## CHAPTER 6. FURTHER RESULTS

6.1. Propositions D-H.
6.2. Effectivity.
6.3. A Refutation.

### 6.1. Propositions D-H.

Our treatment of Propositions A, B, C culminated with Theorems 5.9.9, 5.9.11, and 5.9.12 at the end of Chapter 5.

In this section, we consider five Propositions D-H that have the same metamathematical properties as Propositions A,B,C. We will also consider some variants of Propositions D-H that do not share these properties, or whose status is left open.

Recall the main theorems of Chapter 5 (in section 5.9), which are Theorems 5.9.9, 5.9.11, and 5.9.12. Examination of the proofs of these three Theorems reveal that Theorem 5.9.11 with 1-Con (SMAH) is the key. If ACA' proves the equivalence of a statement with 1-Con(SMAH) then all of the other properties provided by these three Theorems quickly follow.

Accordingly, we establish these same three Theorems for Propositions D-H by showing that they are also each equivalent to 1 -Con (SMAH) over $A C A^{\prime}$.

We begin with Proposition D (see below), which is a sharpening of Proposition B. Proposition D immediately implies Propositions A-C over $\mathrm{RCA}_{0}$.

Note that Propositions A-C are based on ELG. Examination of the proof of Proposition B in Chapter 4 shows that we can separately weaken the conditions on $f, g$ in different ways. Also, we can place an inclusion condition on the starting set $A_{1}$. As usual, we use | | for the sup norm, or max. This results in Proposition D below.

DEFINITION 6.1.1. We say that $f$ is linearly bounded if and only if $f \in M F$, and there exists $d$ such that for all $x \in$ dom(f),

$$
f(x) \leq d|x|
$$

We let LB be the set of all linearly bounded $f$.
DEFINITION 6.1.2. We say that $g$ is expansive if and only if $g \in M F$, and there exists $c>1$ such that for all but finitely many $x \in \operatorname{dom}(f)$,

$$
c|x| \leq g(x)
$$

We let EXPN be the set of all expansive $g$.
Recall the definitions of MF, SD (Definition 1.1.2), and ELG, EVSD (Definitions 2.1, 2.2).

PROPOSITION D. Let $f \in L B \cap$ EVSD, $g \in E X P N, E \subseteq N$ be infinite, and $n \geq 1$. There exist infinite $A_{1} \subseteq \ldots \subseteq A_{n} \subseteq N$ such that
i) for all $1 \leq i<n, f A_{i} \subseteq A_{i+1} \cup . g A_{i+1}$;
ii) $A_{1} \cap f A_{n}=\varnothing$;
iii) $A_{1} \subseteq E$.

Note that ELG $\subseteq$ LB $\cap$ EVSD $\cap$ EXPAN, and so Proposition $D$ immediately implies Proposition B.

Proposition D is the strongest Proposition that we prove in this book (from large cardinals).

Recall that Propositions A-C are official statements of BRT. More accurately, Proposition B is really an infinite collection of statements of BRT.

Proposition D not a statement (or statements) of BRT for two reasons.
a. There is no common set of functions used for $f, g$ (asymmetry).
b. The set E is used as data, rather than just $f, g$.

Features a,b both suggest very natural expansions of BRT. Feature a suggests "mixed BRT", where one uses several classes of functions instead of just one. One can go further and use several classes of sets as well.

Feature b in Proposition D suggests another very natural expansion of BRT. In BRT, we consider statements of the form
given functions there are sets such that a given Boolean relation holds between the sets and their images under the functions.

We can expand BRT with
given functions and sets there are sets such that a given Boolean relation holds between the sets and their images under the functions.

We will not pursue such expansions of BRT in this book.
We remark that feature b can be removed (in some contexts such as here) by introducing a new function $h$ and asserting that $\mathrm{A}_{1} \subseteq h \mathrm{~N}$ (obviously $\mathrm{hN}=\mathrm{rng}(\mathrm{h})$ ).

We now prove Proposition $D$ in $S M A H^{+}$by adapting the proof of Proposition B in $S_{M A H}{ }^{+}$given in section 4.2 .

We fix f,g,E as given by Proposition D. Analogously to section 4.2 , we let $f$ be p-ary, $g$ be $q$-ary. We fix an integer $b \geq 1$ such that for all $x \in N^{p}$ and $y \in N^{q}$,
i. if $|x|,|y|>b$ then

$$
\begin{aligned}
& |x|<f(x) \leq b|x| . \\
& (1+1 / b)|y| \leq g(y) .
\end{aligned}
$$

ii. if $|x| \leq b$ then $f(x) \leq b^{2}$.

Note how our inequalities are weaker than those used in section 4.2.

We also fix $n \geq 1$ and a strongly $\mathrm{p}^{\mathrm{n}-1}$-Mahlo cardinal $\kappa$.
The first place in section 4.2 that needs to be modified is at Lemma 4.2.2. Here we must use the given infinite set $E \subseteq$ N.

LEMMA 4.2.2'. There exist infinite sets E 〇 $\mathrm{E}_{0} \supseteq \mathrm{E}_{1} \supseteq \ldots$ indexed by $N$, such that for all $i \geq 0, \varphi \in A F(L)$, lth $(\varphi) \leq$ i, and increasing partial $h_{1}, h_{2}: V(L) \rightarrow N$ adequate for $\varphi$ with $r n g\left(h_{1}\right), r n g\left(h_{2}\right) \subseteq E_{i}$, we have $\operatorname{Sat}\left(M, \varphi, h_{1}\right) \leftrightarrow \operatorname{Sat}\left(M, \varphi, h_{2}\right)$.

Proof: See the proof of Lemma 4.2.2. QED

Lemma 4.2.3 do not involve our inequalities i,ii, and therefore require no modification.

We need to sharpen Lemma 4.2.4 for later purposes, since we do not have an upper bound for $g$. We use the \# notation that was introduced much later just before Lemma 4.2.16.

LEMMA 4.2.4'. Let $\varphi \in \operatorname{AS}\left(L^{*}\right) . \operatorname{Sat}\left(M^{*}, \varphi\right)$ if and only if $\varphi \in$ T. <* is a linear ordering on $\mathrm{N}^{*}$. Let $\mathrm{n} \geq 0, \mathrm{t} \in \mathrm{CT}\left(\mathrm{L}^{*}\right)$, $\#(t) \leq n$. Then $t<c_{n+1} \in T$.

Proof: For the first claim, see the proof of Lemma 4.2.4. For the last claim, let $i=l t h\left(t<c_{n+1}\right)$. The unique increasing bijection $h: V(L) \rightarrow E_{i}$ has Val(M,t',h) < h(Vn+1), where $t^{\prime}$ is the result of replacing each $c_{i}$ by $v_{i}$, using the indiscernibility of $\mathrm{E}_{\mathrm{i}}$. Argue as before. QED

Lemmas 4.2.5-4.2.8 do not involve our inequalities i,ii, and therefore require no modification.

We sharpen Lemma 4.2.9 for later purposes, since we do not have an upper bound for $g$.

LEMMA 4.2.9'. These definitions of <**, +**, f**, g** are well defined. Let $t \in C T\left(L^{* *}\right)$, \#(t) $\leq \alpha$. Then $t<* * C_{\alpha+1}{ }^{* *}$.

Proof: Use Lemma 4.2.4' and the proof of Lemma 4.2.9. QED
Lemmas 4.2.10' - 4.2.14' do not involve our inequalities i,ii.

We need to weaken Lemma 4.2.15, in light of our inequalities i,ii.

LEMMA 4.2.15'. Let $x_{1}, \ldots, x_{p}, Y_{1}, \ldots, y_{q} \in N^{* *}$, where $\left|x_{1}, \ldots, x_{p}\right|,\left|y_{1}, \ldots, y_{q}\right|>* * b^{\wedge}$. Then

$$
\left|x_{1}, \ldots, x_{p}\right|<* * f * *\left(x_{1}, \ldots, x_{p}\right) \leq * * b\left|x_{1}, \ldots, x_{p}\right| .
$$

$$
(1+1 / b)\left|y_{1}, \ldots, y_{q}\right| \leq * * g^{\star *}\left(y_{1}, \ldots, y_{q}\right) .
$$

If $\left|x_{1}, \ldots, x_{p}\right| \leq * * b^{\wedge}$ then $f\left(x_{1}, \ldots, x_{p}\right) \leq * * b^{2 \wedge}$.
Proof: See the proof of Lemma 4.2.15. QED
We aim for a modification of the crucial well foundedness given by Lemma 4.2.19. This was stated using all elements of $\mathrm{N}^{* *}$. In other words, for all terms in CT(L**). We cannot
establish such a well foundedness result in the present setting for all terms in CT (L**). We have weakened the inequalities for f**,g** too much.

However, we can establish this well foundedness result for the restricted class of terms, CT(L**\g) consisting of all closed terms of $L^{* *}$ in which $g$ does not appear.

LEMMA 4.2.16'. Let $t \in C T\left(L^{* *}\right) . \#(t)=-1 \leftrightarrow \operatorname{Val}\left(M^{* *}, t\right)$ is standard. Suppose \#(t) $=C_{\alpha}$. Then $C_{\alpha}{ }^{* *} \leq \operatorname{Val}\left(M^{* *}, t\right)<* *$ $C_{\alpha+1} * *$. Let $s \in C T(L * * \backslash g)$. Suppose \#(s) $=C_{\alpha}$. There exists a positive integer d such that $\mathrm{C}_{\alpha}{ }^{* *} \leq^{* *} \operatorname{Val}\left(\mathrm{M}^{* *}, \mathrm{~s}\right)<* * \mathrm{dc}_{\alpha}{ }^{* *}$ $<* * C_{\alpha+1} * *$.

Proof: For the equivalence in the first claim, see the proof of Lemma 4.2.16. For the remaining claims, use induction on $s, t$, Lemmas 4.2.4', 4.2.9', 4.2.15', and the proof of Lemma 4.2.16. QED

Lemmas 4.2.17, 4.2.18 do not involve our inequalities i,ii, and therefore require no modification.

DEFINITION 6.1.3. It is convenient to write VCT(L** $\mathrm{V}^{*}$ ) for the set of values of terms in CT(L**\g).

DEFINITION 6.1.4. Let $s$ be a rational number. We write $<_{s} * * '$ for the relation on VCT (L**\g) given by $x<_{s} * * y \leftrightarrow s x<* *$ $y$.

LEMMA 4.2.19'. Let $s$ be a rational number > 1. There exists $\mathrm{k} \geq 1$ such that for all $\mathrm{x}_{1}<_{s} * * ' \mathrm{x}_{2}<_{\mathrm{s}}{ }^{* * '} . . .<_{s} * * ' \mathrm{x}_{\mathrm{k}}$, we have $2 \mathrm{x}_{1}<* * ' \mathrm{x}_{\mathrm{k}}$.

Proof: See the proof of Lemma 4.2.19. QED
Lemma 4.2.20 has to be weakened as follows.
LEMMA 4.2.20'. Let $s$ be a rational number $>1$. The relation $<_{s} * * '$ on VCT (L**\g) is transitive, irreflexive, and well founded.

Proof: We adapt the proof of Lemma 4.2.20 with the following modification. In the fourth paragraph, $d \in N \backslash\{0\}$ is fixed such that Val (M**,t) $<* * d_{\alpha}{ }^{* *}$, using Lemma 4.2.16. Here we use Lemma 4.2.16' under the assumption that $t \in$ $\operatorname{VCT}\left(L^{* *} \backslash g\right)$. QED

DEFINITION 6.1.5. Let $s=1+1 / 2 b$ for $u s i n g$ Lemma 4.2.20'.
LEMMA 4.2.21'. There is a unique set $W$ such that $W=\{x \in$ $\left.\operatorname{VCT}\left(L^{* *} \backslash \mathrm{~g}\right) \cap \mathrm{nst}\left(\mathrm{M}^{* *}\right): \mathrm{x} \notin \mathrm{g} * * \mathrm{~W}\right\}$. For all $\alpha<\kappa, \mathrm{C}_{\alpha}{ }^{* *} \notin$ rng (f**), rng(g**). In particular, each $c_{\alpha} * * \in W$.

Proof: Note that g**:NST (M**) ${ }^{q} \rightarrow$ NST (M**), but
g**: (VCT (L** $\lg$ ) $\cap$ nst $\left.\left(\mathrm{M}^{* *}\right)\right)^{q} \rightarrow \operatorname{VCT}\left(\mathrm{~L}^{* *} \backslash \mathrm{~g}\right) \cap$ nst (M**) may be false. So we regard g** as a partial function from
$\left(\operatorname{VCTM}\left(L^{* *} \backslash g\right) \cap \operatorname{nst}\left(M^{* *}\right)\right)^{q}$ into $\operatorname{VCT}\left(L^{* *} \backslash g\right) \cap$ nst (M*). Note that $\mathrm{g}^{* *}$ is strictly dominating from nst ( $\mathrm{M}^{* *}$ ) into nst ( $M^{* *}$ ), in the sense of $<_{s} * *$, by 4.2.15'. Since $<_{s} * *$ is well founded on VCT (L**\g) $\cap$ nst (M**), we can apply the Complementation Theorem for Well Founded Relations, proved in section 1.3 to obtain the first claim.

For the second claim, write $C_{\alpha}{ }^{* *}=f * *\left(x_{1}, \ldots, x_{p}\right)$. By Lemma 4.2.15', each $x_{i}<* * c_{\alpha}{ }^{* *}$. By Lemma 4.2.18, f** ( $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}}$ ) <** $\mathrm{c}_{\alpha}{ }^{* *}$. This is a contradiction. The same argument applies to g**. $^{*}$.

The third claim follows immediately from the second claim. QED

Lemma 4.2.22 - Theorem 4.2.26, Corollary 4.2.27, go through using the present $W \subseteq \operatorname{VCT}\left(L^{* *} \backslash g\right) \cap$ nst (M**), instead of the $W \subseteq$ nst ( $M^{* *}$ ) in section 4.2. We have shown the following.

THEOREM 6.1.1. Proposition D is provable in $S_{M A H^{+}}$. For fixed arity of $f$ and fixed $n \geq 1$, Proposition $D$ is provable in SMAH.

We now adapt section 4.4 to Proposition D. We redefine the p,q,b-structures, $p, q, b ; r$-structures, $p, q, b ; n, r-s p e c i a l$ structures, $p, q, b ; r-t y p e s, ~ p, q, b ; n, r-s p e c i a l ~ t y p e s, ~ t o ~ t a k e ~$ into account the weaker inequalities now placed on f,g. Specifically, clauses 4,5 in the definition of $p, q, b-$ structure should now read

4'. f* obeys the above two inequalities for membership in $L B(p, b) \cap \operatorname{EVSD}(p, b)$ given above right after we introduced Proposition D, internally in $\mathrm{M}^{*}$.
5'. g* obeys the above two inequalities for membership in EXPN(q,b), given above right after we introduced Proposition D, internally in $\mathrm{M}^{*}$.

These modified notions are written with '.

The entire development of section 4.4 goes through without modification until we arrive at Theorem 4.4.11.

THEOREM 4.4.11'. Proposition D is provable in ACA' + 1Con (MAH).

Proof: We argue in $A C A^{\prime}+1-C o n(M A H)$. Let $p, q, b, n \geq 1$, and $f$ $\in \operatorname{LB}(\mathrm{p}, \mathrm{b}) \cap \operatorname{EVSD}(\mathrm{p}, \mathrm{b}), \mathrm{g} \in \operatorname{EXPN}(\mathrm{q}, \mathrm{b})$. Let r be given by Lemma 4.4.10'. By Ramsey's theorem for $2 r$-tuples in $A^{\prime} A^{\prime}$, we can find a $p, q, b ; r$-structure' $M=$
( $\mathrm{N}, 0,1,<,+, f, g, \mathrm{C}_{0}, \mathrm{C}_{1}, \ldots$ ), where $\mathrm{c}_{0}, \mathrm{C}_{1}, \ldots \in \mathrm{E}$. Let $\tau$ be its p,q,b;r-type'. By Lemma 4.4.10', $\tau$ is a $p, q, b, n, r-s p e c i a l^{\prime}$ type. By Lemma 4.4.2, $M$ is a $\mathrm{p}, \mathrm{q}, \mathrm{b} ; \mathrm{r} ; \mathrm{n}$-special' structure. Let $D_{1} \subseteq \ldots \subseteq D_{n} \subseteq N$, where $D_{1} \subseteq\left\{C_{0}, C_{1}, \ldots\right\} \subseteq E$, and each $f D_{i} \subseteq D_{i+1} \cup . g D_{i+1}$, and $D_{1} \cap f D_{n}=\varnothing$. This is Proposition $D$, thus concluding the proof. QED

THEOREM 6.1.2. ACA' proves the equivalence of Proposition D and 1-Con (MAH), 1-Con (SMAH).

Proof: This is immediate from Theorems 4.4.11', 5.9.11, and that Proposition D immediately implies Proposition B. QED

Recall that Proposition D is the strongest Proposition that we prove in this book (using large cardinals).

There are some natural variants of Proposition D, some of which are provable in $R C A_{0}$, and some of which are refutable.

PROPOSITION D[1]. Let $f, g \in \operatorname{EVSD}, E \subseteq N$ be infinite, and $n$ $\geq 1$. There exist infinite $A_{1} \subseteq \ldots \subseteq A_{n} \subseteq \mathrm{~N}$ such that i) for all $1 \leq i<n, f A_{i} \subseteq A_{i+1} \cup . g A_{i+1}$;
ii) $A_{1} \cap f A_{n}=\varnothing$;
iii) $A_{1} \subseteq E$.

Proposition D[1] is refutable in $\mathrm{RCA}_{0}$. In fact, in section 6.3, we refute the following in $\mathrm{RCA}_{0}$.

PROPOSITION $\alpha$. For all f,g $\in \operatorname{SD} \cap$ BAF there exist $A, B, C \in$ INF such that
$A \cup . f A \subseteq C \cup . g B$
$A \cup . f B \subseteq C \cup . g C$.
Note Proposition $\alpha$ follows immediately from Proposition D[1], even without E. This is because from the former, we get
$A \cup . f A \subseteq B \cup . g B$
$A \cup . f B \subseteq C \cup . g C$
$B \subseteq C$
$A \cup . f A \subseteq C \cup . g B$.
Therefore Proposition $D[1]$ is refutable in $R C A_{0}$ even if we remove E.

However, we can use EVSD if we drop the inclusions on the A's.

PROPOSITION D[2]. Let $f, g \in \operatorname{EVSD}, E \subseteq N$ be infinite, and $n$ $\geq 1$. There exist infinite sets $A_{1}, \ldots, A_{n} \subseteq N$ such that
i) for all $1 \leq i<n, f A_{i} \subseteq A_{i+1} \cup . g A_{i+1}$;
ii) for all $1 \leq i \leq n, A_{1} \cap f A_{n}=\varnothing$;
iii) $\mathrm{A}_{1} \subseteq \mathrm{E}$.

The weakness in Proposition D[2] stems from the fact that we drop the tower condition, and use the same subscript twice on the right sides, and have no tower.

THEOREM 6.1.3. Proposition $D[2]$ is provable in $R C A_{0}$.
Proof: Let f,g,E,n be as given. Let t >> n $\geq 1$. By a straightforward combinatorial argument, for all $t \geq 1$, we can find an infinite $E^{\prime} \subseteq E$ such that
a. f,g are strictly dominating on the elements of their respective domains whose sup norm is at least min(E'). b. the values of all terms in $f, g$ and elements of $\mathrm{E}^{\prime}$, using at most $t$ applications of functions, and at least one application of a function, lie outside E'.

We now inductively define $A_{1}, \ldots, A_{n}$. Set $A_{1}=E^{\prime}$. Suppose $A_{1}, \ldots, A_{i}$ have been defined for $1 \leq i<n$, where each $A_{j}$ is an infinite subset of $\left[m i n\left(E^{\prime}\right), \infty\right)$. Set $A_{i+1}$ to be the unique subset of $f A_{i}$ such that $f A_{i} \subseteq A_{i+1} \cup$. $g A_{i+1}$. This unique $A_{i+1}$ exists by i) above and Lemma 3.3.3. Also $A_{i+1}$ is infinite since $f A_{i}$ is infinite (using a) above).

It is clear by the construction of the $A^{\prime} s$, that all elements of the $f A_{i}$ and $g A_{i}$ meet the criterion in b) above for $t=n+1$, so that their values lie outside $E^{\prime}=A_{1}$. This establishes Proposition D[2] in $R C A_{0}$. QED

Continuing with our use of EVSD, it is natural to consider the following.

PROPOSITION D[3]. Let $f, g \in \operatorname{EVSD}$ and $n \geq 1$. There exist infinite sets $A_{1}, \ldots, A_{n} \subseteq N$ such that i) for all $1 \leq i<j, k \leq n, f A_{i} \subseteq A_{j} \cup . g A_{k}$; ii) $A_{1} \cap f A_{n}=\varnothing$.

However, Proposition $\alpha$ is an obvious consequence of Proposition D[3] even for the case $n=3$. So Proposition $\mathrm{D}[3]$ is refutable in $R C A_{0}$.

PROPOSITION D[4]. Let $f, g \in E V S D, E \subseteq N$ be infinite, and $n$ $\geq 1$. There exist infinite sets $A_{1}, \ldots, A_{n} \subseteq N$ such that
i) for all $1 \leq i<j, k \leq n, f A_{i} \subseteq A_{j} \cup$. $g A_{k}$;
ii) $\mathrm{A}_{1} \subseteq \mathrm{E}$.

THEOREM 6.1.4. Proposition $D[4]$ is provable in $R C A_{0}$.
Proof: Let f,g,E be as given. Let m be such that f,g are strictly dominating on $[m, \infty)$. Let $B$ be unique such that $B \subseteq$ $[m, \infty) \subseteq B \cup$. gB. Set $A_{1}=E \cap[m, \infty), A_{2}=\ldots=A_{n}=B . Q E D$

PROPOSITION D[5]. Let f,g $\in$ EVSD (ELG, ELG $\cap \operatorname{SD} \cap$ BAF), E $\subseteq$ N be infinite, and $\mathrm{n} \geq 1$. There exist $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \subseteq \mathrm{N}$ such that
i) for all $1 \leq i<j, k \leq n, f A_{i} \subseteq A_{j} \cup$. $g A_{k}$; ii) for all $1 \leq i \leq n, A_{i} \cap E$ is infinite.

We do not know the status of Proposition D[5], other than it follows immediately from Proposition D.

We now present the remaining Propositions E,F that have the same metamathematical properties as Propositions A,B,C,D. These two propositions use ELG $\cap$ SD $\cap$ BAF.

DEFINITION 6.1.6. The powers of 2 are the integers $1,2,4,8, \ldots$. For $E \subseteq N$, we write $2^{(E)}$ for $\left\{2^{n}: n \in E\right\}$.

PROPOSITION E. For all $f, g \in E L G \cap \operatorname{SD} \cap$ BAF there exist $A \subseteq$ $\mathrm{B} \subseteq \mathrm{C} \subseteq \mathrm{N}$, each containing infinitely many powers of 2 , such that

$$
\begin{aligned}
& \mathrm{fA} \subseteq \mathrm{~B} \cup . \mathrm{gB} \\
& \mathrm{fB} \subseteq \mathrm{C} \cup . \mathrm{gC} .
\end{aligned}
$$

PROPOSITION F. For all f,g $\in \operatorname{ELG} \cap \operatorname{SD} \cap$ BAF there exist $A \subseteq$ $B \subseteq C \subseteq N$, each containing infinitely many powers of 2 , such that
$\mathrm{fA} \subseteq \mathrm{C} \cup . \mathrm{gB}$
$f B \subseteq C \cup . g C$.

PROPOSITION G. For all f,g $\in$ ELG $\cap$ SD $\cap$ BAF there exist $A, B, C \subseteq N$, whose intersection contains infinitely many powers of 2 , such that

> | $f A \subseteq C \cup$. |
| :--- |
| $f B \subseteq C \cup$ |

PROPOSITION H. For all f,g $\in$ ELG $\cap$ SD $\cap$ BAF there exist $A, B, C \subseteq N$, where $A \cap B$ contains infinitely many powers of 2, such that
$f A \subseteq C \cup . g B$
$f B \subseteq C \cup . g C$.

Note that Propositions E-H are statements in BRT, where the BRT setting consists of "subsets of $N$ with infinitely many powers of $2^{\prime \prime}$, and ELG $\cap \operatorname{SD} \cap$ BAF. Propositions E,F,G immediately follow from Proposition D, using $E=2{ }^{(\mathbb{N})}$.

LEMMA 6.1.5. The following is provable in $\mathrm{RCA}_{0}$. $D \rightarrow E \rightarrow F$ $\rightarrow \mathrm{G} \rightarrow \mathrm{H}$.

Proof: For $D \rightarrow E$, let $E=2{ }^{(\mathbb{N})}$. For $E \rightarrow E$, use the derivation
$f A \subseteq B \cup . g B$
$f B \subseteq C \cup g C$
$B \subseteq C$
$C \cap \mathrm{gB}=\varnothing$
$f A \subseteq C \cup . g B$.
$\mathrm{F} \rightarrow \mathrm{G} \rightarrow \mathrm{H}$ is immediate. QED
We also consider two additional variants.

PROPOSITION E[1]. For all f,g $\in$ ELG $\cap$ SD $\cap$ BAF there exist $A, B, C \subseteq N$, whose intersection contains infinitely many powers of 2 , such that

$$
\begin{aligned}
& f A \subseteq B \cup . \\
& f B \subseteq C \cup \\
& \hline
\end{aligned}
$$

PROPOSITION G[1]. For all f,g $\in E L G \cap \operatorname{SD} \cap$ BAF there exist $A, B, C \subseteq N$, each containing infinitely many powers of 2 , such that

$$
\begin{aligned}
& \mathrm{fA} \subseteq \mathrm{C} \cup . \mathrm{gB} \\
& \mathrm{fB} \subseteq \mathrm{C} \cup \cup . \mathrm{gC} .
\end{aligned}
$$

THEOREM 6.1.6. Proposition E[1] is provable in $R C A_{0}$.
Proof: Let f,g,E be as given. We follow the proof of Lemma 3.12.7. In the proof of Theorem 3.2.5, we can arrange that $A \subseteq E$. So in the proof of Lemma 3.12.7, we can assume that $A \subseteq E$. We also have $A \subseteq B, A \subseteq C$ QED

We do not know the status of Proposition $G[1]$, even if we use ELG instead of ELG $\cap$ SD $\cap$ BAF. Obviously, this follows from Proposition $D$ with $E=2{ }^{(N)}$.

Until Theorem 6.1.10, we work in $\mathrm{RCA}_{0}$ and assume Proposition H.

LEMMA 6.1.7. For all f,g $\in \operatorname{ELG} \cap \mathrm{SD} \cap$ BAF there exist infinite $A, B, C \subseteq N$ such that

$$
\begin{aligned}
& f A \subseteq C \cup . g B \\
& f B \subseteq C \cup . g C \\
& A \subseteq B, 2^{(N)} \text {. }
\end{aligned}
$$

Proof: Let f,g be as given. Let A,B,C be given by Proposition G. Replace $A$ by $A \cap B \cap 2^{(N)}$, which is infinite. QED

LEMMA 6.1.8. The function $f: N \rightarrow N$ given by $f(n)=1$ if $n$ is a power of 2; 0 otherwise, lies in BAF.

Proof: Note that $n$ is a power of 2 if and only if $n=$ $2^{\log (n)}$. QED

LEMMA 5.1.7'. Let f,g $\in$ ELG $\cap \operatorname{SD} \cap$ BAF. There exist f', $g^{\prime} \in$ ELG $\cap \mathrm{SD} \cap$ BAF such that the following holds. Let $\mathrm{S} \subseteq \mathrm{N}$. i) $g^{\prime} S=g\left(S^{*}\right) \cup 12 S+2 \cup\left(f\left(S^{*}\right) \cap 2^{(N+2)}\right)$. ii) $\mathrm{f}^{\prime} \mathrm{S}=\mathrm{f}\left(\mathrm{S}^{*}\right) \cup \mathrm{g}^{\prime} \mathrm{S} \cup 12 \mathrm{f}\left(\mathrm{S}^{*}\right)+2 \cup 2 S^{*}+1 \cup 3 S^{*}+1$.

Proof: Let $f, g \in E L G \cap \operatorname{SD} \cap$ BAF, where $f: N^{p} \rightarrow N$ and $g: N^{q} \rightarrow$ $N$. We define $g^{\prime}: N^{q+p} \rightarrow N$ as follows. Let $x_{1}, \ldots, x_{q}, y_{1}, \ldots, y_{p}$ $\in \mathrm{N}$.
case 1. $x_{1}, \ldots, x_{q}>y_{1}, \ldots, y_{p} . \operatorname{Set} g^{\prime}\left(x_{1}, \ldots, x_{q}, y_{1}, \ldots, y_{p}\right)=$ $\mathrm{g}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{q}}\right)$.

```
case 2. \(y_{1}, \ldots, y_{p}>x_{1}, \ldots, x_{q}\) and \(f\left(y_{1}, \ldots, y_{p}\right) \in 2^{(N+2)}\). Set
\(g^{\prime}\left(x_{1}, \ldots, x_{q}, y_{1}, \ldots, y_{p}\right)=f\left(y_{1}, \ldots, y_{p}\right)\).
case 3. Otherwise. Set \(\mathrm{g}^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{q}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{p}}\right)=\)
\(12\left|x_{1}, \ldots, x_{q}, y_{1}, \ldots, y_{p}\right|+2\).
We define \(\mathrm{f}^{\prime}: \mathrm{N}^{5 \mathrm{p}+\mathrm{q}+\mathrm{p}} \rightarrow \mathrm{N}\) as follows. Let
\(x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p} \in N\).
case a. \(\left|y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|=\left|x_{1}, \ldots, x_{p}\right|=\left|x_{p+1}, \ldots, x_{2 p}\right|=\)
\(\left|x_{2 p+1}, \ldots, x_{3 p}\right|=\left|x_{3 p+1}, \ldots, x_{4 p}\right|=\left|x_{4 p+1}, \ldots, x_{5 p}\right|\). Set
\(f^{\prime}\left(x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right)=g^{\prime}\left(y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right)\).
case b. \(\left|y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|=\left|x_{1}, \ldots, x_{p}\right|=\left|x_{p+1}, \ldots, x_{2 p}\right|=\)
\(\left|x_{2 p+1}, \ldots, x_{3 p}\right|=\left|x_{3 p+1}, \ldots, x_{4 p}\right|<\min \left(x_{4 p+1}, \ldots, x_{5 p}\right)\). Set
\(f^{\prime}\left(x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right)=f\left(x_{4 p+1}, \ldots, x_{5 p}\right)\).
case c. \(\left|y_{1}, \ldots, y_{q+1}, z_{1}, \ldots, z_{p}\right|=\left|x_{1}, \ldots, x_{p}\right|=\left|x_{p+1}, \ldots, x_{2 p}\right|=\)
\(\left|x_{2 p+1}, \ldots, x_{3 p}\right|=\left|x_{4 p+1}, \ldots, x_{5 p}\right|<\min \left(x_{3 p+1}, \ldots, x_{4 p} \mid\right.\). Set
\(\mathrm{f}^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{5 \mathrm{p}}, \mathrm{y}_{1}, \ldots, \mathrm{yq}_{\mathrm{q}}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{p}}\right)=12 \mathrm{f}\left(\mathrm{x}_{3 \mathrm{p}+1}, \ldots, \mathrm{x}_{4 \mathrm{p}}\right)+2\).
case d. \(\left|y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|=\left|x_{1}, \ldots, x_{p}\right|=\left|x_{p+1}, \ldots, x_{2 p}\right|=\)
\(\left|x_{3 p+1}, \ldots, x_{4 p}\right|=\left|x_{4 p+1}, \ldots, x_{5 p}\right|<\min \left(x_{2 p+1}, \ldots, x_{3 p}\right)\). Set
\(\mathrm{f}^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{3 \mathrm{p}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{q}}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{p}}|=2| \mathrm{x}_{2 \mathrm{p}+1}, \ldots, \mathrm{x}_{3 \mathrm{p}} \mid+1\right.\).
case e. \(\left|y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|=\left|x_{1}, \ldots, x_{p}\right|=\left|x_{2 p+1}, \ldots, x_{3 p}\right|=\)
\(\left|x_{3 p+1}, \ldots, x_{4 p}\right|=\left|x_{4 p+1}, \ldots, x_{5 p}\right|<\min \left(x_{2 p+1}, \ldots, x_{3 p} \mid\right.\). Set
\(f^{\prime}\left(x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right)=3\left|x_{p+1}, \ldots, x_{2 p}\right|+1\).
case f. Otherwise. Set \(\mathrm{f}^{\prime}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{5 \mathrm{p}}, \mathrm{y}_{1}, \ldots, \mathrm{Y}_{\mathrm{q}}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{p}}\right)=\)
\(2\left|x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|+1\).
Note that in case \(1,\left|x_{1}, \ldots, x_{q}, y_{1}, \ldots, y_{p}\right|=\left|x_{1}, \ldots, x_{q}\right|\), and in case 2, |x1,..., \(x_{q}, y_{1}, \ldots, y_{p}\left|=\left|y_{1}, \ldots, y_{p}\right| . A l s o\right.\) note that in cases a)-e),
```

$$
\begin{aligned}
&\left|x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|=\left|y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right| \\
&\left|x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|=\left|x_{4 p+1}, \ldots, x_{5 p}\right| \\
&\left|x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|=\left|x_{3 p+1}, \ldots, x_{4 p}\right| \\
&\left|x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|=\left|x_{2 p+1}, \ldots, x_{3 p}\right| \\
&\left|x_{1}, \ldots, x_{5 p}, y_{1}, \ldots, y_{q}, z_{1}, \ldots, z_{p}\right|=\left|x_{p+1}, \ldots, x_{2 p}\right|
\end{aligned}
$$

respectively. Hence f',g' $\in \operatorname{ELG} \cap \mathrm{SD} \cap$ BAF.

Let $S \subseteq N$. From $S$, case 1 produces exactly $g\left(S^{*}\right)$. Case 2 produces exactly $f\left(S^{*}\right) \cap 2^{(N+2)}$. Case 3 produces exactly 12S+2. This establishes i).

Case a) produces exactly $g^{\prime} S$. Case b) produces exactly $f\left(S^{*}\right)$. Case c) produces exactly $12 f\left(S^{*}\right)+2$. Case d) produces exactly $2 S^{*}+1$. Case e produces exactly $3 S^{*}+1$.

Case f) produces exactly $2 S^{*}+1$ since 2 min $(S)+1$ is not produced. This is because 2 min $(S)+1$ is produced from case f) if and only if all of the arguments are min(S), which can only happen under case a). This establishes ii). QED

LEMMA 6.1.9. 12E+2, 6E, $2 \mathrm{E}+1 \cup 3 \mathrm{E}+1,2^{(\mathrm{N}+2)}$ are pairwise disjoint, with the sole exception of $2 \mathrm{E}+1 \cup 3 \mathrm{E}+1$ and $2^{(N+2)}$.

Proof: Obviously, $12 \mathrm{E}+2$, 6E, $2 \mathrm{E}+1 \cup 3 \mathrm{E}+1$ are pairwise disjoint by divisibility considerations. Also $12 \mathrm{n}+2=2 \mathrm{~m} \rightarrow$ $6 \mathrm{n}+1=2^{\mathrm{m-1}}$, which is impossible for $\mathrm{m} \geq 3$. QED

LEMMA 5.1.8'. Let f,g $\operatorname{f}$. ELG $\cap \operatorname{SD} \cap \operatorname{BAF}$ and rng (g) $\subseteq 6 \mathrm{~N}$. There exist infinite $A \subseteq B \subseteq C \subseteq N \backslash\{0\}$ such that
i) $f A \cap 6 N \subseteq B \cup g B$;
ii) $f B \cap 6 N \subseteq C \cup g C ;$
iii) $f A \cap 2 N+1 \subseteq B ;$
iv) $f A \cap 3 N+1 \backslash 2^{(N+2)} \subseteq B$;
v) $\mathrm{fB} \cap 2 \mathrm{~N}+1 \subseteq \mathrm{C}$;
vi) $f B \cap 3 N+1 \backslash 2^{(N+2)} \subseteq C$;
vii) $C \cap g C=\varnothing$;
viii) $A \cap f B=\varnothing$.

Proof: Let $f, g$ be as given. Let $f^{\prime}, g^{\prime}$ be given by Lemma 5.1.7'. Let $A, B, C \subseteq N$ be given by Lemma 6.1.7 for f', $\mathrm{g}^{\prime}$. Then $A, B, C$ are infinite, and

$$
\begin{aligned}
& \mathrm{f}^{\prime} \mathrm{A} \subseteq \mathrm{C} \cup . \mathrm{g}^{\prime} \mathrm{B} \\
& \mathrm{f}^{\prime} \mathrm{B} \subseteq \mathrm{C} \cup . \mathrm{g}^{\prime} \mathrm{C} \\
& \mathrm{~A} \subseteq \mathrm{~B}, 2^{(\mathrm{N})} .
\end{aligned}
$$

Since we can shrink A to any infinite subset, we will assume that $A \subseteq 2^{(N+2)}$.

Let $n \in B$. Then $12 n+2 \in g^{\prime} B \cap f^{\prime} B$, and so $12 n+2 \in C \cup g^{\prime} C$. Now $12 n+2 \notin C$ by $C \cap g^{\prime} B=\varnothing$. Hence $12 n+2 \in g^{\prime} C$. Therefore $12 \mathrm{n}+2 \in 12 \mathrm{C}+2$. Hence $\mathrm{n} \in \mathrm{C}$. So we have established that $\mathrm{A} \subseteq$ $B \subseteq C$.

We now verify all of the required conditions i)-viii) above using the three sets $A^{*}, B^{*}, C^{*}$.

Firstly note that $A^{*} \subseteq B^{*} \subseteq C^{*} \subseteq \mathrm{~N} \backslash\{0\}$. To see this, first observe that $\min (A) \geq \min (B) \geq \min (C)$. Now let $n \in A *$. Then $n \in B \wedge n>\min (A) \geq \min (B)$. Hence $n \in B^{*}$. Thus $A^{*} \subseteq B^{*}$. The same argument establishes $\mathrm{B}^{*} \subseteq \mathrm{C}^{*}$.

We now claim that $A^{*} \cap f\left(B^{*}\right)=\varnothing$. Let $n \in A^{*}, n \in f\left(B^{*}\right)$. Then $n \in f\left(B^{*}\right) \cap 2^{(N+2)}, n \in g^{\prime} B, n \in C$. This is a contradiction.

Next we claim that $C^{*} \cap \mathrm{~g}\left(\mathrm{C}^{*}\right)=\varnothing$. This follows from $C \subseteq$ $C^{*}, g\left(C^{*}\right) \subseteq g^{\prime} C$, and $C \cap g^{\prime} C=\varnothing$.

Now we claim that $f\left(A^{*}\right) \cap 6 N \subseteq B^{*} U g\left(B^{*}\right)$. To see this, let $n \in f\left(A^{*}\right) \cap 6 N$. Then $n \in f^{\prime} A, n \in C \cup g^{\prime} B$.
case $1 . \mathrm{n} \in \mathrm{C}$. Now $12 \mathrm{n}+2 \in \mathrm{~g}^{\prime} \mathrm{C}$ and $12 \mathrm{n}+2 \in 12 \mathrm{f}(\mathrm{A} *)+2 \subseteq \mathrm{f}^{\prime} \mathrm{A}$. Since $C \cap g^{\prime} C=\varnothing$, we have $12 \mathrm{n}+2 \notin \mathrm{C}$. Also $12 \mathrm{n}+2 \in \mathrm{C} \cup$ $g^{\prime} B$. Hence $12 n+2 \in g^{\prime} B$. Therefore $12 n+2 \in 12 B+2$, and so $n \in$ B. Since $n \in f\left(A^{*}\right)$ and $f$ is strictly dominating, we have $n$ $>\min (A) \geq \min (B)$. Hence $n \in B^{*}$.
case 2. $n \in g^{\prime} B$. Since $n \in 6 N, n \in g\left(B^{*}\right)$. This establishes the claim.

Next we claim that $f\left(B^{*}\right) \cap 6 N \subseteq C^{*} \cup g\left(C^{*}\right)$. To see this, let $n \in f\left(B^{*}\right) \cap 6 N$. Then $n \in f^{\prime} B$. Hence $n \in C \cup g^{\prime} C$.
case $1^{\prime} . \mathrm{n} \in C$. Since $\mathrm{n} \in \mathrm{f}\left(\mathrm{B}^{*}\right)$ and f is strictly dominating, we have $n>\min (B) \geq \min (C)$. Hence $n \in C^{*}$.
case $2^{\prime} . \mathrm{n} \in \mathrm{g}^{\prime} \mathrm{C}$. Since $\mathrm{n} \in 6 \mathrm{~N}$, we have $\mathrm{n} \in \mathrm{g}\left(\mathrm{C}^{*}\right)$. This establishes the claim.

Now we claim that $f\left(A^{*}\right) \cap 2 N+1, f\left(A^{*}\right) \cap 3 N+1 \backslash 2^{(N+2)} \subseteq B^{*}$. To see this, let $n \in f\left(A^{*}\right), n \in 2 N+1 \cup 3 N+1, n \notin 2^{(N+2)}$. Note that $n \notin r n g\left(g^{\prime}\right)$. Also, $n \in f^{\prime} A, n \in C \cup g^{\prime} B$. Hence $n \in C$, $12 \mathrm{n}+2 \in \mathrm{~g}^{\prime} \mathrm{C}, 12 \mathrm{n}+2 \notin \mathrm{C}$. Now $12 \mathrm{n}+2 \in 12 \mathrm{f}(\mathrm{A} *)+2 \subseteq \mathrm{f}^{\prime} \mathrm{A} \subseteq \mathrm{C} \cup$ g'B, $12 \mathrm{n}+2 \in \mathrm{~g}$ 'B, $\mathrm{n} \in \mathrm{B}$. Since f is strictly dominating, n $>\min (A) \geq \min (B)$, and so $n \in B^{*}$.

Finally we claim that $f\left(B^{*}\right) \cap 2 N+1, f\left(B^{*}\right) \cap 3 n+1 \backslash 2^{(N+2)} \subseteq$ $C^{*}$. To see this, let $n \in f\left(B^{*}\right), n \in 2 N+1 \cup 3 N+1, n \notin 2^{(N+2)}$. Note that $n \notin \mathrm{rng}\left(\mathrm{g}^{\prime}\right)$. Also, $\mathrm{n} \in \mathrm{f} \mathrm{I}_{\mathrm{B}}, \mathrm{n} \in \mathrm{C} \cup \mathrm{g}^{\prime} \mathrm{C}$. Hence n $\in C, 12 n+2 \in g^{\prime} C, 12 n+2 \notin C$. Now $12 n+2 \in 12 f\left(B^{*}\right)+2 \subseteq f^{\prime} B \subseteq$
$C \cup g^{\prime C}$. Hence $12 \mathrm{n}+2 \in \mathrm{~g}^{\prime} \mathrm{C}, \mathrm{n} \in \mathrm{C}$. Since f is strictly dominating, $n>\min (B) \geq \min (C)$, and so $n \in C^{*}$. QED

The proof of 1-Con(SMAH) from Proposition C given in Chapter 5 is strictly modular, in that we can start with Lemma 5.1.8 instead of Proposition C.

Here we repeat the proof in Chapter 5 using Lemma 5.1.8' instead of Lemma 5.1.8. However, Lemma 5.1.8' is slightly weaker than Lemma 5.1.8, because of the weakened clauses iv) and vi), where we use $3 N+1 \backslash 2^{(N+2)}$ instead of $3 N+1$.

So we need to identify the few places at which we use $3 \mathrm{~N}+1$ and make sure that we can get away with $3 \mathrm{~N}+1 \backslash 2^{(\mathbb{N}+2)}$ instead.

By examination of the proofs, we obtain the following series of slightly weakened Lemmas from the end of sections 5.1 - 5.5. Finally, we show that we obtain Lemma 5.6.20 without modification.

LEMMA 5.2.12'. Let $r \geq 3$ and $g \in E L G \cap S D \cap$ BAF, where $r n g(g) \subseteq 48 N$. There exists ( $D_{1}, \ldots, D_{r}$ ) such that
i) $\mathrm{D}_{1} \subseteq \ldots \subseteq \mathrm{D}_{\mathrm{r}} \subseteq \mathrm{N} \backslash\{0\}$;
ii) $\left|D_{1}\right|=r$ and $D_{r}$ is finite;
iii) for all $x<y$ from $D_{1}, x \uparrow<y$;
$i v) f o r ~ a l l ~ 1 \leq i \leq r-1,48 \alpha\left(r, D_{i} ; 1, r\right) \subseteq D_{i+1} \cup g D_{i+1}$;
v) for all $1 \leq i \leq r-1,2 \alpha\left(r, D_{i} ; 1, r\right)+1,3 \alpha\left(r, D_{i} ; 1, r\right)+1 \backslash 2^{(N+2)}$
$\subseteq \mathrm{D}_{\mathrm{i}+1}$;
vi) $D_{r} \cap g D_{r}=\varnothing$;
vii) $D_{1} \cap \alpha\left(r, D_{2} ; 2, r\right)=\varnothing$;
viii) Let $1 \leq i \leq \beta(2 r), x_{1}, \ldots, x_{2 r} \in D_{1}, y_{1}, \ldots, y_{r} \in \alpha\left(r, D_{2}\right)$, where $\left(x_{1}, \ldots, x_{r}\right)$ and $\left(x_{r+1}, \ldots, x_{2 r}\right)$ have the same order type and min, and $y_{1}, \ldots, y_{r} \leq \min \left(x_{1}, \ldots, x_{r}\right)$. Then
$t[i, 2 r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \in D_{3} \leftrightarrow$
$t[i, 2 r]\left(x_{r+1}, \ldots, x_{2 r}, Y_{1}, \ldots, y_{r}\right) \in D_{3}$.
LEMMA 5.3.18'. There exists a countable structure $\mathrm{M}=$ ( $\mathrm{A},<, 0,1,+,-, \cdot \uparrow, \log , E, C_{1}, C_{2}, \ldots$ ) such that the following holds.
i) $(\mathrm{A},<, 0,1,+,-, \cdot, \uparrow, \log )$ satisfies $\operatorname{TR}\left(\Pi_{1}^{0}, \mathrm{~L}\right)$;
ii) $\mathrm{E} \subseteq \mathrm{A} \backslash\{0\}$;
iii) The $\mathrm{c}_{\mathrm{n}}, \mathrm{n} \geq 1$, form a strictly increasing sequence of nonstandard elements in $E \backslash \alpha(E ; 2,<\infty)$ with no upper bound in A;
iv) Let $r, n \geq 1, t\left(v_{1}, \ldots, v_{r}\right)$ be a term of $L$, and $x_{1}, \ldots, x_{r} \leq$ $\mathrm{c}_{\mathrm{n}}$. Then $\mathrm{t}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right)<\mathrm{c}_{\mathrm{n}+1}$;
v) $2 \alpha(E ; 1,<\infty)+1, \quad 3 \alpha(E ; 1,<\infty)+1 \backslash 2^{(A+2)} \subseteq E$;
vi) Let $r \geq 1, a, b \in N$, and $\varphi\left(v_{1}, \ldots, v_{r}\right)$ be a quantifier free formula of $L$. There exist $d, e, f, g \in N \backslash\{0\}$ such that for all $x_{1} \in \alpha(E ; 1,<\infty)$, $\left(\exists x_{2}, \ldots, x_{r} \in E\right)\left(x_{2}, \ldots, x_{r} \leq a x_{1}+b \wedge\right.$ $\left.\varphi\left(x_{1}, \ldots, x_{r}\right)\right) \leftrightarrow d x_{1}+e \notin E \leftrightarrow \mathrm{fx}_{1}+g \in E ;$
vii) Let $r \geq 1, p \geq 2$, and $\varphi\left(v_{1}, \ldots, v_{2 r}\right)$ be a quantifier free formula of $L$. There exist $a, b, d, e \in N \backslash\{0\}$ such that the following holds. Let $n \geq 1$ and $x_{1}, \ldots, x_{r} \in \alpha(E ; 1,<\infty) \cap$ $\left[0, c_{n}\right]$. Then
$\left(\exists y_{1}, \ldots, y_{r} \in E\right)\left(y_{1}, \ldots, y_{r} \leq \uparrow p\left(\left|x_{1}, \ldots, x_{r}\right|\right) \wedge\right.$
$\left.\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right)\right) \leftrightarrow$
$\operatorname{aCODE}\left(\mathrm{c}_{\mathrm{n}+1} ; \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right)+\mathrm{b} \notin \mathrm{E} \leftrightarrow$
$\operatorname{dCODE}\left(C_{n+1} ; x_{1}, \ldots, x_{r}\right)+e \in E$. Here CODE is as defined just before Lemma 5.3.11;
viii) Let $k, n, m \geq 1$, and $x_{1}, \ldots, x_{k} \leq C_{n}<C_{m}$, where $x_{1}, \ldots, x_{k}$ $\in \alpha(E ; 1,<\infty)$. Then $\operatorname{CODE}\left(C_{m} ; x_{1}, \ldots, x_{k}\right) \in E ;$
ix) Let $r \geq 1$ and $t\left(v_{1}, \ldots, v_{2 r}\right)$ be a term of $L$. Let $i_{1}, \ldots, i_{2 r}$ $\geq 1$ and $y_{1}, \ldots, y_{r} \in E$, where ( $i_{1}, \ldots, i_{r}$ ) and ( $\left.i_{r+1}, \ldots, i_{2 r}\right)$ have the same order type and min, and $y_{1}, \ldots, y_{r} \leq$
$\min \left(C_{i \_1}, \ldots, C_{i_{-}}\right)$. Then
$t\left(C_{i \_1}, \ldots, C_{i \_r}, Y_{1}, \ldots, y_{r}\right) \in E \leftrightarrow$
$t\left(C_{i_{-}} r+1, \ldots, C_{i_{-}} 2 r, Y_{1}, \ldots, y_{r}\right) \in E$.
Lemma 5.4.12 uses $2 \alpha(E ; 1,<\infty)+1,3 \alpha(E ; 1,<\infty)+1 \subseteq E . H o w e v e r$, we only have $3 \alpha(E ; 1,<\infty)+1 \backslash 2^{(\mathbb{A}+2)} \subseteq E$. So it suffices to augment the displayed derivation in Lemma 5.4.12 with the second derivation

$$
\begin{gathered}
t\left(x_{1}, \ldots, x_{k}\right)<c_{n+1} \\
2 c_{n+1}+t\left(x_{1}, \ldots, x_{k}\right)+3,3 c_{n+1}+t\left(x_{1}, \ldots, x_{k}\right)+2 \in \alpha(E ; 1,<\infty) . \\
3\left(2 c_{n+1}+t\left(x_{1}, \ldots, x_{k}\right)+2\right)+1,2\left(3 c_{n+1}+t\left(x_{1}, \ldots, x_{k}\right)+3\right)+1 \in E . \\
6 c_{n+1}+3 t\left(x_{1}, \ldots, x_{k}\right)+7,6 c_{n+1}+2 t\left(x_{1}, \ldots, x_{k}\right)+7 \in E . \\
\left(6 c_{n+1}+3 t\left(x_{1}, \ldots, x_{k}\right)+7\right)-\left(6 c_{n+1}+2 t\left(x_{1}, \ldots, x_{k}\right)+7\right)= \\
t\left(x_{1}, \ldots, x_{k}\right) \in E-E .
\end{gathered}
$$

provided we verify that

This is evident, since any two powers of 2 that are $\geq 4$ cannot differ by 6 .

LEMMA 5.4.17'. There exists a countable structure $\mathrm{M}=$ ( $\left.\mathrm{A},<, 0,1,+,-, \cdot \uparrow, \log , E, C_{1}, c_{2}, \ldots\right)$, and terms $t_{1}, t_{2}, \ldots$ of $L$, where for all $i$, $t_{i}$ has variables among $v_{1}, \ldots, v_{i+8}$, such that the following holds.
i) ( $\mathrm{A},<, 0,1,+,-, \cdot \uparrow, \log )$ satisfies $\operatorname{TR}\left(\Pi_{1}{ }_{1}, \mathrm{~L}\right)$;
ii) $E \subseteq A \backslash\{0\}$;
iii) The $C_{n}, ~ n \geq 1$, form a strictly increasing sequence of nonstandard elements in $E \backslash \alpha(E ; 2,<\infty)$ with no upper bound in A;
$i v)$ Let $r, n \geq 1$ and $t\left(v_{1}, \ldots, v_{r}\right)$ be a term of $L$, and $x_{1}, \ldots, x_{r} \leq c_{n}$. Then $t\left(x_{1}, \ldots, x_{r}\right)<c_{n+1}$;
V) $2 \alpha(E ; 1,<\infty)+1, \quad 3 \alpha(E ; 1,<\infty)+1 \backslash 2^{(A+2)} \subseteq E ;$
vi) Let $k, n \geq 1$ and $R$ be $a c_{n}$-definable k-ary relation.

There exists $y_{1}, \ldots, Y_{8} \in E \cap\left[0, C_{n+1}\right]$ such that $R=$ $\left\{\left(x_{1}, \ldots, x_{k}\right) \in E^{k} \cap\left[0, c_{n}\right]^{k}: t_{k}\left(x_{1}, \ldots, x_{k}, Y_{1}, \ldots, Y_{8}\right) \in E\right\}$; vii) Let $r \geq 1$ and $\varphi\left(v_{1}, \ldots, v_{2 r}\right)$ be a formula of $L(E)$. Let 1 $\leq i_{1}, \ldots, i_{2 r}<n$, where $\left(i_{1}, \ldots, i_{r}\right)$ and $\left(i_{r+1}, \ldots, i_{2 r}\right)$ have the same order type and the same min. Let $Y_{1}, \ldots, Y_{r} \in E$, $Y_{1}, \ldots, Y_{r} \leq \min \left(C_{i_{1} 1}, \ldots, c_{i_{-} r}\right)$. Then $\varphi\left(c_{i_{-}}, \ldots, c_{i_{-}}, Y_{1}, \ldots, Y_{r}\right)^{c_{-} n}$ $\leftrightarrow \varphi\left(C_{i_{-} r+1}, \ldots, C_{i_{-}} 2 r, Y_{1}, \ldots, Y_{r}\right)^{C-}{ }^{n}$.

LEMMA 5.5.8'. There exists a countable structure $M^{*}=$
$\left(A,<, 0,1,+,-, \cdots, \uparrow, \log , E, C_{1}, C_{2}, \ldots, X_{1}, X_{2}, \ldots\right)$, where for all i $\geq 1, X_{i}$ is the set of all i-ary relations on $A$ that are $c_{n}-$ definable for some $n \geq 1$; and terms $t_{1}, t_{2}, \ldots$ of $L$, where for all $i, t_{i}$ has variables among $x_{1}, \ldots, x_{i+8}$, such that the following holds.
i) $(A,<, 0,1,+,-, \bullet, \uparrow, \log )$ satisfies $\operatorname{TR}\left(\Pi_{1}^{0}, L\right)$;
ii) $E \subseteq A \backslash\{0\}$;
iii) The $C_{n}, ~ n \geq 1$, form a strictly increasing sequence of nonstandard elements of $E \backslash \alpha(E ; 2,<\infty)$ with no upper bound in A;
iv) For all r, $\mathrm{n} \geq 1, \uparrow r\left(\mathrm{c}_{\mathrm{n}}\right)<\mathrm{C}_{\mathrm{n}+1}$;
v) $2 \alpha(E ; 1,<\infty)+1, \quad 3 \alpha(E ; 1,<\infty)+1 \backslash 2^{(A+2)} \subseteq E$;
vi) Let $k, n \geq 1$ and $R$ be a $c_{n}$-definable k-ary relation. There exists $y_{1}, \ldots, Y_{8} \in E \cap\left[0, C_{n+1}\right]$ such that $R=$ $\left\{\left(x_{1}, \ldots, x_{k}\right) \in E^{k} \cap\left[0, C_{n}\right]^{k}: t_{k}\left(x_{1}, \ldots, x_{k}, Y_{1}, \ldots, Y_{8}\right) \in E\right\} ;$ vii) Let $k \geq 1, m \geq 0$, and $\varphi$ be an $E$ formula of $L *(E)$ in which R is not free, where all first order variables free in $\varphi$ are among $x_{1}, \ldots, x_{k+m+1}$. Then $x_{k+1}, \ldots, x_{k+m+1} \in E \rightarrow$
$(\exists R)\left(\forall x_{1}, \ldots, x_{k} \in E\right)\left(R\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow\left(x_{1}, \ldots, x_{k} \leq x_{k+m+1} \wedge \varphi\right)\right)$; viii) Let $r \geq 1$, and $\varphi\left(\mathrm{X}_{1}, \ldots, \mathrm{x}_{2 r}\right)$ be an E formula of $L *(E)$ with no free second order variables. Let $1 \leq i_{1}, \ldots, i_{2 r}$, where $\left(i_{1}, \ldots, i_{r}\right)$ and $\left(i_{r+1}, \ldots, i_{2 r}\right)$ have the same order type and the same min. Let $x_{1}, \ldots, x_{r} \in E, x_{1}, \ldots, x_{r} \leq$
$\min \left(C_{i \_1}, \ldots, C_{i \_r}\right)$. Then $\varphi\left(C_{i_{-}}, \ldots, C_{i_{-}}, X_{1}, \ldots, X_{r}\right) \leftrightarrow$ $\varphi\left(C_{i \_r} r+1, \ldots, C_{i \_2 r}, X_{1}, \ldots, X_{r}\right)$.

Lemma 5.6.2 involves reproving a weak form of Lemma 5.4.12 using a related construction. Here $3 \alpha(E ; 1,<\infty)+1 \subseteq E$ can also be replaced by $3 \alpha(E ; 1,<\infty)+1 \backslash 2^{(A+2)}$, also by the same method.

In the remainder of section 5.6, we do not use
$3 \alpha(\mathrm{E} ; 1,<\infty)+1 \backslash 2^{(\mathrm{A}+2)} \subseteq \mathrm{E}$. Hence we obtain Lemma 5.6.20. We have proved the following.

THEOREM 6.1.10. ACA' proves that each of Propositions A-H are equivalent to Con (SMAH).

Proof: We have completed the proof that ACA' proves Proposition H implies 1-Con(SMAH). The result follows by Lemmas 5.9.11 and 6.1.5. QED

