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CHAPTER 6.  
FURTHER RESULTS 
 
6.1. Propositions D-H. 
6.2. Effectivity. 
6.3. A Refutation. 
 
6.1. Propositions D-H. 
 
Our treatment of Propositions A,B,C culminated with 
Theorems 5.9.9, 5.9.11, and 5.9.12 at the end of Chapter 5.  
 
In this section, we consider five Propositions D-H that 
have the same metamathematical properties as Propositions 
A,B,C. We will also consider some variants of Propositions 
D-H that do not share these properties, or whose status is 
left open.  
 
Recall the main theorems of Chapter 5 (in section 5.9), 
which are Theorems 5.9.9, 5.9.11, and 5.9.12. Examination 
of the proofs of these three Theorems reveal that Theorem 
5.9.11 with 1-Con(SMAH) is the key. If ACA’ proves the 
equivalence of a statement with 1-Con(SMAH) then all of the 
other properties provided by these three Theorems quickly 
follow.   
 
Accordingly, we establish these same three Theorems for 
Propositions D-H by showing that they are also each 
equivalent to 1-Con(SMAH) over ACA’.  
 
We begin with Proposition D (see below), which is a 
sharpening of Proposition B. Proposition D immediately 
implies Propositions A-C over RCA0.  
 
Note that Propositions A-C are based on ELG. Examination of 
the proof of Proposition B in Chapter 4 shows that we can 
separately weaken the conditions on f,g in different ways. 
Also, we can place an inclusion condition on the starting 
set A1. As usual, we use | | for the sup norm, or max. This 
results in Proposition D below. 
 
DEFINITION 6.1.1. We say that f is linearly bounded if and 
only if f ∈ MF, and there exists d such that for all x ∈ 
dom(f),  
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f(x) ≤ d|x|. 
 
We let LB be the set of all linearly bounded f. 
 
DEFINITION 6.1.2. We say that g is expansive if and only if 
g ∈ MF, and there exists c > 1 such that for all but 
finitely many x ∈ dom(f), 
 

c|x| ≤ g(x) 
 
We let EXPN be the set of all expansive g. 
 
Recall the definitions of MF, SD (Definition 1.1.2), and 
ELG, EVSD (Definitions 2.1, 2.2). 
 
PROPOSITION D. Let f ∈ LB ∩ EVSD, g ∈ EXPN, E ⊆ N be 
infinite, and n ≥ 1. There exist infinite A1 ⊆ ... ⊆ An ⊆ N 
such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅;  
iii) A1 ⊆ E. 
 
Note that ELG ⊆ LB ∩ EVSD ∩ EXPAN, and so Proposition D 
immediately implies Proposition B.  
 
Proposition D is the strongest Proposition that we prove in 
this book (from large cardinals). 
 
Recall that Propositions A-C are official statements of 
BRT. More accurately, Proposition B is really an infinite 
collection of statements of BRT.  
 
Proposition D not a statement (or statements) of BRT for 
two reasons.  
 
a. There is no common set of functions used for f,g 
(asymmetry). 
b. The set E is used as data, rather than just f,g.  
 
Features a,b both suggest very natural expansions of BRT. 
Feature a suggests “mixed BRT”, where one uses several 
classes of functions instead of just one. One can go 
further and use several classes of sets as well.  
 
Feature b in Proposition D suggests another very natural 
expansion of BRT. In BRT, we consider statements of the 
form  
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given functions there are sets such that  

a given Boolean relation holds between the sets  
and their images under the functions. 

 
We can expand BRT with 
 

given functions and sets there are sets such that  
a given Boolean relation holds between the sets  

and their images under the functions. 
 
We will not pursue such expansions of BRT in this book.  
 
We remark that feature b can be removed (in some contexts 
such as here) by introducing a new function h and asserting 
that A1 ⊆ hN (obviously hN = rng(h)).  
 
We now prove Proposition D in SMAH+ by adapting the proof of 
Proposition B in SMAH+ given in section 4.2.  
 
We fix f,g,E as given by Proposition D. Analogously to 
section 4.2, we let f be p-ary, g be q-ary. We fix an 
integer b ≥ 1 such that for all x ∈ Np and y ∈ Nq, 
 
i. if |x|,|y| > b then  
 

|x| < f(x) ≤ b|x|. 
 (1 + 1/b)|y| ≤ g(y). 

 
ii. if |x| ≤ b then f(x) ≤ b2.  
 
Note how our inequalities are weaker than those used in 
section 4.2.  
 
We also fix n ≥ 1 and a strongly pn-1-Mahlo cardinal κ. 
 
The first place in section 4.2 that needs to be modified is 
at Lemma 4.2.2. Here we must use the given infinite set E ⊆ 
N.  
 
LEMMA 4.2.2’. There exist infinite sets E ⊇ E0 ⊇ E1 ⊇ ... 
indexed by N, such that for all i ≥ 0, ϕ ∈ AF(L), lth(ϕ) ≤ 
i, and increasing partial h1,h2:V(L) → N adequate for ϕ with 
rng(h1),rng(h2) ⊆ Ei, we have Sat(M,ϕ,h1) ↔ Sat(M,ϕ,h2). 
 
Proof: See the proof of Lemma 4.2.2. QED 
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Lemma 4.2.3 do not involve our inequalities i,ii, and 
therefore require no modification. 
 
We need to sharpen Lemma 4.2.4 for later purposes, since we 
do not have an upper bound for g. We use the # notation 
that was introduced much later just before Lemma 4.2.16.  
 
LEMMA 4.2.4’. Let ϕ ∈ AS(L*). Sat(M*,ϕ) if and only if ϕ ∈ 
T. <* is a linear ordering on N*. Let n ≥ 0, t ∈ CT(L*), 
#(t) ≤ n. Then t < cn+1 ∈ T.  
 
Proof: For the first claim, see the proof of Lemma 4.2.4. 
For the last claim, let i = lth(t < cn+1). The unique 
increasing bijection h:V(L) → Ei has Val(M,t’,h) < h(vn+1), 
where t’ is the result of replacing each ci by vi, using the 
indiscernibility of Ei. Argue as before. QED   
 
Lemmas 4.2.5 - 4.2.8 do not involve our inequalities i,ii, 
and therefore require no modification. 
 
We sharpen Lemma 4.2.9 for later purposes, since we do not 
have an upper bound for g. 
 
LEMMA 4.2.9’. These definitions of <**, +**, f**, g** are 
well defined. Let t ∈ CT(L**), #(t) ≤ α. Then t <** cα+1**.  
 
Proof: Use Lemma 4.2.4’ and the proof of Lemma 4.2.9. QED 
 
Lemmas 4.2.10' - 4.2.14' do not involve our inequalities 
i,ii. 
 
We need to weaken Lemma 4.2.15, in light of our 
inequalities i,ii. 
 
LEMMA 4.2.15’. Let x1,...,xp,y1,...,yq ∈ N**, where 
|x1,...,xp|,|y1,...,yq| >** b^. Then  
 

|x1,...,xp| <** f**(x1,...,xp) ≤** b|x1,...,xp|. 
(1 + 1/b)|y1,...,yq| ≤** g**(y1,...,yq). 

 
If |x1,...,xp| ≤** b^ then f(x1,...,xp) ≤** b2^. 
 
Proof: See the proof of Lemma 4.2.15. QED 
 
We aim for a modification of the crucial well foundedness 
given by Lemma 4.2.19. This was stated using all elements 
of N**. In other words, for all terms in CT(L**). We cannot 
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establish such a well foundedness result in the present 
setting for all terms in CT(L**). We have weakened the 
inequalities for f**,g** too much. 
 
However, we can establish this well foundedness result for 
the restricted class of terms, CT(L**\g) consisting of all 
closed terms of L** in which g does not appear. 
 
LEMMA 4.2.16’. Let t ∈ CT(L**). #(t) = -1 ↔ Val(M**,t) is 
standard. Suppose #(t) = cα. Then cα** ≤ Val(M**,t) <** 
cα+1**. Let s ∈ CT(L**\g). Suppose #(s) = cα. There exists a 
positive integer d such that cα** ≤** Val(M**,s) <** dcα** 
<** cα+1**. 
 
Proof: For the equivalence in the first claim, see the 
proof of Lemma 4.2.16. For the remaining claims, use 
induction on s,t, Lemmas 4.2.4’, 4.2.9’, 4.2.15’, and the 
proof of Lemma 4.2.16. QED 
 
Lemmas 4.2.17, 4.2.18 do not involve our inequalities i,ii, 
and therefore require no modification. 
 
DEFINITION 6.1.3. It is convenient to write VCT(L**\g) for 
the set of values of terms in CT(L**\g).  
 
DEFINITION 6.1.4. Let s be a rational number. We write <s**’ 
for the relation on VCT(L**\g) given by x <s** y ↔ sx <** 
y. 
 
LEMMA 4.2.19'. Let s be a rational number > 1. There exists 
k ≥ 1 such that for all x1 <s**' x2 <s**' ... <s**' xk, we 
have 2x1 <**' xk. 
 
Proof: See the proof of Lemma 4.2.19. QED 
 
Lemma 4.2.20 has to be weakened as follows.  
 
LEMMA 4.2.20’. Let s be a rational number > 1. The relation 
<s**’ on VCT(L**\g) is transitive, irreflexive, and well 
founded. 
 
Proof: We adapt the proof of Lemma 4.2.20 with the 
following modification. In the fourth paragraph, d ∈ N\{0} 
is fixed such that Val(M**,t) <** dcα**, using Lemma 4.2.16. 
Here we use Lemma 4.2.16' under the assumption that t ∈ 
VCT(L**\g). QED  
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DEFINITION 6.1.5. Let s = 1 + 1/2b for using Lemma 4.2.20'.   
 
LEMMA 4.2.21’. There is a unique set W such that W = {x ∈ 
VCT(L**\g) ∩ nst(M**): x ∉ g**W}. For all α < κ, cα** ∉ 
rng(f**),rng(g**). In particular, each cα** ∈ W.  
 
Proof: Note that g**:NST(M**)q → NST(M**), but 
g**:(VCT(L**\g) ∩ nst(M**))q → VCT(L**\g) ∩ nst(M**) may be 
false. So we regard g** as a partial function from 
(VCTM(L**\g) ∩ nst(M**))q into VCT(L**\g) ∩ nst(M*). Note 
that g** is strictly dominating from nst(M**) into 
nst(M**), in the sense of <s**, by 4.2.15'. Since <s** is 
well founded on VCT(L**\g) ∩ nst(M**), we can apply the 
Complementation Theorem for Well Founded Relations, proved 
in section 1.3 to obtain the first claim.  
  
For the second claim, write cα** = f**(x1,...,xp). By Lemma 
4.2.15’, each xi <** cα**. By Lemma 4.2.18, f**(x1,...,xp) 
<** cα**. This is a contradiction. The same argument applies 
to g**.  
 
The third claim follows immediately from the second claim. 
QED 
 
Lemma 4.2.22 - Theorem 4.2.26, Corollary 4.2.27, go through 
using the present W ⊆ VCT(L**\g) ∩ nst(M**), instead of the 
W ⊆ nst(M**) in section 4.2. We have shown the following.  
 
THEOREM 6.1.1. Proposition D is provable in SMAH+. For fixed 
arity of f and fixed n ≥ 1, Proposition D is provable in 
SMAH.  
 
We now adapt section 4.4 to Proposition D. We redefine the 
p,q,b-structures, p,q,b;r-structures, p,q,b;n,r-special 
structures, p,q,b;r-types, p,q,b;n,r-special types, to take 
into account the weaker inequalities now placed on f,g. 
Specifically, clauses 4,5 in the definition of p,q,b-
structure should now read 
 
4’. f* obeys the above two inequalities for membership in 
LB(p,b) ∩ EVSD(p,b) given above right after we introduced 
Proposition D, internally in M*. 
5’. g* obeys the above two inequalities for membership in 
EXPN(q,b), given above right after we introduced 
Proposition D, internally in M*. 
 
These modified notions are written with ’. 
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The entire development of section 4.4 goes through without 
modification until we arrive at Theorem 4.4.11.  
 
THEOREM 4.4.11’. Proposition D is provable in ACA’ + 1-
Con(MAH). 
 
Proof: We argue in ACA’ + 1-Con(MAH). Let p,q,b,n ≥ 1, and f 
∈ LB(p,b) ∩ EVSD(p,b), g ∈ EXPN(q,b). Let r be given by 
Lemma 4.4.10’. By Ramsey’s theorem for 2r-tuples in ACA’, 
we can find a p,q,b;r-structure’ M = 
(N,0,1,<,+,f,g,c0,c1,...), where c0,c1,... ∈ E. Let τ be its 
p,q,b;r-type’. By Lemma 4.4.10’, τ is a p,q,b,n,r-special’ 
type. By Lemma 4.4.2, M is a p,q,b;r;n-special' structure. 
Let D1 ⊆ ... ⊆ Dn ⊆ N, where D1 ⊆ {c0,c1,...} ⊆ E, and each 
fDi ⊆ Di+1 ∪. gDi+1, and D1 ∩ fDn = ∅. This is Proposition D, 
thus concluding the proof. QED 
 
THEOREM 6.1.2. ACA’ proves the equivalence of Proposition D 
and 1-Con(MAH), 1-Con(SMAH).  
 
Proof: This is immediate from Theorems 4.4.11’, 5.9.11, and 
that Proposition D immediately implies Proposition B. QED 
 
Recall that Proposition D is the strongest Proposition that 
we prove in this book (using large cardinals).  
 
There are some natural variants of Proposition D, some of 
which are provable in RCA0, and some of which are refutable.  
 
PROPOSITION D[1]. Let f,g ∈ EVSD, E ⊆ N be infinite, and n 
≥ 1. There exist infinite A1 ⊆ ... ⊆ An ⊆ N such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅;  
iii) A1 ⊆ E. 
 
Proposition D[1] is refutable in RCA0. In fact, in section 
6.3, we refute the following in RCA0. 
 
PROPOSITION α. For all f,g ∈ SD ∩ BAF there exist A,B,C ∈ 
INF such that 

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
Note Proposition α follows immediately from Proposition 
D[1], even without E. This is because from the former, we 
get  



 8 

 
A ∪. fA ⊆ B ∪. gB 
 A ∪. fB ⊆ C ∪. gC 

B ⊆ C 
A ∪. fA ⊆ C ∪. gB. 

 
Therefore Proposition D[1] is refutable in RCA0 even if we 
remove E.  
 
However, we can use EVSD if we drop the inclusions on the 
A’s. 
 
PROPOSITION D[2]. Let f,g ∈ EVSD, E ⊆ N be infinite, and n 
≥ 1. There exist infinite sets A1,...,An ⊆ N such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) for all 1 ≤ i ≤ n, A1 ∩ fAn = ∅; 
iii) A1 ⊆ E. 
 
The weakness in Proposition D[2] stems from the fact that 
we drop the tower condition, and use the same subscript 
twice on the right sides, and have no tower.  
 
THEOREM 6.1.3. Proposition D[2] is provable in RCA0.  
 
Proof: Let f,g,E,n be as given. Let t >> n ≥ 1. By a 
straightforward combinatorial argument, for all t ≥ 1, we 
can find an infinite E’ ⊆ E such that  
 
a. f,g are strictly dominating on the elements of their 
respective domains whose sup norm is at least min(E’). 
b. the values of all terms in f,g and elements of E’, using 
at most t applications of functions, and at least one 
application of a function, lie outside E’.  
 
We now inductively define A1,...,An. Set A1 = E’. Suppose 
A1,...,Ai have been defined for 1 ≤ i < n, where each Aj is 
an infinite subset of [min(E’),∞). Set Ai+1 to be the unique 
subset of fAi such that fAi ⊆ Ai+1 ∪. gAi+1. This unique Ai+1 
exists by i) above and Lemma 3.3.3. Also Ai+1 is infinite 
since fAi is infinite (using a) above).  
 
It is clear by the construction of the A’s, that all 
elements of the fAi and gAi meet the criterion in b) above 
for t = n+1, so that their values lie outside E’ = A1. This 
establishes Proposition D[2] in RCA0. QED 
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Continuing with our use of EVSD, it is natural to consider 
the following.  
 
PROPOSITION D[3]. Let f,g ∈ EVSD and n ≥ 1. There exist 
infinite sets A1,...,An ⊆ N such that  
i) for all 1 ≤ i < j,k ≤ n, fAi ⊆ Aj ∪. gAk; 
ii) A1 ∩ fAn = ∅. 
 
However, Proposition α is an obvious consequence of 
Proposition D[3] even for the case n = 3. So Proposition 
D[3] is refutable in RCA0. 
 
PROPOSITION D[4]. Let f,g ∈ EVSD, E ⊆ N be infinite, and n 
≥ 1. There exist infinite sets A1,...,An ⊆ N such that  
i) for all 1 ≤ i < j,k ≤ n, fAi ⊆ Aj ∪. gAk; 
ii) A1 ⊆ E. 
 
THEOREM 6.1.4. Proposition D[4] is provable in RCA0.  
 
Proof: Let f,g,E be as given. Let m be such that f,g are 
strictly dominating on [m,∞). Let B be unique such that B ⊆ 
[m,∞) ⊆ B ∪. gB. Set A1 = E ∩ [m,∞), A2 = ... = An = B. QED 
 
PROPOSITION D[5]. Let f,g ∈ EVSD (ELG, ELG ∩ SD ∩ BAF), E ⊆ 
N be infinite, and n ≥ 1. There exist A1,...,An ⊆ N such 
that  
i) for all 1 ≤ i < j,k ≤ n, fAi ⊆ Aj ∪. gAk; 
ii) for all 1 ≤ i ≤ n, Ai ∩ E is infinite.  
 
We do not know the status of Proposition D[5], other than 
it follows immediately from Proposition D.  
 
We now present the remaining Propositions E,F that have the 
same metamathematical properties as Propositions A,B,C,D. 
These two propositions use ELG ∩ SD ∩ BAF.  
 
DEFINITION 6.1.6. The powers of 2 are the integers 
1,2,4,8,... . For E ⊆ N, we write 2(E) for {2n: n ∈ E}. 
 
PROPOSITION E. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ B ∪. gB 
 fB ⊆ C ∪. gC. 
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PROPOSITION F. For all f,g ∈ ELG ∩ SD ∩ BAF there exist A ⊆ 
B ⊆ C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION G. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, whose intersection contains infinitely many 
powers of 2, such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
PROPOSITION H. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, where A ∩ B contains infinitely many powers of 
2, such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
Note that Propositions E-H are statements in BRT, where the 
BRT setting consists of "subsets of N with infinitely many 
powers of 2", and ELG ∩ SD ∩ BAF. Propositions E,F,G 
immediately follow from Proposition D, using E = 2(N).  
 
LEMMA 6.1.5. The following is provable in RCA0. D → E → F 
→ G → H.  
 
Proof: For D → E, let E = 2(N). For E → F, use the 
derivation 
 

fA ⊆ B ∪. gB 
fB ⊆ C ∪ gC 

B ⊆ C 
C ∩ gB = ∅ 

fA ⊆ C ∪. gB. 
 
F → G → H is immediate. QED 
 
We also consider two additional variants.  
 
PROPOSITION E[1]. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, whose intersection contains infinitely many 
powers of 2, such that  

fA ⊆ B ∪. gB 
 fB ⊆ C ∪. gC. 
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PROPOSITION G[1]. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
A,B,C ⊆ N, each containing infinitely many powers of 2, 
such that  

fA ⊆ C ∪. gB 
 fB ⊆ C ∪. gC. 

 
THEOREM 6.1.6. Proposition E[1] is provable in RCA0.   
 
Proof: Let f,g,E be as given. We follow the proof of Lemma 
3.12.7. In the proof of Theorem 3.2.5, we can arrange that 
A ⊆ E. So in the proof of Lemma 3.12.7, we can assume that 
A ⊆ E. We also have A ⊆ B, A ⊆ C. QED  
 
We do not know the status of Proposition G[1], even if we 
use ELG instead of ELG ∩ SD ∩ BAF. Obviously, this follows 
from Proposition D with E = 2(N). 
 
Until Theorem 6.1.10, we work in RCA0 and assume Proposition 
H. 
 
LEMMA 6.1.7. For all f,g ∈ ELG ∩ SD ∩ BAF there exist 
infinite A,B,C ⊆ N such that  

fA ⊆ C ∪. gB 
fB ⊆ C ∪. gC 
A ⊆ B,2(N). 

 
Proof: Let f,g be as given. Let A,B,C be given by 
Proposition G. Replace A by A ∩ B ∩ 2(N), which is infinite. 
QED 
 
LEMMA 6.1.8. The function f:N → N given by f(n) = 1 if n is 
a power of 2; 0 otherwise, lies in BAF. 
 
Proof: Note that n is a power of 2 if and only if n = 
2log(n). QED 
 
LEMMA 5.1.7'. Let f,g ∈ ELG ∩ SD ∩ BAF. There exist f’,g’ ∈ 
ELG ∩ SD ∩ BAF such that the following holds. Let S ⊆ N. 
i) g’S = g(S*) ∪ 12S+2 ∪ (f(S*) ∩ 2(N+2)). 
ii) f'S = f(S*) ∪ g'S ∪ 12f(S*)+2 ∪ 2S*+1 ∪ 3S*+1. 
 
Proof: Let f,g ∈ ELG ∩ SD ∩ BAF, where f:Np → N and g:Nq → 
N. We define g’:Nq+p → N as follows. Let x1,...,xq,y1,...,yp 
∈ N.  
 
case 1. x1,...,xq > y1,...,yp. Set g’(x1,...,xq,y1,...,yp) = 
g(x1,...,xq).  
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case 2. y1,...,yp > x1,...,xq and f(y1,...,yp) ∈ 2(N+2). Set 
g’(x1,...,xq,y1,...,yp) = f(y1,...,yp).  
 
case 3. Otherwise. Set g'(x1,...,xq,y1,...,yp) = 
12|x1,...,xq,y1,...,yp|+2. 
 
We define f’:N5p+q+p → N as follows. Let 
x1,...,x5p,y1,...,yq,z1,...,zp ∈ N.  
 
case a. |y1,...,yq,z1,...,zp| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x3p+1,...,x4p| = |x4p+1,...,x5p|. Set 
f’(x1,...,x5p,y1,...,yq,z1,...,zp) = g’(y1,...,yq,z1,...,zp). 
 
case b. |y1,...,yq,z1,...,zp| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x3p+1,...,x4p| < min(x4p+1,...,x5p). Set 
f’(x1,...,x5p,y1,...,yq,z1,...,zp) = f(x4p+1,...,x5p). 
 
case c. |y1,...,yq+1,z1,...,zp| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x4p+1,...,x5p| < min(x3p+1,...,x4p|. Set 
f’(x1,...,x5p,y1,...,yq,z1,...,zp) = 12f(x3p+1,...,x4p)+2.  
 
case d. |y1,...,yq,z1,...,zp| = |x1,...,xp| = |xp+1,...,x2p| = 
|x3p+1,...,x4p| = |x4p+1,...,x5p| < min(x2p+1,...,x3p). Set 
f’(x1,...,x3p,y1,...,yq,z1,...,zp| = 2|x2p+1,...,x3p|+1. 
 
case e. |y1,...,yq,z1,...,zp| = |x1,...,xp| = |x2p+1,...,x3p| = 
|x3p+1,...,x4p| = |x4p+1,...,x5p| < min(x2p+1,...,x3p|. Set 
f’(x1,...,x5p,y1,...,yq,z1,...,zp) = 3|xp+1,...,x2p|+1. 
 
case f. Otherwise. Set f’(x1,...,x5p,y1,...,yq,z1,...,zp) = 
2|x1,...,x5p,y1,...,yq,z1,...,zp|+1. 
 
Note that in case 1, |x1,...,xq,y1,...,yp| = |x1,...,xq|, and 
in case 2, |x1,...,xq,y1,...,yp| = |y1,...,yp|. Also note 
that in cases a)-e),  
 

|x1,...,x5p,y1,...,yq,z1,...,zp| = |y1,...,yq,z1,...,zp| 
|x1,...,x5p,y1,...,yq,z1,...,zp| = |x4p+1,...,x5p| 
|x1,...,x5p,y1,...,yq,z1,...,zp| = |x3p+1,...,x4p| 
|x1,...,x5p,y1,...,yq,z1,...,zp| = |x2p+1,...,x3p| 
|x1,...,x5p,y1,...,yq,z1,...,zp| = |xp+1,...,x2p| 

 
respectively. Hence f',g' ∈ ELG ∩ SD ∩ BAF.  
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Let S ⊆ N. From S, case 1 produces exactly g(S*). Case 2 
produces exactly f(S*) ∩ 2(N+2). Case 3 produces exactly 
12S+2. This establishes i). 
 
Case a) produces exactly g’S. Case b) produces exactly 
f(S*). Case c) produces exactly 12f(S*)+2. Case d) produces 
exactly 2S*+1. Case e produces exactly 3S*+1.  
 
Case f) produces exactly 2S*+1 since 2min(S)+1 is not 
produced. This is because 2min(S)+1 is produced from case 
f) if and only if all of the arguments are min(S), which 
can only happen under case a). This establishes ii). QED 
 
LEMMA 6.1.9. 12E+2, 6E, 2E+1 ∪ 3E+1, 2(N+2) are pairwise 
disjoint, with the sole exception of 2E+1 ∪ 3E+1 and 2(N+2).  
 
Proof: Obviously, 12E+2, 6E, 2E+1 ∪ 3E+1 are pairwise 
disjoint by divisibility considerations. Also 12n+2 = 2m → 
6n+1 = 2m-1, which is impossible for m ≥ 3. QED 
 
LEMMA 5.1.8'. Let f,g ∈ ELG ∩ SD ∩ BAF and rng(g) ⊆ 6N. 
There exist infinite A ⊆ B ⊆ C ⊆ N\{0} such that  

i) fA ∩ 6N ⊆ B ∪ gB; 
ii) fB ∩ 6N ⊆ C ∪ gC; 
iii) fA ∩ 2N+1 ⊆ B; 
iv) fA ∩ 3N+1\2(N+2) ⊆ B; 
v) fB ∩ 2N+1 ⊆ C; 
vi) fB ∩ 3N+1\2(N+2) ⊆ C; 
vii) C ∩ gC = ∅; 
viii) A ∩ fB = ∅. 
 
Proof: Let f,g be as given. Let f’,g’ be given by Lemma 
5.1.7'. Let A,B,C ⊆ N be given by Lemma 6.1.7 for f’,g’. 
Then A,B,C are infinite, and 

f’A ⊆ C ∪. g’B 
f’B ⊆ C ∪. g’C 

A ⊆ B,2(N). 
 
Since we can shrink A to any infinite subset, we will 
assume that A ⊆ 2(N+2). 
 
Let n ∈ B. Then 12n+2 ∈ g'B ∩ f'B, and so 12n+2 ∈ C ∪ g'C. 
Now 12n+2 ∉ C by C ∩ g'B = ∅. Hence 12n+2 ∈ g'C. Therefore 
12n+2 ∈ 12C+2. Hence n ∈ C. So we have established that A ⊆ 
B ⊆ C.  
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We now verify all of the required conditions i)–viii) above 
using the three sets A*,B*,C*.  
 
Firstly note that A* ⊆ B* ⊆ C* ⊆ N\{0}. To see this, first 
observe that min(A) ≥ min(B) ≥ min(C). Now let n ∈ A*. Then 
n ∈ B ∧ n > min(A) ≥ min(B). Hence n ∈ B*. Thus A* ⊆ B*. 
The same argument establishes B* ⊆ C*. 
 
We now claim that A* ∩ f(B*) = ∅. Let n ∈ A*, n ∈ f(B*). 
Then n ∈ f(B*) ∩ 2(N+2), n ∈ g'B, n ∈ C. This is a 
contradiction.  
 
Next we claim that C* ∩ g(C*) = ∅. This follows from C ⊆ 
C*, g(C*) ⊆ g'C, and C ∩ g'C = ∅.  
 
Now we claim that f(A*) ∩ 6N ⊆ B* ∪ g(B*). To see this, let 
n ∈ f(A*) ∩ 6N. Then n ∈ f’A, n ∈ C ∪ g’B.   
 
case 1. n ∈ C. Now 12n+2 ∈ g’C and 12n+2 ∈ 12f(A*)+2 ⊆ f’A. 
Since C ∩ g’C = ∅, we have 12n+2 ∉ C. Also 12n+2 ∈ C ∪ 
g’B. Hence 12n+2 ∈ g’B. Therefore 12n+2 ∈ 12B+2, and so n ∈ 
B. Since n ∈ f(A*) and f is strictly dominating, we have n 
> min(A) ≥ min(B). Hence n ∈ B*. 
 
case 2. n ∈ g’B. Since n ∈ 6N, n ∈ g(B*). This establishes 
the claim. 
 
Next we claim that f(B*) ∩ 6N ⊆ C* ∪ g(C*). To see this, 
let n ∈ f(B*) ∩ 6N. Then n ∈ f’B. Hence n ∈ C ∪ g’C.  
 
case 1'. n ∈ C. Since n ∈ f(B*) and f is strictly 
dominating, we have n > min(B) ≥ min(C). Hence n ∈ C*. 
 
case 2'. n ∈ g’C. Since n ∈ 6N, we have n ∈ g(C*). This 
establishes the claim. 
 
Now we claim that f(A*) ∩ 2N+1, f(A*) ∩ 3N+1\2(N+2) ⊆ B*. To 
see this, let n ∈ f(A*), n ∈ 2N+1 ∪ 3N+1, n ∉ 2(N+2). Note 
that n ∉ rng(g'). Also, n ∈ f'A, n ∈ C ∪ g'B. Hence n ∈ C, 
12n+2 ∈ g'C, 12n+2 ∉ C. Now 12n+2 ∈ 12f(A*)+2 ⊆ f'A ⊆ C ∪ 
g'B, 12n+2 ∈ g'B, n ∈ B. Since f is strictly dominating, n 
> min(A) ≥ min(B), and so n ∈ B*.  
 
Finally we claim that f(B*) ∩ 2N+1, f(B*) ∩ 3n+1\2(N+2) ⊆ 
C*. To see this, let n ∈ f(B*), n ∈ 2N+1 ∪ 3N+1, n ∉ 2(N+2). 
Note that n ∉ rng(g'). Also, n ∈ f'B, n ∈ C ∪ g'C. Hence n 
∈ C, 12n+2 ∈ g'C, 12n+2 ∉ C. Now 12n+2 ∈ 12f(B*)+2 ⊆ f'B ⊆ 
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C ∪ g'C. Hence 12n+2 ∈ g'C, n ∈ C. Since f is strictly 
dominating, n > min(B) ≥ min(C), and so n ∈ C*. QED 
 
The proof of 1-Con(SMAH) from Proposition C given in 
Chapter 5 is strictly modular, in that we can start with 
Lemma 5.1.8 instead of Proposition C.  
 
Here we repeat the proof in Chapter 5 using Lemma 5.1.8' 
instead of Lemma 5.1.8. However, Lemma 5.1.8' is slightly 
weaker than Lemma 5.1.8, because of the weakened clauses 
iv) and vi), where we use 3N+1\2(N+2) instead of 3N+1.  
 
So we need to identify the few places at which we use 3N+1 
and make sure that we can get away with 3N+1\2(N+2) instead.  
 
By examination of the proofs, we obtain the following 
series of slightly weakened Lemmas from the end of sections 
5.1 - 5.5. Finally, we show that we obtain Lemma 5.6.20 
without modification.  
 
LEMMA 5.2.12'. Let r ≥ 3 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 48N. There exists (D1,...,Dr) such that  
i) D1 ⊆ ... ⊆ Dr ⊆ N\{0}; 
ii) |D1| = r and Dr is finite; 
iii) for all x < y from D1, x↑ < y; 
iv) for all 1 ≤ i ≤ r-1, 48α(r,Di;1,r) ⊆ Di+1 ∪ gDi+1; 
v) for all 1 ≤ i ≤ r-1, 2α(r,Di;1,r)+1, 3α(r,Di;1,r)+1\2(N+2) 
⊆ Di+1; 
vi) Dr ∩ gDr = ∅; 
vii) D1 ∩ α(r,D2;2,r) = ∅; 
viii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3 ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3. 
 
LEMMA 5.3.18'. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...) such that the following 
holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
iv) Let r,n ≥ 1, t(v1,...,vr) be a term of L, and x1,...,xr ≤ 
cn. Then t(x1,...,xr) < cn+1;  
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1\2(A+2) ⊆ E; 
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vi) Let r ≥ 1, a,b ∈ N, and ϕ(v1,...,vr) be a quantifier 
free formula of L. There exist d,e,f,g ∈ N\{0} such that 
for all x1 ∈ α(E;1,<∞), (∃x2,...,xr ∈ E)(x2,...,xr ≤ ax1+b ∧ 
ϕ(x1,...,xr)) ↔ dx1+e ∉ E ↔ fx1+g ∈ E; 
vii) Let r ≥ 1, p ≥ 2, and ϕ(v1,...,v2r) be a quantifier free 
formula of L. There exist a,b,d,e ∈ N\{0} such that the 
following holds. Let n ≥ 1 and x1,....,xr ∈ α(E;1,<∞) ∩ 
[0,cn]. Then  
(∃y1,...,yr ∈ E)(y1,...,yr ≤ ↑p(|x1,...,xr|) ∧ 
ϕ(x1,...,xr,y1,...,yr)) ↔  
aCODE(cn+1;x1,...,xr)+b ∉ E ↔  
dCODE(cn+1;x1,...,xr)+e ∈ E. Here CODE is as defined just 
before Lemma 5.3.11; 
viii) Let k,n,m ≥ 1, and x1,...,xk ≤ cn < cm, where x1,...,xk 
∈ α(E;1,<∞). Then CODE(cm;x1,...,xk) ∈ E; 
ix) Let r ≥ 1 and t(v1,...,v2r) be a term of L. Let i1,...,i2r 
≥ 1 and y1,...,yr ∈ E, where (i1,...,ir) and (ir+1,...,i2r) 
have the same order type and min, and y1,...,yr ≤ 
min(ci_1,...,ci_r). Then  
t(ci_1,...,ci_r,y1,...,yr) ∈ E ↔ 
t(ci_r+1,...,ci_2r,y1,...,yr) ∈ E. 
 
Lemma 5.4.12 uses 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E. However, 
we only have 3α(E;1,<∞)+1\2(A+2) ⊆ E. So it suffices to 
augment the displayed derivation in Lemma 5.4.12 with the 
second derivation  
 

t(x1,...,xk) < cn+1. 
2cn+1+t(x1,...,xk)+3,3cn+1+t(x1,...,xk)+2 ∈ α(E;1,<∞). 

3(2cn+1+t(x1,...,xk)+2)+1, 2(3cn+1+t(x1,...,xk)+3)+1 ∈ E. 
6cn+1+3t(x1,...,xk)+7, 6cn+1+2t(x1,...,xk)+7 ∈ E. 
(6cn+1+3t(x1,...,xk)+7)-(6cn+1+2t(x1,...,xk)+7) =  

t(x1,...,xk) ∈ E-E. 
 
provided we verify that  
 
3(2cn+1+t(x1,...,xk))+1 ∉ 2(A+2) ∨ 3(2cn+1+t(x1,...,xk)+2)+1 ∉ 

2(A+2). 
 
This is evident, since any two powers of 2 that are ≥ 4 
cannot differ by 6.  
 
LEMMA 5.4.17'. There exists a countable structure M = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...), and terms t1,t2,... of L, 
where for all i, ti has variables among v1,...,vi+8, such 
that the following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
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ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements in E\α(E;2,<∞) with no upper bound in 
A; 
iv) Let r,n ≥ 1 and t(v1,...,vr) be a term of L, and 
x1,...,xr ≤ cn. Then t(x1,...,xr) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1\2(A+2) ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L(E). Let 1 
≤ i1,...,i2r < n, where (i1,...,ir) and (ir+1,...,i2r) have the 
same order type and the same min. Let y1,...,yr ∈ E, 
y1,...,yr ≤ min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,y1,...,yr)c_n 
↔ ϕ(ci_r+1,...,ci_2r,y1,...,yr)c_n. 
 
LEMMA 5.5.8'. There exists a countable structure M* = 
(A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...), where for all i 
≥ 1, Xi is the set of all i-ary relations on A that are cn-
definable for some n ≥ 1; and terms t1,t2,... of L, where 
for all i, ti has variables among x1,...,xi+8, such that the 
following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements of E\α(E;2,<∞) with no upper bound in 
A; 
iv) For all r,n ≥ 1, ↑r(cn) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1\2(A+2) ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exists y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let k ≥ 1, m ≥ 0, and ϕ be an E formula of L*(E) in 
which R is not free, where all first order variables free 
in ϕ are among x1,...,xk+m+1. Then xk+1,...,xk+m+1 ∈ E → 
(∃R)(∀x1,...,xk ∈ E)(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)); 
viii) Let r ≥ 1, and ϕ(x1,...,x2r) be an E formula of L*(E) 
with no free second order variables. Let 1 ≤ i1,...,i2r, 
where (i1,...,ir) and (ir+1,...,i2r) have the same order type 
and the same min. Let x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 
Lemma 5.6.2 involves reproving a weak form of Lemma 5.4.12 
using a related construction. Here 3α(E;1,<∞)+1 ⊆ E can 
also be replaced by 3α(E;1,<∞)+1\2(A+2), also by the same 
method.  
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In the remainder of section 5.6, we do not use 
3α(E;1,<∞)+1\2(A+2) ⊆ E. Hence we obtain Lemma 5.6.20. We 
have proved the following.  
 
THEOREM 6.1.10. ACA' proves that each of Propositions A-H 
are equivalent to Con(SMAH). 
 
Proof: We have completed the proof that ACA' proves 
Proposition H implies 1-Con(SMAH). The result follows by 
Lemmas 5.9.11 and 6.1.5. QED   


