be the ordinary addition, subtraction, and base 2 
exponentiation functions from ℜ2 into ℜ (↑' maps ℜ into ℜ). 
 
It will be important to recall that, according to section 
5, we use +,-,•,↑,log for functions from and into N, where -
,log are modified so that they are N valued. We call this N 
arithmetic. 
 
On the other hand, +',-',↑' take arguments and values from 
ℜ, and we call this Z arithmetic.  
 
In this section, we will not use real numbers after we have 
proved Lemma 6.2.6.  
 
DEFINITION 6.2.4. Γ(ℜ) is the set of all functions from ℜ 
into ℜ that are given by terms in 0,1,+’,-’,↑’ in only the 
variable x.  
 
DEFINITION 6.2.5. By positive, we will always mean > 0. By 
negative, we will always mean < 0. 
 
LEMMA 6.2.2. Every function in Γ(ℜ) is eventually positive, 
eventually negative, or eventually zero. 
 
Proof: Γ(ℜ) is a small fragment of what are called the exp-
log functions. Thus the statement is a special case of a 
well known theorem of Hardy from [Ha10]. QED 
 
LEMMA 6.2.3. Let f:N → N be given by a term in TM(0,1,+,-
,↑). There exists f* ∈ Γ(ℜ) such that for sufficiently 
large x ∈ N, f(x) = f*(x). f is eventually positive or 
eventually zero. 
 
Proof: By induction on t ∈ TM(0,1,+,-,↑). Suppose that we 
have defined r* with the required property, for all terms r 
in TM(0,1,+,-,↑) with less symbols that t has.  
 
case 1. t is 0,1,v. Set t* = t. 
 
case 2. t is s↑. Set t* = s*↑. 
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case 3. t is r-s. By the induction hypothesis, for 
sufficiently large x ∈ N, t(x) = r*(x)-s*(x). By Lemma 
6.2.2, r*(x)-’s*(x) is either eventually ≥ 0 or eventually < 
0. In the former case, set t* = r*-'s*. In the latter case, 
set t* = 0.  
 
The final claim follows from the first claim and Lemma 
6.2.2. QED 
 
LEMMA 6.2.4. Let f:N → N be given by a term in ETM(0,1,+,-
,↑). There exists f* ∈ Γ(ℜ) such that for sufficiently 
large x ∈ N, f(x) = f*(x). f is eventually positive or 
eventually zero. 
 
Proof: We first claim the following. Let ϕ(v) be a 
quantifier free formula in 0,1,+,-,↑,<. Then either ϕ(x) is 
true for all sufficiently large x ∈ N, or ϕ(x) is false for 
all sufficiently large x ∈ N. The claim is proved by 
induction on ϕ.  
 
The atomic cases are s(x) < t(x), s(x) = t(x). In either 
case, apply Lemma 6.2.3 to s(x)-t(x) and t(x)-s(x). Then  
 

s(x)-t(x) is eventually positive or eventually zero. 
t(x)-s(x) is eventually positive or eventually zero. 

 
If s(x)-t(x) is eventually positive then s(x) < t(x) and 
s(x) = t(x) are eventually false. If t(x)-s(x) is 
eventually positive then s(x) < t(x) is eventually true and 
s(x) = t(x) is eventually false.  
 
Suppose s(x)-t(x) is not eventually positive and t(x)-s(x) 
is not eventually positive. Then s(x)-t(x) and t(x)-s(x) 
are both eventually zero. Hence s(x) = t(x) eventually 
holds. This establishes the claim.  
 
Now write f as an extended term t from ETM(0,1,+,-,↑), 
according to Definition 5.1.5.  We can assume that t has at 
most the variable v and does not use •,log. Apply the claim 
to each of the finitely many cases in t. Then only one case 
applies for all sufficiently large x ∈ N. Let this be the 
j-th case, 1 ≤ j ≤ n+1. Then t = tj holds eventually. Apply 
Lemma 6.2.3 to tj. QED  
 
The structure (N,+) has been extensively studied, and its 
first order theory is called Presburger arithmetic. It has 
a well known decision procedure, conducted well within PRA. 
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This is proved using quantifier elimination in an expanded 
language. See [Pr29], [En72]. 
 
The structure (N,+,↑) has also been studied, and its first 
order theory is called (base 2) exponential Presburger 
arithmetic. It also has a decision procedure, conducted 
well within PRA. Again this is proved using quantifier 
elimination in an expanded language. See [Se80], [Se83], 
[CP85]. Appendix B provides a self contained exposition of 
this result by F. Point.  
 
DEFINITION 6.2.6. Recall from Definition 5.3.6 that ↑p is 
0↑...↑, and ↑p(n) = n↑...↑, where there are p ↑’s, p ≥ 0. ↑0 
= 0. For E ⊆ N, define  
 

↑E = {↑p: p ∈ E}, for E ⊆ N. 
mesh(E) = min(E ∪ {x-y > 0: x,y ∈ E}). 

 
THEOREM 6.2.5. The first order theory of the structure 
(N,+,↑) is primitive recursive. Suppose the sentence 
(∀n1,...,nk)(∃m)(ϕ(n,m)) holds in (N,+,↑). There exists p ≥ 
1 such that (∀n1,...,nk)(∃m ≤ ↑p(|n1,...,nk|))(ϕ(n,m)) holds 
in (N,+,↑).  
 
Proof: This result first appeared in [Se80] and [Se83]. It 
is implicit in [CP86]. For a clearer, self contained 
exposition, see Theorem 3.3 in Appendix B by F. Point. QED 
 
Recall the definition of an SOI for f:Nk → N. It is 
convenient to use the following weaker notion.  
 
DEFINITION 6.2.7. Let f:Nk → N. A restricted SOI for f is a 
set A ⊆ N such that for all x,y ∈ Ak,  
 

if x,y ∈ Ak are each strictly increasing  
then f(x) and f(y) have the same sign  

(either > or =). 
 
LEMMA 6.2.6. Let f:Nk → N be given by a term in TM(0,1,+,-
,↑). If mesh(A) is sufficiently large then ↑A is a 
restricted infinite SOI for f.  
 
Proof: We prove by induction on k ≥ 1 that this is true for 
all such f:Nk → N. For k = 1, let f:N → N be as given. By 
Lemma 6.2.4, let t be such that f has constant sign on 
[t,∞). Then for mesh(A) ≥ t, ↑A is a restricted infinite 
SOI for f.  
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Now fix k ≥ 1, and let f:Nk+1 → N be as given. By Lemma 
6.2.4,  
 

(∀x ∈ Nk)(∃t ∈ N) 
(f(x,m) has constant sign for m ≥ t). 

 
By Lemma 6.2.5, let p ∈ N be such that  
 

(∀x ∈ Nk) 
(f(x,m) has constant sign for m ≥ ↑p(|x|)). 

 
1) (∀x ∈ Nk)(the eventual sign of f(x,_)  

is the sign of f(x,↑p(|x|)). 
 
We now apply the induction hypothesis to the k-ary function 
f(x,↑p(|x|)) to obtain the following. 
 

2) (∀A ⊆ N)(mesh(A) sufficiently large →  
(∀x,y ∈ (↑A)k)(x,y strictly increasing →  

f(x,↑p(|x|), g(y,↑p(|y|) have the same sign)). 
 
By 1),2), 
 

 3) (∀A ⊆ N)(mesh(A) sufficiently large →  
(∀x,y ∈ (↑A)k)(x,y strictly increasing →  

f(x,x’), f(y,y’) have the same sign  
provided x’≥ ↑p(|x|, y’ ≥ ↑p(|y|))). 

 
We now claim that  
 

(∀A ⊆ N)(mesh(A) sufficiently large → 
A is a restricted SOI for f). 

 
To see this, let mesh(A) be sufficiently large, and x,y ∈ 
(↑A)k+1 be strictly increasing. Then  
 

4) x1 < ... < xk, and xk+1 > ↑p(|x1,...,xk|). 
y1 < ... < yk, and yk+1 > ↑p(|y1,...,yk|). 

 
This is because we can write 
 

|x1,...,xk| = ↑u, xk+1 = ↑v, u,v ∈ A, 
where v-u is sufficiently large. 

v-u > p. 
↑p(|x1,...,xk|) = ↑p(↑u) = ↑(p+u)  

< ↑v = ↑p(|x1,...,xk|). 
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By 3),4),  
 

f(x1,...,xk,xk+1), f(y1,...,yk,yk+1) 
have the same sign. 

 
This verifies the claim. QED 
 
LEMMA 6.2.7. Let f:Nk → N be given by a term in ETM(0,1,+,-
,↑). There are finitely many functions g1,...,gn whose 
domains are various Nk’, k’ < k, and whose range is a subset 
of N, given by terms in TM(0,1,+,-,↑), such that any common 
restricted infinite SOI for g1,...,gn is an infinite SOI for 
f. 
 
Proof: Let f be as given. Enumerate the order types of k-
tuples from N, by α1,...,αn. Pick the unique representatives 
β1,...,βn which are k-tuples whose range is an interval 
[1,p], 1 ≤ p ≤ n. Set gi(x1...,xk) = 
f(x[βi[1]],...,x[βi[k]]). Each gi handles the order type αi 
in the definition of SOI. QED 
 
LEMMA 6.2.8. Let f:Nk → N be given by a term in ETM(0,1,+,-
,↑). If mesh(A) is sufficiently large, then ↑A is an 
infinite SOI for f.   
 
Proof: Let f be as given, and let g1,...,gn be as given by 
Lemma 6.2.7. By Lemma 6.2.6, for all 1 ≤ i ≤ n, if mesh(A) 
is sufficiently large then ↑A is a restricted SOI for gi. 
Hence if mesh(A) is sufficiently large then ↑A is a common 
restricted SOI for g1,...,gn. Now apply Lemma 6.2.7. QED  
 
We now wish to establish Lemma 6.2.8 for ETM(0,1,+,-
,•,↑,log). We do this by showing that • and log can be 
eliminated in these terms, when restricting to ↑([r,∞)), 
provided r is sufficiently large.  
 
DEFINITION 6.2.8. Let n,k ≥ 1. The n,k-terms are the terms 
v1,...,vn, and vi+j, where 1 ≤ i ≤ n, 1 ≤ j ≤ k. 
 
DEFINITION 6.2.9. An n,k-ordering consists of an ordering 
of the n,k-terms. I.e., a listing  
 

α1 rel α2 rel ... rel αn(k+1) 
 
where each rel is either < or =, and α1,...,αn(k+1) is an 
enumeration without repetition of the n,k-terms.  
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An n,k-ordering may or may not hold, given an assignment of 
elements of N to the variables v1,...,vn. 
 
Example 1. v1 < v1+1 < v1+2 < v2 = v3 < v2+1 = v3+1 < v2+2 = 
v3+2 is a 3,2-ordering which holds for some v1,v2,v3 ∈ N. 
E.g., v1 = 0, v2 = v3 = 3. 
 
Example 2. v1 < v2 < v3 < v1+1 < v2+1 < v3+1 < v1+2 < v2+2 < 
v3+2 is a 3,2-ordering which does not hold for any v1,v2,v3 ∈ 
N. From v3 < v1+1, we obtain v3 ≤ v1, contradicting v1 < v3.  
 
We can obviously view every n,k-ordering as a conjunction 
of comparisons between all pairs of the n-terms. Only some 
of these conjunctions of comparisons hold for some choice 
of v1,...,vn ∈ N. 
 
DEFINITION 6.2.10. Let X be an n,k-ordering. We write α <X 
β, α =X β, for n,k-terms α,β, according to the relevant 
position of α,β in X. Here <X and =X are transitive. Define 
α >X β ↔ α <X β, α ≥X β ↔ β ≤X α. 
 
DEFINITION 6.2.11. The signed X sums are of the form  
 

β1↑ ± β2↑ ± ... ± βm↑. 
0. 

 
where  
 
i. m ≥ 1. 
ii. β1,...,βm are n,k-terms. 
iii. β1 >X β2 >X ... >X βm holds in the n,k-ordering X. 
iv. There is no consecutive pair + βi↑,- βi+1↑ for which βi =X 
βi+1+1. For this purpose, β1↑ is considered to be + β1↑.  
v. There is no consecutive pair - βi↑,+ βi+1↑ for which βi =X 
βi+1+1 in X.  
 
We evaluate signed X sums at elements of N only, and we 
always associate to the left  
 

(...(β1↑ ± β2↑) ± ... ± βm↑). 
 
where each ± is + or -, both interpreted in the usual way 
using N arithmetic; i.e., - indicates cutoff subtraction. 
Also note that the first summand, β1↑, is not signed, which 
has the same effect as + β1↑.  
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It is clear that the evaluation of a signed X sum is the 
same as the evaluation in Z arithmetic, since cutoff 
subtraction never gets triggered.  
 
Conditions iv,v in Definition 6.2.10 rule out the 
possibility of an obvious simplification in signed X sums, 
corresponding to the ordinary algebraic laws 2p+1-2p = 2p, 
and -2p+1+2p = -2p.  
 
DEFINITION 6.2.12. Let X be an n,k-ordering. For X sums λ, 
we write lth(λ) for the number of summands in λ, and #(λ) 
for the largest j such that some vi+j is a summand. We take 
lth(0) = #(0) = 0. Also, if λ has no vi+j (i.e., λ consists 
entirely of variables), then #(λ) = 0. Obviously #(λ) ≤ k. 
 
LEMMA 6.2.9. Let n ≥ 3 and X be an n,n2-ordering. Let t = 
y1↑ ± y2↑ ± ... ± ym↑ be parenthesized in any way, where 
{y1,...,ym} ⊆ {v1,...,vn}, and the y’s are distinct, m ≥ 1. 
There exists a signed X sum t*, with lth(t*) ≤ m and #(t*) ≤ 
m2, which agrees with t at all v1,...,vn ∈ N for which X is 
true. Here t (and of course t*) are evaluated using N 
arithmetic. 
 
Proof: Fix n,X as given. We prove the claim by induction on 
1 ≤ m ≤ n.  
 
The basis case m = 1 is trivial. Now fix 1 ≤ m ≤ n, and 
assume that the claim is true for all 1 ≤ m' < m. We now 
prove the claim for m.  
 
Let t = y1↑ ± y2↑ ± ... ± ym↑ be parenthesized in any way, 
where {y1,...,ym} ⊆ {v1,...,vn}, and the y’s are distinct.  
 
First suppose t is (r)+(s), lth(r)+lth(s) = m. By the 
induction hypothesis, let r*,s* be signed X sums, 
lth(r*),lth(s*) < m, #(r*),#(s*) ≤ (m-1)2, where r agrees 
with r* provided X holds, and s agrees with s* provided X 
holds. Then t agrees with (r*)+(s*) provided X holds. Write 
t = (r*)+(s*) as  
 

1) t = (β1↑ ± ... ± βp↑) + (γ1↑ ± ... ± γq↑)  
with N arithmetic for t, and Z arithmetic for the  

two summands on the right,  
provided X holds. 

 
Since we are using Z arithmetic on the right, we can 
rearrange the terms on the right. Place γ1 and the ±γ’s in 
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their appropriate positions amongst the β’s, in X, resulting 
in  
 

2) t = δ1↑ ± ... ± δp+q↑  
with N arithmetic on the left and Z arithmetic on the 

right,  
provided X holds. 

 
so that we have δ1 ≥X ... ≥X δp+q. Note that conditions iii-v 
in Definition 6.2.11, may fail for the right side of 3).  
 
We continue to work in Z arithmetic. We iterate a process, 
which, at each stage, shortens the right side of 2). Recall 
that p+q ≤ m. So the process will continue for at most m 
steps. The process runs as follows. Choose any i such that 
the consecutive pair ± δi↑,± δi+1↑ violates any of conditions 
iii-v. Remove or replace ± δi↑ ± δi+1↑ as follows.  
 
case 1. δi = δi+1 in X.  
 
Replace + δi↑ + δi+1↑ by (δi+1)↑. 
Replace - δi↑ - δi+1↑ by - (δi+1)↑.  
Remove + δi↑ - δi+1↑. 
Remove - δi↑ + δi+1↑. 
 
case 2. δi = δi+1+1 in X. 
 
Replace + δi↑ - δi+1↑ by + δi+1↑. 
Replace - δi↑ + δi+1↑ by - δi+1↑. 
 
If at some stage, there are no terms left, then the result 
is 0.  
 
These replacements are of course valid in Z arithmetic. So 
it is clear that this process results in a signed X term t* 
such that  
 

3) t = t* 
with N arithmetic on the left and Z arithmetic on the 

right, 
provided X holds. 

 
Note that every step in the process raises the constants 
used by at most 1. In addition, lth(t*) ≤ lth(r*)+lth(s*) ≤ 
m. Hence #(t*) ≤ (m-1)2+m ≤ m2.  Also, t* is of form 3), 
where the δ's must obey the conditions iii-v in the 
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definition of signed X sum. So t* is the desired signed X 
sum. 
 
Finally, suppose t is (r)-(s), lth(r)+lth(s) = m. By the 
induction hypothesis, let r*,s* be signed X sums, 
lth(r*),lth(s*) < m, #(r*),#(s*) ≤ (m-1)2, where r agrees 
with r* provided X holds, and s agrees with s* provided X 
holds. Then 
 

4) t = (β1↑ ± ... ± βp↑) - (γ1↑ ± ... ± γq↑) 
with N arithmetic on the left and Z arithmetic for the  

two summands on the right,  
provided X holds. 

 
We can obviously assume that p,q ≥ 1. The - on the right is 
in N arithmetic. We will convert to Z arithmetic by 
comparing  
 

β1↑ ± ... ± βp↑ 
γ1↑ ± ... ± γq↑ 

 
simply on the basis of X, and not dependent on the values 
of variables. Recall that the β’s are strictly decreasing in 
X, and the γ’s are strictly decreasing in X.  
 
Let i ∈ [0,min(p,q)] be greatest such that the first i 
terms of β1↑ ± ... ± βp↑ and the first i terms of γ1↑ ± ... ± 
γq↑ are equal according to X (with the same signs).  
 
If ± βi+1 <X ± γi+1 then for all x1,...,xn obeying X, 
 

β1↑ ± ... ± βp↑ < γ1↑ ± ... ± γq↑  
with Z arithmetic. 

 
If ± βi+1 >X ± γi+1 then for all x1,...,xn obeying X, 
 

β1↑ ± ... ± βp↑ > γ1↑ ± ... ± γq↑ 
with Z arithmetic. 

 
It might be the case that i+1 > min(p,q). In this event, 
use 0 for the nonexistent term.  
 
In the former case, use the signed X sum 0. In the latter 
case, rewrite 4) as 
 

5) t = β1↑ ± ... ± βp↑ - γ1↑ ± ... ± γq↑ 
with N arithmetic on left and Z arithmetic on right, 
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provided X holds. 
 
where the second group of ± are reversed from what they were 
in 4). Now treat 5) as we treated 1), obtaining the form 2) 
with decreasing terms. QED 
 
LEMMA 6.2.10. Let t = y1↑ ± y2↑ ± ... ± ym↑ be parenthesized 
in any way, where the y’s are distinct variables from 
{v1,...,vn}.  
i. t is equivalent to a term in ETM(0,1,+,-,↑). 
ii. log(t) is equivalent to a term in ETM(0,1,+,-).  
iii. ± y1↑ ± y2↑ ± ... ± ym↑, interpreted in Z arithmetic, is 
equivalent, in absolute value, to a term in ETM(0,1,+,-,↑). 
 
Proof: Let t be as given. By Lemma 6.2.9, we obtain a 
system of signed X sums equivalent to t, under X, for the 
various n,n2-orderings. This provides the appropriate 
definition by cases of t. This establishes i). 
 
For ii), note that under each of these n,n2-orderings X, t 
is equivalent to a signed X sum, which takes one of the 
form  
 

0. 
β↑. 

(...(β1↑ + β2↑ ...). 
(...(β1↑ - β2↑ ...). 

 
where in the last two cases, the number of β's is 2 or 
greater. Note that we have, respectively,  
 

log(t) = 0. 
log(t) = β. 
log(t) = β1. 

 log(t) = β1-1. 
 
which gives rise to a definition of log(t) by cases. The 
cases are given by the various n,n2-orderings. This provides 
the appropriate definition by cases of log(t). This 
establishes ii). 
 
For iii), let any n,n-ordering X be given. If the greatest 
y's under X appear with +, then we use ± y1↑ ± y2↑ ± ... ± 
yn↑. Otherwise, we reverse the ±. Then we rewrite in 
descending y's under X, and left associate, obtaining an 
equivalent expression in N arithmetic. No given the 
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appropriate definition by cases, where the cases are given 
by the X's. QED 
 
LEMMA 6.2.11. Let s = y1↑ ± y2↑ ± ... ± yp↑ and t = z1↑ ± z2↑ 
± ... ± zq↑ be parenthesized in any way, where 
{y1,...,yp,z1,...,zq} ⊆ {x1,...,xn}, and y1,...,yp,z1,...,zq 
are distinct variables. Then s•t is equivalent to a term r 
∈ ETM(0,1,+,-,↑) whose variables are among 
y1,...,yp,z1,...,zq.  
 
Proof: Let s,t,y1,...,yp,z1,...,zq,n be as given.  
 
According Lemma 6.2.9, under each such n,n2-ordering X, we 
can write s,t as signed X sums  
 

s = (α1↑ ± ... ± αb↑). 
t = (β1↑ ± ... ± βc↑). 

 
where the left sides use N arithmetic and the right sides 
use Z arithmetic. 
 
We now have  
 

(s)•(t) = γ1↑ ± ... ± γbc↑. 
 
where the left side uses N arithmetic and the right side 
uses Z arithmetic. Here each γ↑ takes the form  
 

αi↑•βj↑ = (αi+βj)↑. 
 
and hence each γ takes the form αi+βj. We can now treat the 
various γi as new variables, and get an appropriate 
definition by cases for γ1↑ ± ... ± γbc↑ using Lemma 6.2.10 
iii). We can then substitute the sums αi+βj for the new 
variables, and get the desired definition by cases for 
(s)•(t). QED 
 
DEFINITION 6.2.13. Let p ≥ 0. We define TM(0,1,+,-
,•,↑,log:p) as the terms in TM(0,1,+,-,•,↑,log) where every 
occurrence of every variable is followed by (at least) p 
↑’s.  
 
DEFINITION 6.2.14. We define ETM(0,1,+,-,•,↑,log:p) as the 
terms in ETM(0,1,+,•,↑,log) where every occurrence of every 
variable is followed by (at least) p ↑’s. This applies to 
occurrences in both the terms and the quantifier free 
formulas. 



 14 

 
As usual, we can omit some of the symbols 0,1,+,-,•,↑,log, 
for the above definition.  
 
LEMMA 6.2.12. Let p ≥ 1 and t ∈ TM(0,1,+,-,↑:p). Then t is 
equivalent to a term of the form s1↑ ± ... ± sk↑, 
parenthesized in some way, where each si ∈ TM(0,1,+,-,↑:p-
1). 
 
Proof: Let p ≥ 1. We define * by recursion on terms t ∈ 
TM(0,1,+,-,↑;p). The basis cases are t = 0,1,↑p(xn). Define 
0* = ↑p(x1)-↑p(x1). 1* = 0↑. ↑p(xn)* = ↑p(xn). t↑* = t*↑. 
(s+t)* = s*+t*. (s-t)* = s*-t*. QED 
 
LEMMA 6.2.13. Let t ∈ ETM(0,1,+,-,•,↑,log:p), p ≥ 1, with 
at most one occurrence of log and • combined. Then t is 
equivalent to a term t* ∈ ETM(0,1,+,-,↑:p-1). 
 
Proof: By Lemma 6.2.12, this holds if there are no 
occurrences of log and •. We can assume that either there 
is a unique occurrence of • and no occurrence of log, or 
there is a unique occurrence of log and no occurrence of •. 
Thus we have a split into the following two cases. 
 
case 1. log(u) is a subterm of t. Then u ∈ TM(0,1,+,-,↑:p). 
By Lemma 6.2.12, write  
 

u = t1↑ ± ... ± tk↑ 
 
parenthesized in some way, where t1,...,tk ∈ TM(0,1,+,-,↑:p-
1). Introduce distinct variables y1,...,yk for t1,...,tk. By 
Lemma 6.2.10, log(y1↑ ± ... ± yk↑) is equivalent to some 
term α(y1,...,yk) ∈ ETM(0,1,+,-) . By substitution, log(u) = 
log(t1↑ ± ... ± tk↑) is equivalent to a term α(t1,...,tk) ∈ 
ETM(0,1,+,-,↑;p-1). Replace log(u) in t by α(t1,...,tk), and 
expand to a term t* in ETM(0,1,+,-,↑). In this expansion, 
we use the same cases that we use for α(t1,...,tk), moving 
these cases out in front. Therefore t* ∈ ETM(0,1,+,-,↑:p-
1).       
 
case 2. r•s is a subterm of t. Then r,s ∈ TM(0,1,+,-,↑:p). 
By Lemma 6.2.12, write  
 

r = r1↑ ± ... ± rp↑ 
s = s1↑ ± ... ± sq↑ 
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parenthesized in some way, where r1,...,rp,s1,...,sq ∈ 
TM(0,1,+,-,↑;p-1). Introduce distinct variables 
y1,...,yp,z1,...,zq for r1,...,rp,s1,...,sq. By Lemma 6.2.11, 
(y1↑ ± ... ± yp)•(z1↑ ± ... ± zq↑) is equivalent to some term 
β(y1,...,yp,z1,...,zq) ∈ ETM(0,1,+,-,↑) = ETM(0,1,+,-,↑:0). 
By substitution, r•s = (r1↑ ± ... ± rp↑)•(s1↑ ± ... ± sq↑) is 
equivalent to the term β(s1,...,sp,t1,...,tq) ∈ ETM(0,1,+,-
,↑:p-1). Replace r•s in t by β(s1,...,sp,t1,...,tq), and 
expand to a term t* in ETM(0,1,+,-,↑). In this expansion, 
we use the same cases that we use for α(t1,...,tk), moving 
these cases out in front. Therefore t* ∈ ETM(0,1,+,-,↑:p-
1).  
 
QED  
 
LEMMA 6.2.14. Let t ∈ ETM(0,1,+,-,•,↑,log:p), p ≥ n ≥ 1, 
with at most n occurrences of log and • combined. Then t is 
equivalent to a term t* ∈ ETM(0,1,+,-,↑:p-n).  
 
Proof: We argue by induction on n ≥ 1, that the statement is 
true for all p ≥ n ≥ 1. The case n = 1 is Lemma 6.2.13. 
Suppose this is true for a fixed n ≥ 1. Let t ∈ ETM(0,1,+,-
,•,↑,log:p), p ≥ n+1 ≥ 1, with exactly n+1 occurrences of 
log and • combined.  
 
It is clear that there is an occurrence of log(u) where u 
has no log or •, or there is an occurrence of u•v, where u,v 
have no occurrence of log or •. I.e., there is a subterm s ∈ 
TM(0,1,+,-,•,↑,log) of t with exactly one occurrence of log 
and • combined. It is obvious that s ∈ TM(0,1,+,-
,•,↑,log:p).  
 
By Lemma 6.2.13, s is equivalent to a term r ∈ ETM(0,1,+,-
,↑:p-1). Replace s in t by r, and expand the result to a 
term t’ by bring the cases inside r outside. Note that the 
cases inside r contain no occurrences of log and •. Then t’ 
∈ ETM(0,1,+,-,•,↑,log:p-1) has at most n occurrences of log 
and • combined. Now apply the induction hypothesis to t’ to 
obtain the required t* ∈ ETM(0,1,+,-,↑:(p-1)-n))  
= ETM(0,1,+,-,↑:p-(n+1)). QED 
 
LEMMA 6.2.15. Let t ∈ ETM(0,1,+,-,•,↑,log:p), p ≥ 1, with 
at most p occurrences of log and • combined. Then t is 
equivalent to a term t* ∈ ETM(0,1,+,-,↑). 
 
Proof: Immediate from Lemma 6.2.14. QED 
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LEMMA 6.2.16. Let f:Nk → N be given by a term in 
ETM(0,1,+,-,•,↑,log). If mesh(A) is sufficiently large, 
then ↑A is an infinite SOI for f. 
 
Proof: Let f be given by t ∈ ETM(0,1,+,-,•,↑,log) with at 
most p occurrences of log and • combined, p ≥ 1.  
 
Let t’ be the result of replacing every occurrence of every 
variable v in t by ↑p(v). Then t’ ∈ ETM(0,1,+,-,•,↑,log:p). 
By Lemma 6.2.15, let t’ be equivalent to t’* ∈ ETM(0,1,+,-
,↑). 
 
According to Lemma 6.2.8,  
 

if mesh(A) is sufficiently large,  
then ↑A is an infinite SOI for t’*,  

and hence for t’. 
 
Obviously,  
 

if mesh(A) ≥ p and ↑A is an infinite SOI for t’,  
then ↑(A+p) is an infinite SOI for t. 

 
Therefore, 
 

if mesh(A) is sufficiently large,  
then ↑A is an infinite SOI for t.  

 
QED 
 
We can usefully sharpen the indiscernibility given by Lemma 
6.2.16.  
 
Recall Definition 5.2.2 of #(ϕ) in Definition  
 
LEMMA 6.2.17. Fix r ≥ 1. If mesh(A) is sufficiently large, 
then ↑A is an infinite set of indiscernibles for all 
quantifier free formulas ϕ of (N,0,1,+,-,•,↑,log) with #(ϕ) 
≤ r.  
 
Proof: Let r ≥ 1. For each such ϕ(v1,...,vr), define  

 
fϕ(x1,...,xr) = 1 if ϕ(x1,...,xr); 0 otherwise.   

 
Then fϕ ∈ BAF. Now apply Lemma 6.2.16 to each fϕ. The Lemma 
follows easily. QED 
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We now provide a required link between Lemma 6.2.16 and 
Chapter 4 in order to show that Propositions C,E-H hold in 
the recursive subsets of N – and in fact, in the subsets of 
N that have primitive recursive enumerations.   
 
Let us now look at the proof given in Chapter 4 of 
Proposition B in ACA’ + 1-Con(MAH), with an eye towards 
showing that Propositions C,E-H hold in the sets with 
primitive recursive enumeration functions. This is Theorem 
4.4.11.  
 
Our strategy is to first rework much of sections 4.3 and 
4.4 primitive recursively.  
 
Before getting into full details, we now illustrate the 
power of Lemma 6.2.17 for this purpose. Note that in the 
proof of Theorem 4.4.11, we took the following step, which 
must now be avoided: 
 

...By Ramsey’s theorem for 2r-tuples in ACA’,  
we can find a p,q,b;r-structure  

M = (N,0,1,<,+,f,g,c0,c1,...). ... 
 
The notion of p,q,b;r-structure was defined just before 
Lemma 4.4.2. Note that in this context of N, the atomic 
indiscernibility clause 7’ is the only substantial clause.  
 
We avoid this use of Ramsey’s theorem for f,g ∈ BAF, as 
follows.  
 
LEMMA 6.2.18. Let p,q,b,r ≥ 1, f ∈ ELG(p,b), g ∈ ELG(q,b), 
f,g ∈ SD ∩ BAF. Then (N,0,1,<,+,f,g,(↑A)1,(↑A)2,...) is a 
p,q,b;r-structure, provided mesh(A) is sufficiently large. 
Here (↑A)1,(↑A)2,... is the strictly increasing enumeration 
of the set ↑A. 
 
Proof: Lemma 6.2.17 takes care of clause 7’. So this is 
immediate. QED  
 
Lemma 6.2.18 takes care of one crucial step in the proof of 
Theorem 4.4.11. We still have to show that the D1 ⊆ ... ⊆ 
Dn ⊆ N there can be taken to be recursive, or even have 
primitive recursive enumeration functions.   
 
Let us now proceed systemically. Our first aim is to obtain 
a new form of Theorem 4.3.8, and use it in an adaptation of 
section 4.4.  
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Recall the definition of a special SOI for f:Np → N in 
Definition 4.3.6. We repeat this definition, by rearranging 
its components. 
 
DEFINITION 6.2.15. Let f:Np → N and A ⊆ N. We say that A is 
a special SOI for f if and only if the following holds.  
 
a. The truth value of any statement  
 

f(x1,...,xp) < f(y1,...,yp) 
 
where x1,...,xp,y1,...,yp ∈ A, depends only on the order type 
of the 2p-tuple (x1,...,xp,y1,...,yp). 
 
b. Let x1,...,xp,y1,...,yp ∈ A. Suppose (x1,...,xp) and 
(y1,...,yp) have the same order type. Suppose also that for 
all 1 ≤ i ≤ p, xi = yi ∨ yi > max(x1,...,xp). Then i) 
f(x1,...,xp) ≤ f(y1,...,yp); ii) if f(x1,...,xp) < 
f(y1,...,yp) then f(y1,...,yp) is greater than all 
f(z1,...,zp), |z1,...,zp| ≤ |x1,...,xp|. 
 
The conditions on x,y ∈ Ap in b) play an important role. We 
say that x,y are specially related if and only if the 
conditions on x,y ∈ Ap in b) hold.  
 
Recall the key indiscernible stretching Lemma 4.3.5. Since 
ACA’ was being used freely, we did not consider any 
effectivity issues with regard to Lemma 4.3.5. We will 
refine Lemma 4.3.5 below. First we need a Lemma. 
 
LEMMA 6.2.19. For all p ≥ 1 there is a primitive recursive 
function f:N2 → N such that the following holds. Let 
x0,...,xn ∈ Np, c ∈ N, where n = f(c,|x1|) and each |xi+1| ≤ 
|xi|+c. Then there exists 1 ≤ i < j ≤ n such that xi,xi+1 are 
specially related. 
 
Proof: Fix p ≥ 1. The statement  
 

1) (∀c,x0)(∃n)(∀x1,...,xn ∈ Np) 
((∀i ≤ n-1)(|xi+1|≤ |xi|+c) →  

(∃i < j)(xi,xi+1 obey b)) 
 
is provable in the formal system WKL0 (see [Si99]), as 
follows. Assume false, and fix c,x0. Then apply WKL0 to 
produce an infinite counterexample x0,x1,... ∈ Np. Then 
choose an infinite subsequence so that the p-tuples have 
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the same order type and the first terms are all = or all <. 
Iterate this construction for p steps, arriving at an 
infinite counterexample y0,y1,... where for all 1 ≤ i ≤ p, 
the i-th coordinates are all = or all <. For j large 
enough, y0,yj are specially related. This is a 
contradiction. 
 
It is obvious that 1) is in Π0

2 form, and so we can apply 
our Theorem that every Π0

2 sentence provable in WKL0 has a 
primitive recursive bounding function. See [Si99,09], p. 
37, p. 381. QED  
 
LEMMA 4.3.5’. The following is provable in ACA’. Let q ≥ 3p 
≥ 1, and f:[0,q]p → N. Assume [0,q] is a special SOI for f. 
There exists primitive recursive g:Np → N such that N is a 
special SOI for g, where g|[0,q]p is isomorphic to f in the 
following sense. For all x,y ∈ [0,q]p, f(x) ≤ f(y) ↔ g(x) ≤ 
g(y).  
 
Proof: Let p,q,f be as given. The proof of Lemma 4.3.5 
begins by putting the following recursive relation ≤* on Np. 
x ≤* y if and only if there exists α,β ∈ [0,q]p such that  
 
i. (x,y) and (α,β) have the same order type. 
ii. f(α) ≤ f(β).  
 
In the proof of Lemma 4.3.5, it is shown that ≤* is 
reflexive, connected, transitive, and its order type, 
modulo =*, is finite or ω.  
 
Then we defined g:Np → N by  
 

g(x) is the position in ≤* of x counting from 0. 
 
We proved that g is as required here, except for “primitive 
recursive”. We did not address any issues of effectivity 
for g in the proof of Lemma 4.3.5.  
 
Thus it suffices to prove that g is primitive recursive.  
 
We say that a finite or infinite sequence x0,x1,... ∈ Np is 
complete if and only if each xi <* xi+1, and every y ∈ Np is 
equivalent (=*) to some xi. By the proof of Lemma 4.3.5, 
there is a complete sequence.  
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Suppose x0,...,xn is a finite complete sequence. We claim 
that g is elementary recursive. Let x ∈ Np. Return i such 
that x =* xi.  
 
So we will assume that complete sequences are infinite. We 
fix a complete sequence x0,x1,... . Obviously, all complete 
sequences are equivalent (=*), term by term.  
 
We claim that for all x ∈ Np there exists y ∈ Np such that  
 

1) |y| ≤ |x|+2p+p. 
y is an immediate successor of x in <*. 

 
To see this, let x = (x1,...,xp), and let y = (y1,...,yp) be 
an immediate successor of x in <* with least possible |y|. 
Assume |y| > |x| + 2p + p. 
 
Let yi be a greatest coordinate of y. We claim that the 
greatest coordinate of y bigger than yi is yi-1. To see 
this, suppose otherwise, and let y’ be the result of 
decrementing the yi’s in y by 1. Then x,y’ and x,y have the 
same order type, and so x <* y’. Also y’,y obeys the 
hypotheses of clause b), and so y’ ≤* y. Hence y’ is another 
immediate successor of x in <* of lower |y’|. This 
contradicts the choice of y. 
 
Now the same argument will not show that the greatest 
coordinate of y bigger than yi-1 is yi-2. However, this 
argument does show that the greatest coordinate of y bigger 
than yi-1 is at least yi-3. This is because we can drop the 
yi,yi-1 in y by 2 each. We repeat this argument p times, 
thereby obtaining min(y) > |x|+p. Then we can push all of 
the coordinates of y down by p, obtaining another immediate 
successor of x in <* of lower | |. This is a contradiction.  
 
Next we claim that for all x ∈ Np, not minimal in <*, there 
exists y ∈ Np such that  
 

2) |y| ≤ |x|+2p+p. 
y is an immediate predecessor of x in <*. 

 
To see this, let x = (x1,...,xp), and let y = (y1,...,yp) be 
an immediate predecessor of x in <* with least possible 
|y|. Assume |y| > |x| + 2p + p. 
 
Let yi be a greatest coordinate of y. If we raise the yi in 
y by 1 then we obtain z with y ≤* z <* x. Hence y =* z.  
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We now claim that the greatest coordinate of y bigger than 
yi is yi-1. To see this, suppose otherwise, and let y’ be 
the result of decrementing the yi’s in y by 1. Then y’ <* x. 
Since y =* z, we have y =* y’. Hence y’ is another 
immediate predecessor of x in <* of lower |y’|. This 
contradicts the choice of y. 
 
Now the same argument will not show that the greatest 
coordinate of y bigger than yi-1 is yi-2. However, we now 
show that the greatest coordinate of y bigger than yi-1 is 
at least yi-3. This is because if otherwise, we can first 
raise the yi,yi-1 in y by 2 each, with =*. Then we drop the 
yi,yi-1 in y by 2, also with =*, contradicting the choice of 
y. 
 
We repeat this argument p times, thereby obtaining min(y) > 
|x|+p. Then we can push all of the coordinates of y first 
up by p, and then down by p, obtaining another immediate 
predecessor of x in <* of lower | |. This is a 
contradiction. 
 
We now claim the following. Let x <* y <* z. There exists w 
such that  
 

3) |w| ≤ |x|+|z|+p. 
x <* w <* z. 

 
To see this, choose y such that x <* y <* z, where |y| is 
minimal. Assume |y| > |x|+|z|+p. We can move a nonempty 
tail of the coordinates of y that are > |x|+|z|, down by 1, 
obtaining y’, with x <* y’ <* z. This contradicts the 
choice of y.  
 
Note that 3) gives us a bounded search algorithm for 
testing whether z is an immediate successor of x in <*. 
 
From 1),2), we have  
 

4) (∀i ≥ 1)(|xi-1|,|xi+1| ≤ |xi|+2p+p). 
 
We say that a complete sequence is minimal if and only if 
each xi has minimum |xi| among the x =* xi.  
 
We can now build a minimal complete sequence 
algorithmically. Let x1 be any <* minimal element of Np. 
Suppose xi has been defined. Search among the y with |y| ≤ 
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|xi|+2p+p for an immediate successor y of xi in <*. By 1), 
there is such a y. By the previous paragraph, we can test 
whether y is an immediate successor of xi in <*.  
 
This construction provides a complete sequence x0,x1,... and 
an algorithm for producing xi from i. It is easy to see that 
the running time of this algorithm is bounded by an 
iterated exponential. I.e., x0,x1,... is elementary 
recursive.  
 
However, we still have to show that the function  
 

g(x) = the unique n such that x = xn 
 
is primitive recursive. For this, we use Lemma 6.2.19. Let 
x ∈ Np. Let x = xn. We need to give an upper bound on n, 
primitive recursively in x.  
 
Consider the sequence  
 

x = xn,xn-1,...,x0 ∈ Np. 
 
Let f:N2 → N be the primitive recursive function given by 
Lemma 6.2.19. If n ≥ f(2p+p,|x|) then by Lemma 6.2.19,  
 

there exists 1 ≤ i ≤ n such that xi+1,xi  
are specially related. 

 
But then, xi+1 ≤* xi, which is a contradiction. Hence we have 
the primitive recursive upper bound  
 

n ≤ f(2p+p,|x|). 
 
We can now compute g(x) primitive recursively, by computing 
x0,x1,... elementary recursively, out to f(2p+p,|x|)+1 terms 
and testing for x =* xi. QED 
 
The following adds to Lemma 4.3.7. 
 
LEMMA 4.3.7’. The following is provable in ACA’. Every true 
ν(p,q,ψ) is primitive recursively true. 
 
Proof: Let ν(p,q,ψ) be true. As in the proof of Lemma 
4.3.7, there exists f:[0,q]p → N in the sense of Lemma 
4.3.5’. Now apply Lemma 4.3.4’ and 4.3.6. QED 
 
The following adds to Lemma 4.3.8.  
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THEOREM 4.3.8’. The following is provable in ACA’. Every 
true λ(k,n,m,R1,...,Rn-1) is primitive recursively true.  
 
Proof: Use Lemma 4.3.7’ and the proof of Theorem 4.3.8. QED 
 
Recall these definitions made in section 4.4: 
 

p,q,b-structure. (Definition 4.4.2) 
p,q,b;r-structure. (Definition 4.4.4) 

p,q,b;r,n-special structure. (Definition 4.4.5) 
p,q,b;r-type. (Definition 4.4.7) 

p,q,b;r,n-special type. (Definition 4.4.7) 
 
We need modified forms of the last four of these notions. 
For this purpose, let M* be a p,q,b;r-structure. Recall 
that M*<r> is the set of all values of closed terms of 
length ≤ r in M*. By the almost strict dominance of +*,f*,g* 
in M*, we see that M*<r> has order type ω.  
 
DEFINITION 6.2.16. We say that M* is a p,q,b;r-
structure/prim if and only if  
 
i. M* is a p,q,b;r-structure. 
ii. Every element of M* is the value of a closed term. 
iii. The <* relation on closed terms is primitive 
recursive. 
 
DEFINITION 6.2.17. A p,q,b;r-type/prim is the type of some  
p,q,b;r-structure/prim. 
 
DEFINITION 6.2.18. We say that h:N → M* is primitive 
recursive if and only if there is a primitive recursive 
function h’ from N into closed terms such that the value in 
M* of each h’(n) is h(n).  
 
DEFINITION 6.2.19. A p,q,b;r,n-special structure/prim is a  
p,q,b;r,n-structure/prim in which witnessing D’s can be 
found whose enumeration functions are primitive recursive.  
 
DEFINITION 6.2.20. A p,q,b;r,n-special type/prim is the 
p,q,b;r-type of some p,q,b;r,n-special structure/prim. 
 
The following adds to Lemma 4.4.4. 
 
LEMMA 4.4.4’. The following is provable in RCA0. Let M* be a 
p,q,b;r-structure. Then M*<r> is of order type ω. There is 
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an increasing primitive recursive bijection f:N → M*<r>. 
Every p,q,b;r-type is a p,q,b;r-type/prim.  
 
Proof: Let M* be a p,q,b;r-structure, M* = 
(N*,0*,1*,<*,+*,f*,g*,c0*,...). Let α be a closed term of 
length at most r, representing an element of M*<r>, in 
which some ci appears. The value of α must lie in 
[ci*,ci+1*), where i is greatest such that ci appears in α. 
There are only finitely many such α for each i. Also, if no 
ci appears in α then the value of α lies in [0,c1), and 
there are only finitely many of these α, as well. Hence the 
order type of M*<r> is ω. Furthermore, there are obvious 
double exponential bounds on the sizes of these finite 
sets. We can use the p,q,b;r-type of M* and the restricted 
indiscernibility of the c*’s to obtain the increasing 
primitive recursive bijection f:N → M*<r>.  
 
Let τ be the p,q,b;r-type of the p,q,b;r-structure M. We can 
build another p,q,b;r-structure on the basis of τ using the 
appropriate equivalence relation on terms of bounded 
length, so that the equivalence classes are finite. This 
construction is very effective in τ, and results in a 
p,q,b;r-structure/prim. QED  
 
The following adds to Lemma 4.4.7.  
 
LEMMA 4.4.7’. The following is provable in RCA0. Every 
p,q,b;r,n-special type is a p,q,b;r,n-special type/prim.  
 
Proof: Let τ be a p,q,b;r,n-special type. By Lemma 4.4.4’, τ 
is a p,q,b;r-type/prim. From the proofs of Lemmas 4.4.5 and 
4.4.6, we see that RCA0 proves that the witnesses to τ being 
a p,q,b;r,n-special type are the same as the witnesses to 
some λ(k,n,p+q+2,R1,...,Rn-1) explicitly produced from 
p,q,b,r,n,τ. Since τ is a p,q,b;r,n-special type, 
λ(k,n,p+q+2,R1,...,Rn-1) it true. By Theorem 4.3.7’, 
λ(k,n,p+q+2,R1,...,Rn-1) is primitively recursively true. 
Hence τ is a p,q,b;r,n-special type/prim. QED  
 
The following adds to Lemma 4.4.10. 
 
LEMMA 4.4.10’. The following is provable in ACA’ + 1-
Con(MAH). (∀p,q,b,n ≥ 1)(∃r)(∀τ)(τ is a p,q,b;r-type → τ is 
a p,q,b;r,n-special type/prim). 
 
Proof: By Lemma 4.4.7’ and 4.4.10. QED  
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THEOREM 6.2.20. Propositions C,E-H are primitive 
recursively true. I.e., there exist infinite A,B,C whose 
enumeration functions are primitive recursive. This is 
provable in ACA’ + 1-Con(MAH). 
 
Proof: We argue in ACA’ + 1-Con(MAH). Let p,q,b,n ≥ 1, and f 
∈ ELG(p,b), g ∈ ELG(q,b), where f,g ∈ SD ∩ BAF. Let r be 
given by Lemma 4.4.10’. By Lemma 6.2.18, we can find a 
p,q,b;r-structure M = (N,0,1,<,+,f,g,c0,c1,...), where the 
c’s form a primitive recursive sequence of powers of 2. By 
Lemma 4.4.10’, τ is a p,q,b,n,r-special type/prim. Let M* = 
(N*,0*,1*,<*,+*,f*,g*,c0*,c1*,...) be a p,q,b;n,r-special 
structure/prim with p,q,b;r-type τ. Let D1* ⊆ ... ⊆ Dn* ⊆ 
M*<r> be infinite, where D1* ⊆ {c0*,c1*,...}, each f*Di* ⊆ 
Di+1* ∪. g*Di+1*, and D1* ∩ f*Dn* = ∅, and where the 
enumeration functions of the D*’s are primitive recursive. 
Since M,M* have the same p,q,b;r-type, M*<r> and M<r> are 
isomorphic by a primitive recursive bijection. This 
isomorphism sends D1*,...,Dn* to infinite D1 ⊆ ... ⊆ Dn ⊆ 
M<r> with primitive recursive enumeration functions, where 
D1 ⊆ {c0,c1,...} ⊆ N↑, and each fDi ⊆ Di+1 ∪. gDi+1, and D1 ∩ 
fDn = ∅. QED   
 
Note that Theorem 6.2.20 provides us with explicitly Π0

3 
forms of Propositions C,E-H as stated in Appendix A.  
 
COROLLARY 6.2.21. Theorems 5.9.11 and 5.9.12 apply to 
Propositions C[prim], E[prim], F[prim], G[prim], H[prim].  
 
Proof: By Theorem 6.2.20 and the fact that Propositions 
C[prim], E[prim], F[prim] immediately imply Propositions 
C,F,G. QED  
 
Recall the tameness of the structure (N,+,↑) used in Lemma 
6.2.5.  
 
DEFINITION 6.2.21. The superexponential is the function f:N 
→ N given by f(n) = 2^2^...^2, where there are n 2's. Here 
f(0) = 1, f(1) = 2.  
 
We claim the same kind of tameness holds for (N,+,↑). This 
follows from the fact that the superexponential f satisfies 
the Semenov conditions discussed in section 4 of Appendix 
B.  
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The nontrivial fact that we need to verify is that for all 
m ≥ 1, the residues of the values of f mod m are ultimately 
periodic.  
 
Thus it follows from [Se83] that (N,+f) has a natural 
expansion with elimination of quantifiers, and (N,+,f) is 
primitive recursively decidable. We make the following 
definitions.  
 
LEMMA 6.2.22. If m is odd then the residues of 
f(0),f(1),... mod m are ultimately periodic.  
 
Proof: Let 2k be congruent to 1 mod m. Let r > s ≥ 1 be such 
that g(r) ≡ g(s) mod k. Then g(r+1) ≡ g(s+1) mod m. To see 
this, we have to check that  
 

2f(r) - 2f(s) ≡ 0 mod m. 
 

Obviously,  
 

2f(r) - 2f(s) = 2f(s)(2f(r)-f(s) - 1). 
 
Since k|f(r)-f(s), we see that 2f(r)-f(s) = (2k)(f(r)-f(s))/k. 
Since 2k ≡ 1 mod m, we see that 2f(r)-f(s) ≡ 1 mod m.  
 
Hence we have periodicity for f(n), n ≥ r, with period r-s. 
QED 
 
LEMMA 6.2.23. If n ≥ 1 then the residues of g(0),g(1),... 
mod n are ultimately periodic.  
 
Proof: Write n = 2rm, where m ≥ 1 is odd. Then the residues 
of f(n),f(n+1),... mod n are just the residues of 
f(n)/2r,f(n+1)/2r,... mod m, multiplied by 2r. Since the 
later residues are ultimately periodic, the former residues 
are ultimately periodic. QED 
 
THEOREM 6.2.24. Let f be the superexponential. The first 
order theory of the structure (N,+,f) is primitive 
recursive.  
 
Proof: By Lemma 6.2.23, f obeys the Semenov conditions from 
section 4 of Appendix B. QED 
 
DEFINITION 6.2.22. The Presburger sets are the sets 
definable in (N,+). The exponentially Presburger sets are 
the sets definable in (N,+,↑). The superexponentially 
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Presburger sets are the sets definable in (N,+,f), where f 
is the superexponential.  
 
As stated earlier, we conjecture that a more careful 
argument will show that Propositions C,E-H hold in the 
superexponentially Presburger sets.  
 
In light of the primitive recursive decision procedure for 
superexponential Presburger arithmetic in Theorem 6.2.24, 
Propositions C,E-H, when stated in the superexponentially 
Presburger sets, become Π0

2 statements. We conjecture that 
these Π0

2 statements are provably equivalent to 1-Con(SMAH) 
in ACA'.  


