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5.9. ZFC + V = L + {(∃κ)(κ is strongly k-
Mahlo)}k + TR(Π0

1,L), and 1-Con(SMAH). 
 
We fix a countable model M+ and d1,d2,..., as given by Lemma 
5.8.37. We will show that M+ satisfies, for each k ≥ 1, that 
“there exists a strongly k-Mahlo cardinal”.  
 
In section 4.1, we presented a basic discussion of n-Mahlo 
cardinals and strongly n-Mahlo cardinals. The formal 
systems MAH, SMAH, MAH+, and SMAH+, were introduced in 
section 4.1 just before Theorem 4.1.7.   
 
Recall the partition relation given by Lemma 4.1.2. Note 
that Lemma 4.1.2 states this partition relation with an 
infinite homogenous set. A closely related partition 
relation was studied in [Sc74], for both infinite and 
finite homogenous sets. In [Sc74] it is shown that this 
closely related partition relation with finite homogenous 
sets produces strongly Mahlo cardinals of finite order, 
where the order corresponds to the arity of the partition 
relation.  
 
We give a self contained treatment of the emergence of 
strongly Mahlo cardinals of finite order from this related 
partition relation for finite homogenous sets. We have been 
inspired by [HKS87], which also contains a treatment of 
essentially the same partition relation, and answers some 
questions left open in [Sc74]. Our main combinatorial 
result, in the spirit of [Sc74], is Theorem 5.9.5. This is 
a theorem of ZFC, and so we use it within M+. 
 
We then show that this partition relation for finite 
homogenous sets holds in M+. As a consequence, M+ has 
strongly Mahlo cardinals of every finite order.  
 
DEFINITION 5.9.1. We write S ⊆ On to indicate that S is a 
set of ordinals.  
 
The only proper class considered in this section is On, 
which is the class of all ordinals. Hence S must be bounded 
in On. 
 
DEFINITION 5.9.2. We write sup(S) for the least ordinal 
that is at least as large as every element of S.  
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DEFINITION 5.9.3. We write [S]k for the set of all k element 
subsets of S. We say that f:[S]k → On is regressive if and 
only if for all A ∈ [S\{0}]k, f(A) < min(A).  
 
DEFINITION 5.9.4. We say that E is min homogeneous for f if 
and only if E ⊆ S and for all A,B ∈ [E]k, if min(A) = 
min(B) then f(A) = f(B). 
 
DEFINITION 5.9.5. We write R(S,k,r) if and only if S ⊆ On, 
k,r ≥ 1, and for all regressive f:[S]k → On, there exists 
min homogenous E ∈ [S]r for f. 
 
DEFINITION 5.9.6. We say that S ⊆ On is closed if and only 
if the sup of every nonempty subset of S lies in S. Thus ∅ 
is closed. Note that every nonempty closed S has sup(S) ∈ 
S.  
 
DEFINITION 5.9.7. Let f:[S]k → On. When we write 
f(α1,...,αk), we mean f({α1,...,αk}), and it is assumed that 
α1 < ... < αk.  
 
LEMMA 5.9.1. The following is provable in ZFC. Suppose 
R(S,k,r), where S ⊆ On\ω. Let n ≥ 1 and f1,...,fn each be 
regressive functions from [S]k into On. There exists E ∈ 
[S]r which is min homogenous for f1,...,fn. 
 
Proof: Let S,k,r,n,f1,...,fn be as given. Let H:(sup(S)+1)1+n 
→ sup(S)+1 be such that  
 
i) For all ω ≤ α ≤ sup(S) and β1,...,βn ≤ α, H(α,β1,...,βn) < 
α; 
ii) For all ω ≤ α ≤ sup(S) and β1,...,βn,γ1,...,γn ≤ α, 
H(α,β1,...,βn) = H(α,γ1,...,γn) → (β1 = γ1 ∧ ... ∧ βn = γn). 
 
We can find such an H because for all α ≥ ω, |αn| = |α|. 
 
Let g:[S]k → On be defined as follows. g(x1,...,xk) = 
H(x1,f1(x1,...,xk),...,fn(x1,...,xk)).  
 
To see that g is regressive, let x1 < ... < xk be from S. 
Then ω ≤ x1,...,xk, and so  
 

f1(x1,...,xk),...,fn(x1,...,xk) < x1. 
g(x1,...,xk) =  

H(x1,f1(x1,...,xk),...,fn(x1,...,xk)) < x1. 
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By R(S,k,r), let E ∈ [S]r be min homogenous for g. To see 
that E is min homogenous for f1,...,fn, let V1,V2 ⊆ E be k 
element sets with the same minimum, say α ∈ E. Then ω ≤ α 
and g(V1) = g(V2). Hence 
 

H(α,f1(V1),...,fn(V1)) = H(α,f1(V2),...,fn(V2)). 
 
By ii), each fi(V1) = fi(V2). QED 
 
LEMMA 5.9.2. The following is provable in ZFC. Let S be a 
closed set of infinite ordinals, none of which are strongly 
inaccessible cardinals. Then ¬R(S,3,5).  
 
Proof: Let S be as given, and assume R(S,3,5). Then |S| ≥ 5. 
We assume that this S has been chosen so that max(S) = α is 
least possible. Then 
 
i. S is a closed set of infinite ordinals with max(S) = α. 
ii. S contains no strongly inaccessible cardinals. 
iii. R(S,3,5). 
iv. If S’ is a closed set of infinite ordinals containing 
no strongly inaccessible cardinals, max(S’) < α, then 
¬R(S',3,5).  
 
In particular,  
 
v. For all δ < α, ¬R(S ∩ δ+1,3,5). 
 
We will obtain a contradiction. Note that α is infinite, 
but not a strongly inaccessible cardinal. By i) and |S| ≥ 5, 
we see that α > ω. 
 
case 1. α is a limit ordinal, but not a regular cardinal. 
Let cf(α) = β < α, and let {αγ: γ < β} be a strictly 
increasing transfinite sequence of ordinals that forms an 
unbounded subset of α, where α0 > β. Note that β is a 
regular cardinal. 
 
For δ < α, we write τ[δ] for the least γ such that δ ≤ αγ.  
 
For each γ < β, let fγ:[S ∩ αγ+1]

3 → On be regressive, where 
there is no min homogenous E ∈ [S ∩ αγ+1]

5 for fγ.  
 
Let g:[S]3 → On be defined as follows. g(x,y,z) = 
fτ[z](x,y,z) if z < α; 0 otherwise. Note that in the first 
case, z < α, we have z ≤ ατ[z] < α, and x,y,z ∈ S ∩ ατ[z]+1. 
Hence in the first case, fτ[z](x,y,z) is defined. 
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Let h:[S]3 → On be defined by h(x,y,z) = τ[y] if τ[y] < x; 0 
otherwise. 
 
Let h’:[S]3 → On be defined by h’(x,y,z) = τ[z] if τ[z] < x; 
0 otherwise. 
 
Let J:[S]3 → On be defined by J(x,y,z) = 1 if z < α; 0 
otherwise.  
 
Let K:[S]3 → On be defined by K(x,y,z) = 1 if y < β; 0 
otherwise. 
 
Let T:[S]3 → On be defined by T(x,y,z) = 1 if z < β; 0 
otherwise.   
 
Obviously g,h,h’,J,K,T are regressive. By R(S,3,5) and 
Lemma 5.9.1, let E ∈ [S]5 be min homogenous for 
g,h,h’,J,K,T.  
 
Write E = {x,y,z,w,u}<. Suppose u = α. Then J(x,y,u) = 
J(x,y,w) = 0, and so w = u = α, which is impossible. Hence 
u < α.  
 
Now suppose y < β. Then K(x,y,z) = K(x,z,u) = 1, and so z < 
β. Hence T(x,y,z) = T(x,y,u) = 1. Therefore u < β. Hence 
τ[b] = 0 for all b ∈ E. 
 
We now claim that E is min homogenous for f0. To see this, 
let V1,V2 ⊆ E be 3 element sets with the same min. Since 
τ[max(V1)] = τ[max(V2)] = 0, we see that g(V1) = g(V2) = 
f0(V1) = f0(V2). This establishes the claim.  
 
Since y < β, we have E ⊆ S ∩ α0+1 (using α0 > β). This min 
homogeneity contradicts the choice of f0. Hence y < β has 
been refuted.  
 
We have thus shown that β ≤ y,z,w,u < α. Hence 
τ[z],τ[w],τ[u] < y. Since h’(y,z,w) = h’(y,z,u), we have τ[w] 
= τ[u]. Since h(y,z,w) = h(y,w,u), we have τ[z] = τ[w].  
 
We claim that E is min homogenous for fτ[u]. To see this, let 
V1,V2 ⊆ E be 3 element sets with the same min. Then 
τ[max(V1)] = τ[max(V2)] = τ[u]. Hence g(V1) = g(V2) = fτ[u](V1) 
= fτ[u](V2). This establishes the claim. This min homogeneity 
contradicts the choice of fτ[u].  
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case 2. α is a regular cardinal or a successor ordinal. In 
an abuse of notation, we reuse several letters from case 1.  
 
Since α > ω is not strongly inaccessible, let β < α, 2β ≥ α. 
Let K:α → ℘(β) be one-one, where ℘(β) is the power set of 
β. Obviously β ≥ ω. 
 
Let f:[S ∩ β+1]3 → On be regressive, where there is no min 
homogenous E ∈ [S ∩ β+1]5 for f.  
 
Let f’:[S]3 → On extend f with the default value 0. 
 
Let g:[S]3 → On be defined by g(x,y,z) = min(K(y) Δ K(z)) 
if this min is < x; 0 otherwise. Since K is one-one, we are 
not taking min of the empty set, and so g is well defined. 
 
Let h:[S]3 → On be defined by h(x,y,z) = 1 if y ≤ β; 0 
otherwise.  
 
Let h’:[S]3 → On be defined by h’(x,y,z) = 1 if z ≤ β; 0 
otherwise.  
 
Obviously f’,g,h,h' are regressive. By R(S,3,5) and Lemma 
5.9.1, let E ∈ [S]5 be min homogenous for f’,g,h,h'. Write E 
= {x,y,z,w,u}<. If y ≤ β then h(x,y,z) = 1, and hence 
h(x,w,u) = 1. Therefore w ≤ β. Also h’(x,y,w) = 1. Hence 
h’(x,y,u) = 1, and so u ≤ β. Since E is min homogenous for 
f’, clearly E is min homogenous for f (using u ≤ β). This 
contradicts the choice of f. 
 
So we have established that y > β. Note that  
 

g(y,z,w) = min(K(z) Δ K(w)) 
g(y,z,u) = min(K(z) Δ K(u)) 
g(y,w,u) = min(K(w) Δ K(u)) 

 
since K is one-one, and these min's are < β < y. Therefore  
 

g(y,z,w) = g(y,z,u) = g(y,w,u). 
min(K(z) Δ K(w)) = min(K(z) Δ K(u)) = min(K(w) Δ K(u)). 

 
This is a contradiction. Hence the Lemma is proved. QED 
 
LEMMA 5.9.3. The following is provable in ZFC. Let k ≥ 0 and 
S be a closed set of infinite ordinals, none of which are 
strongly k-Mahlo cardinals. Then ¬R(S,k+3,k+5). 
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Proof: We proceed by induction on k ≥ 0. The case k = 0 is 
from Lemma 5.9.2. Suppose this is true for a fixed k ≥ 0. We 
want to prove this for k+1.  
 
Assume this is false for k+1, k ≥ 0. As in Lemma 5.9.2, we 
minimize max(S). Thus we start with the following 
assumptions, and derive a contradiction:  
 
i. S is a closed set of infinite ordinals with max(S) = α, 
ii. S contains no strongly (k+1)-Mahlo cardinals.  
iii. R(S,k+4,k+6). 
iv. If S’ is a closed set of infinite ordinals containing 
no strongly (k+1)-Mahlo cardinals, max(S’) < α, then 
¬R(S’,k+4,k+6). 
v. If S’ is a closed set of infinite ordinals containing no 
strongly k-Mahlo cardinals, then ¬R(S’,k+3,k+5). 
 
In particular,  
 
vi. For all β < α, ¬R(S ∩ β+1,k+4,k+6). 
 
We will obtain a contradiction. Note that α is infinite but 
not a strongly (k+1)-Mahlo cardinal. By iii), |S| ≥ k+6, and 
α > ω.  
 
We first prove that α is a limit ordinal. Suppose α = β+1. 
Then S ∩ β+1 = S ∩ α = S\{α}, and so by vi), 
¬R(S\{α},k+4,k+6). 
 
Let G:[S\{α}]k+4 → On be regressive, where there is no min 
homogenous E ∈ [S\{α}]k+6 for G.  
 
Let G*:[S]k+4 → On extend G with default value 0.  
 
Let H:[S]k+4 → On be defined by H(x1,...,xk+4) = 1 if xk+4 = 
α; 0 otherwise. 
 
Obviously G*,H are regressive. By R(S,k+4,k+6) and Lemma 
5.9.1, let E ∈ [S]k+6 be min homogenous for G*,H. Write E = 
{u1,...,uk+6}<.  
 
Suppose uk+6 = α. Then H(u1,...,uk+3,uk+6) = 1 = H(u1,...,uk+4). 
Hence uk+4 = uk+6 = α. This is impossible. Hence uk+6 < α, 
{u1,...,uk+6} ⊆ S\{α}. Obviously {u1,...,uk+6} is min 
homogenous for G. This is a contradiction.  
 
Thus we have shown that α is a limit ordinal > ω.  
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Since α is not strongly (k+1)-Mahlo, let A be a closed and 
unbounded subset of [ω,α], where ω ∈ A, and no element of A 
is a strongly k-Mahlo cardinal.  
 
By assumptions vi,v, for each β < α, let 
 
i) fβ:[S ∩ β+1]

k+4 → On be regressive, where there is no min 
homogenous E ∈ [S ∩ β+1]k+6 for fβ. 
ii) gβ:[A ∩ β+1]

k+3 → On be regressive, where there is no 
min homogenous E ∈ [A]k+5 for gβ. 
 
For all x ∈ [ω,α), let β[x] be the greatest β ∈ A such that 
β ≤ x. Let γ[x] be the least γ ∈ A such that x < γ.  
 
Let f’:[S]k+4 → On be defined by f’(x1,...,xk+4) = 
fγ[x_k+4](x1,...,xk+4) if xk+4 < α; 0 otherwise.  
 
Let g’:[S]k+4 → On be defined by g’(x1,...,xk+4) = 
gβ[x_k+4](β[x1],...,β[xk+3]) if xk+4 ∈ [ω,α) ∧ β[x1] < ... < 
β[xk+4]; 0 otherwise. 
 
Let h:[S]k+4 → On be defined by h(x1,...,xk+4) = 1 if xk+4 = 
α; 0 otherwise. 
 
For 1 ≤ i ≤ k+3, let Ji:[S]k+4 → On be defined by  
 

Ji(x1,...,xk+4) = 1  
if  β[xi] < β[xi+1];  

0 otherwise. 
 
Obviously f’,g',h,J1,...,Jk+3 are regressive. By R(S,k+4,k+6) 
and Lemma 5.9.1, let E ∈ [S]k+6 be min homogenous for 
f’,g’,h,J1,...,Jk+3. Write E = {u1,...,uk+6}<. Obviously, u1 is 
infinite, and so β[u1] is defined. 
 
Suppose uk+6 = α. Then h(u1,...,uk+3,uk+6) = h(u1,...,uk+3,uk+5) 
= 1, and so uk+5 = α. This is impossible. Hence uk+6 < α. 
 
Suppose β[ui] = β[ui+1] < β[ui+2], for some 1 ≤ i ≤ k+2. Then 
Ji(u1,...,uk+4) = 0 ∧ Ji(u1,...,ui,ui+2,...,uk+5) = 1. This is a 
contradiction. 
 
Suppose β[ui] < β[ui+1] = β[ui+2], for some 2 ≤ i ≤ k+2. Then 
Ji(u1,...,uk+4) = 1 ∧ Ji(u1,...,ui-1,ui+1,...,uk+5) = 0. This is 
also a contradiction.  
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We claim that  
 

1) β[u2] = ... = β[uk+4] ∨  
β[u1] < ... < β[uk+4]. 

 
To see this, suppose ¬(β[ui] < β[ui+1]), 1 ≤ i ≤ k+3. Then 
β[ui] = β[ui+1]. Hence β[u1] = ... = β[ui] = β[ui+1] = ... = 
β[uk+4].  
 
Under the first disjunct of 1), Jk+3(u1,...,uk+4) = 0 = 
Jk+3(u1,...,uk+2,uk+4,uk+5) = Jk+3(u1,...,uk+2,uk+5,uk+6). Hence 
β[uk+4] = β[uk+5] = β[uk+6]. 
 
Under the second disjunct of 1), Jk+3(u1,...,uk+4) = 1 = 
Jk+3(u1,...,uk+2,uk+4,uk+5) = Jk+3(u1,...,uk+2,uk+5,uk+6). Hence 
β[uk+4] < β[uk+5] < β[uk+6]. 
 
We have thus shown that  
 

2) β[u2] = ... = β[uk+6] ∨ 
β[u1] < ... < β[uk+6]. 

 
case 1. β[u2] = ... = β[uk+6]. We claim that E is min 
homogenous for fγ[u_k+6]. To see this, let V1,V2 ⊆ E be k+4 
element sets with the same min. Then β[max(V1)] = β[max(V2)] 
= β[uk+6], γ[max(V1)] = γ[max(V2)] = γ[uk+6], f’(V1) = f’(V2), 
and uk+6 < α. Hence fγ[u_k+6](V1) = fγ[u_k+6](V2). This establishes 
the claim. This contradicts the choice of fγ[u_k+6].  
 
case 2. β[u1] < ... < β[uk+6]. We claim that 
β[u1],β[u2],...,β[uk+5]} is min homogenous for gβ[u_k+6]. To see 
this, let V1,V2 ⊆ {β[u1],β[u2],...,β[uk+5]} be k+3 element 
subsets with the same min. Then g’(V1 ∪ {β[uk+6]}) = g’(V2 ∪ 
{β[uk+6]}) = gβ[u_k+6](V1) = gβ[u_k+6](V2), using uk+6 < α. This 
establishes the claim. Note that {β[u1],β[u2],...,β[uk+5]} ⊆ 
A ∩ β[uk+6]+1, uk+6 < α, β[uk+6] < α. But this contradicts the 
choice of gβ[u_k+6].  
 
We have derived the required contradiction, and the Lemma 
has been proved. QED 
 
LEMMA 5.9.4. The following is provable in ZFC. For all 
integers k ≥ 0 and ordinals α, if R(α+1\ω,k+3,k+5) then 
there is a strongly k-Mahlo cardinal ≤ α.  
 
Proof: Let k ≥ 0 and R(α+1\ω,k+3,k+5). Note that S = α+1\ω 
is a closed set of infinite ordinals. By Lemma 5.9.3, if 
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none of them are strongly k-Mahlo cardinals, then 
¬R(S,k+3,k+5). Hence α+1\ω contains a strongly k-Mahlo 
cardinal. Therefore there is a strongly k-Mahlo cardinal ≤ 
α. QED 
 
We will not need the following result, which is of 
independent interest. 
 
THEOREM 5.9.5. The following is provable in ZFC. Let k < ω 
and α be an ordinal. Then R(α\ω,k+3,k+5) if and only if 
there is a strongly k-Mahlo cardinal ≤ α. 
 
Proof: Let R(α\ω,k+3,k+5). It is immediate that 
R(α+1\ω,k+3,k+5). By Lemma 5.9.4, there is a strongly k-
Mahlo cardinal ≤ α.  
 
Now let κ ≤ α be strongly k-Mahlo. It follows easily from 
[Sc74] that R(κ,k+3,k+5). Hence R(α,k+3,k+5). QED 
 
We now return to the model M+ of ZFC + V = L + TR(Π0

1,L) 
given by Lemma 5.8.37. 
 
LEMMA 5.9.6. Let k,r ≥ 1 be standard integers. Then 
R(dr+2+1\ω,k,r) holds in M+. 
 
Proof: Let k be as given. We argue in M+. By Lemma 5.8.37, 
M+ satisfies ZFC + V = L. 
 
Suppose R(dr+2+1\ω,k,r) fails in M+. We can choose 
f:[dr+2+1\ω]k → On to be least in the constructible 
hierarchy such that f is regressive and there is no E ∈ 
[dr+2+1\ω]r that is min homogenous for f. Note that f is M+ 
definable from dr+2.   
 
We claim that {d2,...,dr+1} is min homogenous for f. To see 
this, let 2 ≤ i1 < ... < ik ≤ r+1, and 2 ≤ j1 < ... < jk ≤ 
r+1, where i1 = j1. By Lemma 5.8.37 ii), for all α ≤ di_1,  
 

f(di_1,...,di_k) = α ↔ f(dj_1,...,dj_k) = α. 
 
Since f is regressive, choose α = f(di_1,...,di_k) < di_1. By 
Lemma 5.8.37 ii),   
 

f(di_1,...,di_k) = α ↔ f(dj_1,...,dj_k) = α. 
f(dj_1,...,dj_k) = α = f(di_1,...,di_k). 
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Note that by Lemma 5.8.37, d2 > ω. Hence {d2,...,dr+1} ⊆ 
dr+2+1\ω is min homogenous for f. But this contradicts the 
choice of f. QED 
 
LEMMA 5.9.7. Let k ≥ 0 be a standard integer. Then “there 
exists a strongly k-Mahlo cardinal” holds in M+. As a 
consequence, ZFC + V = L + {there exists a strongly k-Mahlo 
cardinal}k + TR(Π0

1,L) is consistent.  
 
Proof: Immediate from Lemmas 5.8.37, 5.9.4, and 5.9.6. QED  
 
LEMMA 5.9.8. ZFC proves that Proposition C implies 1-
Con(SMAH).  
 
Proof: We argue in ZFC + Proposition C. Now the entire 
reversal from section 5.1 through Lemma 5.9.7 was conducted 
within ZFC. So M+ is available, and we know that SMAH holds 
in M+. Let SMAH prove ϕ, where ϕ is a Σ01 sentence of L. 
Since SMAH holds in M+, so does ϕ. If ϕ is false then ¬ϕ ∈ 
TR(Π0

1,L), in which case ¬ϕ holds in M+. This contradicts 
that ϕ holds in M+. Hence ϕ is true. (Here the outermost ¬ 
in ¬ϕ is pushed inside). QED  
 
THEOREM 5.9.9. None of Propositions A,B,C are provable in 
SMAH, provided MAH is consistent. They are provable in MAH+. 
These claims are provable in RCA0. 
 
Proof: Suppose Proposition C is provable in SMAH. By Lemma 
5.9.8, SMAH proves the consistency of SMAH. By Gödel’s 
second incompleteness theorem, SMAH is inconsistent. By the 
last claim of Theorem 4.1.7, it follows that MAH is 
inconsistent. Both Propositions A,B each imply Proposition 
C over RCA0 (see Lemma 4.2.1).  
 
The second claim is by Theorem 4.2.26. These claims are 
provable in RCA0 since RCA0 can recognize proofs, and prove 
the Gödel second incompleteness theorem. QED 
 
We now provide more refined information. 
 
Recall the formal system ACA’ from Definition 1.4.1.  
 
LEMMA 5.9.10. The derivation of 1-Con(SMAH) from 
Proposition C, in sections 5.1-5.9, can be formalized in 
ACA’. I.e., ACA’ proves that each of Propositions A,B,C 
implies 1-Con(SMAH).  
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Proof: Most of the development lies within RCA0. But since 
we are stuck using ACA' already in section 5.2, we will use 
the stronger fragment ACA0 of ACA' instead of RCA0 for the 
discussion. We regard Proposition C, which is readily 
formalized in ACA0 (or even RCA0), as the hypothesis, which 
we take as implicit in the section by section analysis 
below. 
 
section 5.1. All within ACA0. 
 
section 5.2. All within ACA0 except Lemma 5.2.5. Lemma 5.2.5 
is a sharp form of the usual Ramsey theorem on N. This is 
provable in ACA'. In fact, it is provably equivalent to 
ACA' over RCA0. Hence Lemma 5.2.12 is provable in ACA'.  
 
section 5.3. All within ACA0, from Lemma 5.2.12. In the 
proof of Lemma 5.3.3, we apply the compactness theorem to a 
set T of sentences that is Π0

1. T has bounded quantifier 
complexity, and the proof that every finite subset of T has 
a model, and the proof that every finite subset of T has a 
model can be formulated and proved in ACA0. The application 
of compactness to obtain a model M of T can be formalized 
in ACA0. In fact, we obtain a model M of T with a 
satisfaction relation, within ACA0. In the proof, we then 
adjust M by taking an initial segment. This construction 
can also be formalized in ACA0. However, we lose the 
satisfaction relation within ACA0, and cannot recover it 
even within ACA'. Nevertheless, we retain a satisfaction 
relation for all formulas whose quantifiers are bounded in 
the adjusted M, since this restricted satisfaction relation 
is obtained from the satisfaction relation for the original 
unadjusted M in ACA0. The statement of Lemma 5.3.18 has 
bounded quantifier complexity, and so is formalizable in th 
language of ACA0. We conclude that Lemma 5.3.18, with 
bounded satisfaction relation, is provable in ACA0 from 
Lemma 5.2.12. This bounded satisfaction relation 
incorporates the constants from M. 
 
section 5.4. All within ACA0, from Lemma 5.3.18. The 
quantifiers in E formulas of L(E) are required to be 
bounded in the structure M. Hence the E formulas of L(E) 
are covered by the bounded satisfaction relation for M. 
Since only E formulas of L(E) are considered, Lemma 5.4.17 
is provable in ACA0 from Lemma 5.3.18.  
 
section 5.5. All within ACA', from Lemma 5.4.17. Lemma 
5.5.1 involves arbitrary formulas of L(E), and so it needs 
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ACA' to formulate, using partial satisfaction relations for 
M. The induction hypothesis as stated in the proof of Lemma 
5.5.1 is Σ11 (or Π1

1), and therefore the induction, as it 
stands, is not formalizable in ACA'. However, this can be 
fixed. We fix n, the number of quantifiers, and form the 
satisfaction relation for n quantifier formulas, for M, in 
ACA'. We then prove the displayed equivalence by all 0 ≤ n' 
≤ n by induction on n'. This modification reduces the 
induction to an arithmetical induction, well within ACA'. 
Note that we can use Lemma 5.5.1 to construct the full 
satisfaction relation for M from the bounded satisfaction 
relation for M, within ACA0. Also, the construction of the 
sets Xk can easily be formalized in ACA'. In the proof of 
Lemma 5.5.4, second order quantification in formulas of the 
language L*(E) are removed. This removal allows us to 
construct the satisfaction relation for M* from the 
satisfaction relation for M, within ACA0. This allows us to 
argue freely within ACA0 throughout the rest of section 5.5. 
We conclude that Lemma 5.5.8, with satisfaction relation, 
is provable in ACA' from Lemma 5.4.17.  
 
section 5.6. The formalization in ACA0 is straightforward 
through the development of internal arithmetic in Lemma 
5.6.12, via the internal structure M(I). The substructure 
M|rng(h) is defined arithmetically, with an arithmetic 
isomorphism from M(I) onto M|rng(h). The satisfaction 
relation for M|rng(h) is constructed from the satisfaction 
relation for M(I) via the isomorphism, within ACA0. Hence 
the statement and proof that M|rng(h) satisfies PA(L) + 
TR(Π0

1,L) lie within ACA0. It immediately follows, in ACA0, 
that M(I) satisfies PA(L) + TR(Π0

1,L). It is clear that the 
use of h and M|rng(h) is an unnecessary convenience that 
causes no difficulties within ACA0. The conversion to 
linearly ordered set theory is by explicit definition, and 
so Lemma 5.6.20, with satisfaction relation, is provable in 
ACA0 from Lemma 5.5.8. 
 
section 5.7. The development through Lemma 5.7.28 is 
internal to M#, and so cause no difficulties within ACA0. In 
the subsequent construction of M^, we use equivalence 
classes under a definable equivalence relation as points. 
Instead of using the actual equivalence classes, we can 
instead use the equivalence relation as the equality 
relation. The sets Yk become families of relations that 
respect the equality relation. The construction is by 
explicit definition, and so we obtain a version of the M^ 
of Lemma 5.7.30 using this equality relation, with a 
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satisfaction relation. We can then factor out by the 
equality relation, using a set of representatives of the 
equivalence classes. Specifically, taking the numerically 
least element of each equivalence class as the 
representative of that equivalence class. All of this can 
easily be done in ACA0. Hence Lemma 5.7.30, with 
satisfaction relation, is provable in ACA0 from Lemma 
5.6.20. 
 
section 5.8. All within ACA0 from Lemma 5.7.30. This is an 
inner model construction that is totally definable. Hence 
Lemma 5.8.37, with satisfaction relation, is provable in 
ACA0 from Lemma 5.7.30. 
 
section 5.9. Using the satisfaction relation for M+, we see 
that M+ satisfies ZFC + V = L + SMAH + Π0

1(L), within ACA0. 
Again using the satisfaction relation for M+, we have 1-
Con(SMAH), within ACA0.  
 
From these considerations, we see that ACA' + Proposition C 
proves 1-Con(SMAH). Since B → A → C in RCA0, we have that 
ACA' + Proposition A, and ACA' + Proposition B, also prove 
1-Con(SMAH). QED 
  
We conjecture that RCA0 proves that Propositions A,B,C each 
imply 1-Con(SMAH).  
 
DEFINITION 5.9.8. The system EFA = exponential function 
arithmetic is in the language 0,<,S,+,-,•,↑,log, and 
consists of the axioms for successor, defining equations 
for <,+,-,•,↑,log and induction for all Δ0 formulas in 
0,<,S,+,-,•,↑,log.  
 
EFA is essentially the same as the system IΣ0(exp). See 
[HP93]. 
 
Also recall the following result from Chapter 4.  
 
THEOREM 4.4.11. Propositions A,B,C are provable in ACA’ + 
1-Con(MAH). 
 
Thus we have  
 
THEOREM 5.9.11. ACA’ proves the equivalence of each of 
Propositions A,B,C and 1-Con(MAH), 1-Con(SMAH). 
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Proof: We have only to remark that EFA proves 1-Con(MAH) → 
1-Con(SMAH). This is from Lemma 4.1.7. QED  
 
THEOREM 5.9.12. None of Propositions A,B,C are provable in 
any set of consequences of SMAH that is consistent with 
ACA’. The preceding claim is provable in RCA0. For finite 
sets of consequences, the first claim is provable in EFA. 
 
Proof: Suppose Proposition C is provable in T, where  
 

SMAH proves T. 
T + ACA’ is consistent. 
T proves Proposition C. 

 
Let T* be finitely axiomatized, where 
 

SMAH proves T*. 
T* + ACA' is consistent. 
T* proves Proposition C. 

 
By Theorem 5.9.11, T* proves 1-Con(SMAH). In particular, T* 
proves Con(T* + ACA'), using that T* + ACA' is finite, and 
SMAH proves T* + ACA'. By Gödel’s second incompleteness 
theorem, T* + ACA' is inconsistent. This is a 
contradiction. The argument is obviously formalizable in 
RCA0. If T is already finite, then there is no need for 
RCA0, and we can use EFA = IΣ0(exp) instead. QED 


