5.7. Transfinite induction, comprehension, indiscernibles, infinity, Π_{1}^{0} correctness.

We now fix $M \#=\left(D,<, \in, N A T, 0,1,+,-, \cdot, \uparrow, l o g, d_{1}, d_{2}, \ldots\right)$ as given by Lemma 5.6.18.

While working in $M \#$, we must be cautious.
a. The linear ordering < may not be internally well ordered. In fact, there may not even be a < minimal element above the initial segment given by NAT.
b. We may not have extensionality.

Note that we have lost the internally second order nature of M^{*} as we passed from M^{*} to the present $\mathrm{M} \#$ in section 5.6. The goal of this section is to recover this internally second order aspect, and gain internal well foundedness of $<$.

To avoid confusion, we use the three symbols $=$, \equiv, \approx. Here $=$ is the standard identity relation we have been using throughout the book.

DEFINITION 5.7.1. We use \equiv for extensionality equality in the form

$$
x \equiv y \leftrightarrow(\forall z)(z \in x \leftrightarrow z \in y) .
$$

DEFINITION 5.7.2. We use \approx as a special symbol in certain contexts.

DEFINITION 5.7.3. We write $x \approx \varnothing$ if and only if x has no elements.

We avoid using the notation $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}$ out of context, as there may be more than one set represented in this way.

DEFINITION 5.7.4. Let $k \geq 1$. We write $x \approx\left\{y_{1}, \ldots, y_{k}\right\}$ if and only if

$$
(\forall z)\left(z \in x \leftrightarrow\left(z=y_{1} \vee \ldots v z_{k}\right)\right) .
$$

LEMMA 5.7.1. Let $k \geq 1$. For all $y_{1, \ldots} . y_{k}$ there exists $\mathrm{x} \approx$ $\left\{y_{1}, \ldots, y_{k}\right\}$. Here x is unique up to \equiv.

Proof: Let $y=\max \left(y_{1}, . . ., y_{k}\right)$. By Lemma 5.6.18 iv),
$(\exists \mathrm{x})(\forall \mathrm{z})\left(\mathrm{z} \in \mathrm{x} \leftrightarrow\left(\mathrm{z} \leq \mathrm{y} \wedge\left(\mathrm{z}=\mathrm{y}_{1} \vee \ldots \vee \mathrm{z}=\mathrm{y}_{\mathrm{k}}\right)\right)\right)$.
The last claim is obvious. QED
DEFINITION 5.7.5. We write $x \approx\langle y, z\rangle$ if and only if there exists a,b such that
i) $x \approx\{a, b\}$;
ii) $a \approx\{y\} ;$
iii) $b \approx\{y, z\}$.

LEMMA 5.7.2. If $x \approx\langle y, z\rangle \wedge w \in x$, then $w \approx\{y\} v w \approx\{y, z\}$. If $x \approx\langle y, z\rangle \wedge x \approx\langle u, v\rangle$, then $y=u \wedge z=v$. For all y, z, there exists $x \approx\langle y, z\rangle$.

Proof: For the first claim, let x, y, z, w be as given. Let a, b be such that $x \approx\{a, b\}, a \approx\{y\}, b \approx\{y, z\}$. Then $w=a v$ $\mathrm{w}=\mathrm{b}$. Hence $\mathrm{w} \approx\{y\} \mathrm{v} w \approx\{y, z\}$.

For the second claim, let $x \approx\langle y, z\rangle, x \approx\langle u, v\rangle$. Let
$x \approx\{a, b\}, a \approx\{y\}, b \approx\{y, z\}$
$x \approx\{c, d\}, c \approx\{u\}, d \approx\{u, v\}$.
Then
$(\mathrm{a}=\mathrm{c} \vee \mathrm{a}=\mathrm{d}) \wedge(\mathrm{b}=\mathrm{c} \vee \mathrm{b}=\mathrm{d}) \wedge(\mathrm{c}=\mathrm{a} \vee \mathrm{c}=\mathrm{b}) \wedge(\mathrm{d}=$ a v $\mathrm{d}=\mathrm{b})$.

Since $a=c$ v $a=d$, we have $y=u v(y=u=v)$. Hence $y=$ u.

We have $b \approx\{y, z\}, d \approx\{y, v\}$. If $b=d$ then $z=v$. So we can assume $b \neq d$. Hence $b=c, d=a$. Therefore $u=y=z, y=u$ $=\mathrm{v}$.

For the third claim, let y, z. By Lemma 5.7.1, let $a \approx\{y\}$ and $b \approx\{y, z\}$. Let $x \approx\{a, b\}$. Then $x \approx\langle y, z\rangle$. QED

DEFINITION 5.7.6. Let $\mathrm{k} \geq 2$. We inductively define $\mathrm{x} \approx$ <y1,..., $\left.y_{k}\right\rangle$ as follows. $x \approx\left\langle y_{1}, . . ., y_{k+1}\right\rangle$ if and only if $\left(\exists_{z}\right)\left(x \approx\left\langle z, y_{3}, \ldots, y_{k+1}\right\rangle \wedge z \approx\left\langle y_{1}, y_{2}\right\rangle\right)$. In addition, we define $x \approx\langle y\rangle$ if and only if $x=y$.

LEMMA 5.7.3. Let $k \geq 1$. If $\mathrm{x} \approx\left\langle\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}\right\rangle$ and $\mathrm{x} \approx$ $\left\langle z_{1}, \ldots, z_{k}\right\rangle$, then $y_{1}=z_{1} \wedge \ldots \wedge y_{k}=z_{k}$. For all y_{1}, \ldots, y_{k}, there exists x such that $x \approx\left\langle y_{1}, \ldots, y_{k}\right\rangle$.

Proof: The first claim is by external induction on $k \geq 2$, the case k = 1 being trivial. The basis case $k=2$ is by Lemma 5.7.2. Suppose this is true for a fixed $k \geq 2$. Let $\mathrm{x} \approx$ $\left\langle y_{1}, \ldots, y_{k+1}\right\rangle, x \approx\left\langle z_{1}, \ldots, z_{k+1}\right\rangle$. Let u, v be such that $x \approx$ $\left\langle u, y_{3}, \ldots, y_{k+1}\right\rangle, x \approx\left\langle v, z_{3}, \ldots, z_{k+1}\right\rangle, u \approx\left\langle y_{1}, y_{2}\right\rangle, v \approx\left\langle z_{1}, z_{2}\right\rangle$. By induction hypothesis, $u=v \wedge y_{3}=z_{3} \wedge \ldots \wedge y_{k+1}=z_{k+1}$. By Lemma 5.7.2, since $u=v$, we have $y_{1}=z_{1} \wedge y_{2}=z_{2}$.

The second claim is also by external induction on $k \geq 2$, the case $k=1$ being trivial. The basis case $k=2$ is by Lemma 5.7.2. Suppose this is true for a fixed $k \geq 2$. Let y_{1}, \ldots, y_{k+2}. By Lemma 5.7.2, let $z \approx\left\langle y_{1}, y_{2}\right\rangle$. By induction hypothesis, let $x \approx\left\langle z, y_{3}, \ldots, y_{k+2}\right\rangle$. Then $x \approx\left\langle y_{1}, \ldots, y_{k+2}\right\rangle$. QED

DEFINITION 5.7.7. Let $k \geq 1$. We say that R is a k-ary relation if and only if ($\forall x \in R$) $\left(\exists y_{1}, \ldots, y_{k}\right)(x \approx$ $\left.\left\langle y_{1}, \ldots, y_{k}\right\rangle\right)$. If R is a k-ary relation then we define $R\left(y_{1}, \ldots, y_{k}\right)$ if and only if

$$
(\exists x \in R)\left(x \approx\left\langle y_{1}, \ldots, y_{k}\right\rangle\right) .
$$

Note that if R is a k-ary relation with $R\left(y_{1}, \ldots, y_{k}\right)$, then there may be more than one $x \in R$ with $x \approx\left\langle y_{1}, \ldots, y_{k}\right\rangle$.

We use set abstraction notation with care.
DEFINITION 5.7.8. We write

$$
x \approx\{y: \varphi(y)\}
$$

if and only if

$$
(\forall \mathrm{y})(\mathrm{y} \in \mathrm{x} \leftrightarrow \varphi(\mathrm{y})\}
$$

If there is such an x, then x is unique up to \equiv.
Let R, S be k-ary relations. The notion $R \equiv S$ is usually too strong for our purposes.

DEFINITION 5.7.9. We define $R \equiv^{\prime} S$ if and only if

$$
\left(\forall x_{1}, \ldots, x_{k}\right)\left(R\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow S\left(x_{1}, \ldots, x_{k}\right)\right) .
$$

DEFINITION 5.7.10. We define $R \subseteq$ ' S if and only if

$$
\left(\forall x_{1}, \ldots, x_{k}\right)\left(R\left(x_{1}, \ldots, x_{k}\right) \rightarrow S\left(x_{1}, \ldots, x_{k}\right) .\right.
$$

We now prove comprehension for relations. To do this, we need a bounding lemma.

LEMMA 5.7.4. Let $n, k \geq 1$, and $x_{1}, \ldots, x_{k} \leq d_{n}$. There exists y $\approx\left\{x_{1}, \ldots, x_{k}\right\}$ such that $y \leq d_{n+1}$. There exists $z \approx\left\langle x_{1}, \ldots, x_{k}\right\rangle$ such that $z \leq d_{n+1}$.

Proof: Let $k, n, x_{1}, \ldots, x_{k}$ be as given. By Lemmas 5.7.1 and 5.7.3,

$$
\begin{aligned}
& (\exists y)\left(y \approx\left\{x_{1}, \ldots, x_{k}\right\}\right) . \\
& (\exists z)\left(z \approx\left\langle x_{1}, \ldots, x_{k}\right\rangle\right) .
\end{aligned}
$$

By Lemma 5.6.18 iii), let $r>n$ be such that

$$
\begin{aligned}
& \left(\exists y \leq d_{r}\right)\left(y \approx\left\{x_{1}, \ldots, x_{k}\right\}\right) . \\
& \left(\exists z \leq d_{r}\right)\left(z \approx\left\langle x_{1}, \ldots, x_{k}\right\rangle\right) .
\end{aligned}
$$

By Lemma 5.6.18 v),

$$
\begin{aligned}
& \left(\exists y \leq d_{n+1}\right)\left(y \approx\left\{x_{1}, \ldots, x_{k}\right\}\right) . \\
& \left(\exists z \leq d_{n+1}\right)\left(z \approx\left\langle x_{1}, \ldots, x_{k}\right\rangle\right) .
\end{aligned}
$$

QED
LEMMA 5.7.5. Let $k, n \geq 1$ and $\varphi\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}+\mathrm{n}}\right)$ be a formula of L\#. Let Y1,..., Yn, z be given. There is a k-ary relation R such that $\left(\forall x_{1}, \ldots, x_{k}\right)\left(R\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow\left(x_{1}, \ldots, x_{k} \leq z \wedge\right.\right.$ $\left.\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right)\right)$).

Proof: Let $k, n, m, \varphi, y_{1}, \ldots, Y_{n}, z$ be as given. By Lemma 5.6.18 iii), let $r \geq 1$ be such that $y_{1}, \ldots, y_{n}, z \leq d_{r}$. By Lemma 5.6 .18 iv), let R be such that

$$
\begin{aligned}
& \text { 1) }(\forall x)\left(x \in R \leftrightarrow \left(x \leq d_{x+1} \wedge\left(\exists x_{1}, \ldots, x_{k} \leq z\right)\right.\right. \\
& \left.\left.\left(x \approx\left\langle x_{1}, \ldots, x_{k}\right\rangle \wedge \varphi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)\right)\right)\right) .
\end{aligned}
$$

Obviously R is a k-ary relation. We claim that

$$
\begin{gathered}
\left(\forall x_{1}, \ldots, x_{k}\right)\left(R (x _ { 1 } , \ldots , x _ { k }) \leftrightarrow \left(x_{1}, \ldots, x_{k} \leq z \wedge\right.\right. \\
\left.\left.\varphi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)\right)\right) .
\end{gathered}
$$

To see this, fix x_{1}, \ldots, x_{k}. First assume $R\left(x_{1}, \ldots, x_{k}\right)$. Let x $\approx\left\langle x_{1}, \ldots, x_{k}\right\rangle, x \in R$. By 1),

$$
\begin{aligned}
x \leq d_{r+1} \wedge & \left(\exists x_{1} \star, \ldots, x_{k}^{*} \leq z\right)\left(x=<x_{1} \star, \ldots, x_{k}^{*}>\wedge\right. \\
& \left.\varphi\left(x_{1} \star, \ldots, x_{k}^{*}, y_{1}, \ldots, y_{n}\right)\right) .
\end{aligned}
$$

Let $x_{1} *, \ldots, x_{k}^{*}$ be as given by this statement. By Lemma 5.7.3, $x_{1} \star=x_{1}, \ldots, x_{k} \star=x_{k}$. Hence $x_{1}, \ldots, x_{k} \leq z \wedge$ $\varphi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)$.

Now assume

$$
x_{1}, \ldots, x_{k} \leq z \wedge \varphi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right) .
$$

By Lemma 5.7.4, let

$$
x \approx\left\langle x_{1}, \ldots, x_{k}\right\rangle \wedge x \leq d_{r+1} .
$$

By 1), $x \in R$. Hence $R\left(x_{1}, \ldots, x_{k}\right)$. QED
LEMMA 5.7.6. If $x \approx\left\{y_{1}, \ldots, y_{k}\right\}$ then each $y_{i}<x$. If $x \approx$ $\left\langle y_{1}, \ldots, y_{k}\right\rangle, k \geq 2$, then each $y_{i}<x$. If $x \approx\left\langle y_{1}, \ldots, y_{k}\right\rangle, k \geq$ 1 , then each $y_{i} \leq x$. If $R\left(x_{1}, \ldots, x_{k}\right)$ then each $x_{i}<R$.

Proof: The first claim is evident from Lemma 5.6.18 ii). The second claim is by external induction on $k \geq 2$. For the basis case $k=2$, note that if $x \approx\langle y, z\rangle$ then y, z are both elements of elements of x, and apply Lemma 5.6.18 ii). Now assume true for fixed $k \geq 2$. Let $x \approx\left\langle y_{1}, . ., y_{k+1}\right\rangle$, and let z $\approx\left\langle y_{1}, y_{2}\right\rangle, x \approx\left\langle z, y_{3}, \ldots, y_{k+1}\right\rangle, B y$ induction hypothesis, $z, Y_{3}, \ldots, y_{k+1}<x$, and also $y_{1}, y_{2}<x$.

The third claim involves only the new case $k=1$, which is trivial.

For the final claim, let $R\left(x_{1}, \ldots, x_{k}\right)$. Let $x \approx\left\langle x_{1}, \ldots, x_{k}\right\rangle, x$ $\in R$. By the second claim and Lemma 5.6.18 iii), $x_{1}, \ldots, x_{k} \leq$ $x<R . Q E D$

DEFINITION 5.7.11. A binary relation is defined to be a $2-$ ary relation. Let R be a binary relation. We "define"

$$
\begin{gathered}
\operatorname{dom}(R) \approx\{x:(\exists y)(R(x, y))\} . \\
\operatorname{rng}(R) \approx\{x:(\exists y)(R(y, x))\} . \\
\operatorname{fld}(R) \approx\{x:(\exists y)(R(x, y) \vee R(y, x)\} .
\end{gathered}
$$

Note that this constitutes a definition of dom(R), rng(R), fld (R) up to \equiv.

LEMMA 5.7.7. For all binary relations R, dom(R) and rng(R) and fld(R) exist.

Proof: Let R be a binary relation. By Lemma 5.6.18 iv), let A, B, C be such that

$$
\begin{gathered}
(\forall x)(x \in A \leftrightarrow(x \leq R \wedge(\exists y)(R(x, y))) . \\
(\forall x)(x \in B \leftrightarrow(x \leq R \wedge(\exists y)(R(y, x))) . \\
(\forall x)(x \in C \leftrightarrow(x \leq R \wedge(\exists y)(R(x, y) \vee R(y, x)))) .
\end{gathered}
$$

By Lemma 5.7.6,

$$
\begin{gathered}
(\forall x)(x \in A \leftrightarrow(\exists y)(R(x, y)) . \\
(\forall x)(x \in B \leftrightarrow(\exists y)(R(y, x)) . \\
(\forall x)(x \in C \leftrightarrow(\exists y)(R(x, y) \vee R(y, x))) .
\end{gathered}
$$

QED
DEFINITION 5.7.12. A pre well ordering is a binary relation R such that
i) $(\forall x \in f l d(R))(R(x, x))$;
ii) ($\forall x, y, z \in f l d(R))((R(x, y) \wedge R(y, z)) \rightarrow R(x, z))$;
iii) ($\forall x, y \in f l d(R))(R(x, y) \quad v R(y, x))$;
iv) $(\forall x \subseteq f l d(R))(\neg(x \approx \varnothing) \rightarrow(\exists y \in x)(\forall z \in x)(R(y, z)))$.

Note that R is a pre well ordering if and only if R is reflexive, transitive, connected, and every nonempty subset of its field (or domain) has an R least element.

Note that all pre well orderings are reflexive. Clearly for pre well orderings R, dom(R) \equiv rng(R) \equiv fld(R).

Let R be a reflexive and transitive relation.
DEFINITION 5.7.13. It will be convenient to write $R(x, y)$ as $x \leq_{R} y$, and write $x=_{R} y$ for $x \leq_{R} y \wedge y \leq_{R} x$. We also define $x \geq_{R} y \leftrightarrow y \leq_{R} x, x<_{R} y \leftrightarrow x \leq_{R} y \wedge \neg y \leq_{R} x, x>_{R} y \leftrightarrow y<R x$, and $x \not F_{R} y \leftrightarrow \neg x=R y$.

DEFINITION 5.7.14. Let R be a pre well ordering and $x \in$ fld(R). We "define" the binary relations R|<x by

$$
\left.(\forall y, z)\left(R \mid<x(y, z) \leftrightarrow y \leq_{R} z<_{R} x\right)\right) .
$$

Note that $\mathrm{R} \mid<\mathrm{x}$ is unique up to \equiv^{\prime}. Also note that by Lemma 5.7.5, R|<x exists. Furthermore, it is easy to see that R|<x is a pre well ordering.

When we write $R \mid<x$, we require that $x \in f l d(R)$.
DEFINITION 5.7.15. Let R,S be pre well orderings. We say that T is an isomorphism from R onto S if and only if
i) T is a binary relation;
ii) $\operatorname{dom}(T) \equiv \operatorname{dom}(R), r n g(T) \equiv \operatorname{dom}(S)$;
iii) Let $T(x, y), T(z, w)$. Then $x \leq_{R} z \leftrightarrow y \leq_{S} w$;
iv) Let $x={ }_{R} u, y=s v$. Then $T(x, y) \leftrightarrow T(u, v)$.

LEMMA 5.7.8. Let R, S be pre well orderings, and T be an isomorphism from R onto S. Let $T(x, y), T(z, w)$. Then $x<_{R} z$

Proof: Let R, S, T, x, y, z, w be as given. Suppose $x<_{R} z$. Then y $\leq_{S} w$. If $w \leq_{S} y$ then $z \leq_{R} x$. Hence $y<_{R} w$. Suppose $y<_{S} w$. Then $x \leq_{R} z$. If $z \leq_{R} x$ then $w \leq_{S} y$. Hence $x<_{R} z$. Suppose x $=_{R} z$. Then $y \leq_{s} w$ and $w \leq_{s} y$. Hence $y==_{s} w$. Suppose $y={ }_{s} w$. Then $x \leq_{R} z$ and $z \leq_{R} x$. Hence $x=R \quad z$. QED

LEMMA 5.7.9. Let R, S be pre well orderings. Let $a, b \in$ dom(S). Let T be an isomorphism from R onto $S \mid<a$, and T^{*} be an isomorphism from R onto $S \mid<b$. Then $a=_{s} b$ and $T \equiv^{\prime} T^{*}$.

Proof: Let R,S,a,b,T,T* be as given. Suppose there exists x $\in \operatorname{dom}(R)$ such that for some $y, \neg\left(T(x, y) \leftrightarrow T^{*}(x, y)\right)$. By Lemma 5.6.18 iv), let x be R least with this property.
case 1. ($\exists y$) $\left(T(x, y) \wedge \neg T^{*}(x, y)\right)$. Let $T(x, y), ~ \neg T^{*}(x, y)$. Also let $T^{*}\left(x, y^{*}\right)$. If $y=y^{*} y^{*}$ then by clause iv) in the definition of isomorphism, $\mathrm{T}^{*}(\mathrm{x}, \mathrm{y})$. Hence $\neg \mathrm{y}=\mathrm{s} \mathrm{y}^{*}$.
case la. $y<_{s} y^{*}$. Then $y<_{s} b$. Let $T^{*}\left(x^{*}, y\right)$.
Suppose $x^{*}<_{R} x$. If $\neg T\left(x^{*}, y\right)$, then we have contradicted the choice of x. Hence $T\left(x^{*}, y\right)$. But this contradicts $T(x, y)$ by Lemma 5.7.8.

Suppose $\mathrm{x} \leq_{R} \mathrm{X}^{*}$. By $\mathrm{T}^{*}\left(\mathrm{x}, \mathrm{y}^{*}\right), \mathrm{T}^{*}\left(\mathrm{X}^{*}, \mathrm{y}\right)$ and Lemma 5.7.8, Y^{*} $\leq_{s} y$. This is a contradiction.
case 1b. $y^{*}<_{s} y$. Then $y^{*}<_{s}$ a. Let $T\left(x^{*}, y^{*}\right)$. By $T(x, y)$ and Lemma 5.7.8, $x^{*}<_{R} x$. By the choice of x, since $T\left(x^{*}, y^{*}\right)$, we
have $T^{*}\left(x^{*}, y^{*}\right)$. By Lemma 5.7.8, since $T^{*}\left(x, y^{*}\right)$, we have $x={ }_{R}$ x^{*}. Since $T(x, y)$, by Lemma 5.7 .8 we have $y=y^{*}$. This is a contradiction.
case 2. ($\exists y)\left(\neg T(x, y) \wedge T^{*}(x, y)\right)$. Let $\neg T(x, y), T *(x, y)$. This is the same as case 1, interchanging a, b, and $T, T *$.

We have now established that $T \equiv^{\prime} T^{*}$. If $a<s b$ then $a \in$ rng(T^{*}) but $a \notin r n g(T)$. This contradicts $T \equiv^{\prime} T *$. If $b<_{s} a$ then $\mathrm{b} \in \mathrm{rng}(\mathrm{T})$ but $\mathrm{b} \notin \mathrm{rng}\left(\mathrm{T}^{*}\right)$. This also contradicts $\mathrm{T} \equiv^{\prime}$ T*. Therefore $a=s \mathrm{~b}$. QED

DEFINITION 5.7.16. Let R, S be pre well orderings. Let T be an isomorphism from R onto S. Let $x \in \operatorname{dom}(R)$. We write $T \mid<x$ for "the" restriction of T to first arguments $u<_{R} x$. We write $T \mid \leq x$ for "the" restriction of T to first arguments u $s_{R} x$. Note that $T|<x, T| \leq x$ are each unique up to \equiv '.

LEMMA 5.7.10. Let R, S be pre well orderings. Let T be an isomorphism from R onto S, and $T(x, y)$. Then $T \mid<x$ is an isomorphism from R|<x onto $S \mid<y$.

Proof: Let R,S,T,x,y be as given. It suffices to show that $r n g(T \mid<x) \equiv\left\{b: b<_{s} y\right\}$. Let $b<_{s} y$. Let $T(a, b)$. By Lemma 5.7.8, $a<_{R} x$. Hence $b \in \operatorname{rng}(T \mid<x)$. QED

LEMMA 5.7.11. Let R, S be pre well orderings, T be an isomorphism from R onto S, and T^{*} be an isomorphism from $R \mid<x$ onto $S \mid<y$. Then $T^{*} \equiv{ }^{\prime} T \mid<x$ and $T(x, y)$.

Proof: Let R,S,T,T*,x,y be as given. Let $T\left(x, y^{*}\right)$. By Lemma 5.7.10, $\mathrm{T} \mid<\mathrm{x}$ is an isomorphism from $\mathrm{R} \mid<\mathrm{x}$ onto $\mathrm{S} \mid<\mathrm{y}^{*}$. By Lemma 5.7.9, $y=s y^{*}$ and $T \mid<x \equiv T^{\prime}$. Hence $T(x, y)$. QED

DEFINITION 5.7.17. Let T be a binary relation. We write T^{-1} for the binary relation given by $T^{-1}(x, y) \leftrightarrow T(y, x)$. By Lemma 5.7.5, T^{-1} exists. Obviously T^{-1} is unique up to \equiv^{\prime}.

LEMMA 5.7.12. Let R, S be pre well orderings, and T be an isomorphism from R onto S. Then T^{-1} is an isomorphism from S onto R.

Proof: Let R,S,T be as given. Obviously $\operatorname{dom}\left(T^{-1}\right) \equiv \operatorname{dom}(S)$ and $\operatorname{rng}\left(\mathrm{T}^{-1}\right) \equiv \operatorname{dom}(\mathrm{R})$. Let $\mathrm{T}^{-1}(\mathrm{x}, \mathrm{y}), \mathrm{T}^{-1}(\mathrm{z}, \mathrm{w})$. Then $\mathrm{T}(\mathrm{y}, \mathrm{x})$, $T(w, z)$. Hence $y \leq_{R} w \leftrightarrow x \leq_{S} z$.

Finally, let $T^{-1}(x, y), x=_{R} u, y=s \quad v$. Then $T(y, x), T(v, u)$, $\mathrm{T}^{-1}(\mathrm{u}, \mathrm{v})$. QED

DEFINITION 5.7.18. Let R be a pre well ordering. We can append a new point ∞ on top and form the extended pre well ordering R^{+}. The canonical way to do this is to use R itself as the new point. This defines R^{+}uniquely up to \equiv '.

Clearly $\mathrm{R}^{+} \mid<\infty \equiv$ ' .
LEMMA 5.7.13. Let R, S be pre well orderings. Exactly one of the following holds.

1. R,S are isomorphic.
2. R is isomorphic to some $S \mid<y, y \in \operatorname{dom}(S)$.
3. Some $R \mid<x, x \in d o m(R)$, is isomorphic to S.

In case 2 , the y is unique up to $=_{s}$. In case 3 , the x is unique up to $=_{R}$. In all three cases, the isomorphism is unique up to \equiv^{\prime}.

Proof: We first prove the uniqueness claims. For case 1, let T, T^{*} be isomorphisms from R onto S. Then T, T^{*} are isomorphisms from R onto $S^{+} \mid<\infty$. By Lemma 5.7.9, $T \equiv^{\prime} T^{*}$.

For case 2, Let T be an isomorphism from R onto $S \mid<y$, and T* be an isomorphism from R onto $S \mid<y^{*}$. Apply Lemma 5.7.9.

For case 3, Let T be an isomorphism from $R \mid<x$ onto S, and T^{*} be an isomorphism from $R \mid<x^{*}$ onto S. By Lemma 5.7.12, T^{-1} is an isomorphism from S onto $R \mid<x$, and $T^{*^{-1}}$ is an isomorphism from S onto R|<x*. Apply Lemma 5.7.9.

For uniqueness, it remains to show that at most one case applies. Suppose cases 1,2 apply. Let T be an isomorphism from R onto S, and T^{*} be an isomorphism from R onto $S \mid<y$. Then T is an isomorphism from R onto $S^{+} \mid<\infty$, and T^{*} is an isomorphism from R onto $S^{+} \mid<y$. By Lemma 5.7.9, y is ∞, which is a contradiction.

Suppose cases 1,3 hold. Let T be an isomorphism from R onto S, and T^{*} be an isomorphism from $R \mid<x$ onto S. Then T^{-1} is an isomorphism from S onto $R^{+} \mid<\infty$, and T^{*-1} is an isomorphism from S onto $R^{+} \mid<x$. By Lemma 5.7.9, x is ∞, which is a contradiction.

Suppose cases 2,3 hold. Let T be an isomorphism from R onto S|<y and T^{*} be an isomorphism from $R \mid<x$ onto S. By Lemma 5.7.10, $T \mid<x$ is an isomorphism from $R \mid<x$ onto $S \mid<z$, where
$T(x, z)$. Hence $T \mid<x$ is an isomorphism from $R \mid<x$ onto $S^{+} \mid<z$. Also T^{*} is an isomorphism from $R \mid<x$ onto $S^{+} \mid<\infty$. Hence by Lemma 5.7.9, z is ∞. This is a contradiction.

We now show that at least one of $1-3$ holds. Consider all isomorphisms from some $\mathrm{R}^{+} \mid<\mathrm{x}$ onto some $\mathrm{S}^{+} \mid<\mathrm{y}, \mathrm{x} \in \operatorname{dom}\left(\mathrm{R}^{+}\right), \mathrm{y}$ $\in \operatorname{dom}\left(\mathrm{S}^{+}\right)$. We call these the local isomorphisms.

We claim the following, concerning these local isomorphisms. Let T be an isomorphism from $R^{+} \mid<x$ onto $S^{+} \mid<y$, and T^{*} be an isomorphism from $R^{+} \mid<x^{*}$ onto $S^{+} \mid<y^{*}$. If $x=X_{R+} x^{*}$ then $y=S_{S+} Y^{*}$ and $T \equiv T^{*}$. If $x<_{R+} x^{*}$ then $y<_{S+} Y^{*}$ and $T \equiv '$ $T^{*} \mid<x$. If $x^{*}<_{R+} x$ then $y^{*}<_{S+} y$ and $T^{*} \equiv$ ' $\mid<_{x *}$.

To see this, let T, T^{*}, x, y be as given.
case 1. $\mathrm{x}==_{\mathrm{R}+} \mathrm{x}^{*}$. Apply Lemma 5.7.9.
case 2. $x^{*}<_{R+} x$. Suppose $y \leq_{S+} y^{*}$. Let $T\left(x^{*}, z\right), z<_{S+} y$. By Lemma 5.7.10, $\mathrm{T} \mid<\mathrm{x}^{*}$ is an isomorphism from $\mathrm{R}^{+} \mid<\mathrm{x}^{*}$ onto $S^{+} \mid<z$. By Lemma 5.7.9, $T^{*} \equiv^{\prime} T \mid<x^{*}$ and $z={ }_{S+} Y^{*}$. This is a contradiction. Hence $\mathrm{y}^{*}<_{\mathrm{s}+} \mathrm{y}$. By Lemma 5.7.10, $\mathrm{T} \mid<\mathrm{x}^{*}$ is an isomorphism from $R^{+} \mid<x^{*}$ onto $S^{+} \mid<w$, where $T\left(x^{*}, w\right), w_{S+} y$. By Lemma 5.7.9, $\mathrm{T}^{*} \equiv \mathrm{~T} \mid<\mathrm{x}^{*}$.
case 3. $x<_{R+} x^{*}$. Symmetric to case 2.
By Lemma 5.7.5, we can form the union T of all of the local isomorphisms, since the underlying arguments are all in dom $\left(\mathrm{R}^{+}\right)$or $\operatorname{dom}\left(\mathrm{S}^{+}\right)$, both of which are bounded.

By the pairwise compatibility of the local isomorphisms, T obeys conditions iii),iv) in the definition of isomorphism. It is also clear that the domain of T is closed downward in R^{+}, and the range of T is closed downward in S^{+}. Hence $\operatorname{dom}(T) \approx\left\{u: u<_{R+} x\right\}, r n g(T) \approx\left\{v: V<_{S+} y\right\}$, for some $x \in$ dom $\left(R^{+}\right), y \in \operatorname{dom}\left(S^{+}\right)$. Hence T is an isomorphism from $R^{+} \mid<x$ onto $S^{+} \mid<y$.

We now argue by cases.
case 1. x,y are ∞. Then T is an isomorphism from R onto S.
case 2. x is $\infty, y \in \operatorname{dom}(S)$. Then T is an isomorphism from R onto $S \mid<y^{*}, y^{\wedge}$ defined below.
case 3. $x \in \operatorname{dom}(R), y$ is ∞. Then T is an isomorphism from Rl<x* onto S, x^{\wedge} defined below.
case 4. $x \in \operatorname{dom}(R), y \in \operatorname{dom}(S)$. Then T is an isomorphism from $R \mid<x$ onto $S \mid<y$. Using Lemma 5.7.5, let T^{*} be defined by

$$
\begin{gathered}
T^{*}(u, v) \leftrightarrow \\
T(u, v) v\left(u=_{R} x \wedge v=~_{S} y\right) .
\end{gathered}
$$

Then T^{*} is an isomorphism from $R \mid<x^{\wedge}$ onto $S \mid<y^{\wedge}$, where x^{\wedge}, y^{\wedge} are respective immediate successors of x, y in R^{+}, S^{+}. This contradicts the definition of T. QED

LEMMA 5.7.14. Let R,S,S* be pre well orderings. Let T be an isomorphism from R onto S, and T^{*} be an isomorphism from S onto S^{*}. Define $T^{* *}(x, y) \leftrightarrow(\exists z)(T(x, z) \wedge T *(z, y))$, by Lemma 5.7.5. Then $T^{* *}$ is an isomorphism from R onto S^{*}.

Proof: Let R,S,S*,T,T*,T** be as given. Note that $T^{* *}$ is defined up to \equiv^{\prime}. Obviously dom($\mathrm{T}^{* *)} \equiv \operatorname{dom}(\mathrm{R})$, rng($\left.\mathrm{T}^{* *}\right) \equiv$ dom(S*).

Suppose $T^{* *}(x, y), T^{* *}\left(x^{*}, y^{*}\right) . \operatorname{Let} T(x, z), T^{*}(z, y), T\left(x^{*}, w\right)$, $T^{*}\left(w, y^{*}\right)$. Then $x \leq_{R} x^{*} \leftrightarrow z \leq_{S} w, z \leq_{R} w \leftrightarrow y \leq_{S} y^{*}$. Therefore $x \leq_{R} x^{*} \leftrightarrow y \leq_{S} y^{*}$.

Suppose $T * *(x, y), x=H_{R} u=_{S}, v$. Let $T(x, z), T *(z, y)$. Then $T(u, z), T^{*}(z, v)$. Hence $T^{* *}(u, v)$. QED

We introduce the following notation in light of Lemma 5.7.13.

DEFINITION 5.7.19. Let R, S be pre well orderings. We define

$$
R=\star * \quad S \leftrightarrow
$$

R,S are pre well orderings and R, S are isomorphic.

$$
R<\star * S \leftrightarrow
$$

R, S are pre well orderings and there exists $y \in f l d(S)$ such that R and $S \mid<y$ are isomorphic.

$$
\begin{aligned}
& R \leq * * S \\
& R<* * \\
& R \vee R
\end{aligned}
$$

LEMMA 5.7.15. In <**, the y is unique up to $=_{s}$. <** is irreflexive and transitive on pre well orderings. =** is an
equivalence relation on pre well orderings. $\mathbf{s}^{* *}$ is reflexive and transitive and connected on pre well orderings. Let R,S,S* be pre well orderings. (R s** $\mathrm{S} \wedge \mathrm{S}<* * \mathrm{~S}^{*}$) $\rightarrow \mathrm{R}<* *$ $S^{*} .\left(R<* * S \wedge S \leq * * S^{*}\right) \rightarrow R<* * S^{*} . R<* * S v S<* * R \vee R$ =** S, with exclusive $v . R \leq * * S V S \leq * * R .(R \leq * * S \wedge S \leq *$ R) $\rightarrow R=* * S$.

Proof: We apply Lemmas 5.7.13 and 5.7.14. For the first claim, if $R<* * S$ then we are in case 2 of Lemma 5.7.13, and the y is unique up to $=_{s}$.

For the second claim, <** is irreflexive since R <** R implies that cases 1,2 both hold in Lemma 5.7.13 for R,R. Also, suppose R <** S, S <** S*. Let T be an isomorphism from R onto $S \mid<y$, and T^{*} be an isomorphism from S onto S*|<z. By Lemma 5.7.10, Let $T^{* *}$ be an isomorphism from $S \mid<y$ onto $S^{*} \mid<w$. By Lemma 5.7.14, there is an isomorphism from R onto S*|<w. Hence R <** S*.

For the third claim, note that $R=* * R$ because there is an isomorphism from R onto R by defining $T(x, y) \leftrightarrow x==_{R} y$. Now suppose $R=* * S$, and let T be an isomorphism from R onto S. By Lemma 5.7.12, T^{-1} is an isomorphism from S onto R . Hence S =** R. Finally, suppose R =** $\mathrm{S}, \mathrm{S}=* * \mathrm{~S}$, and let T be an isomorphism from R onto S, T^{*} be an isomorphism from S onto S^{*}. By Lemma 5.7.14, $\mathrm{R}=* * \mathrm{~S}^{*}$.

For the fourth claim, since $R=* * R$, we have $R \leq * * R$. For transitivity, let $R \leq * * S, S \leq * * S *$. If $R<* * S, S<* * S^{*}$, then by the second claim, R <** S^{*}, and so $R \leq^{* *} S^{*}$. If R =** $\mathrm{S}, \mathrm{S}=* * \mathrm{~S}$, then by Lemma 5.7.14, $\mathrm{R}=* * \mathrm{S*}$, and so R s** S*. The remaining two cases for transitivity follow from the fifth and sixth claims. Connectivity of s** is by Lemma 5.7.13.

For the fifth claim, let $R \leq * * S$ and S <** S^{*}. By the second claim, we have only to consider the case $R=* * S$. Let S be isomorphic to $S^{*} \mid<y$. Since R is isomorphic to S, by the third claim, R is isomorphic to $S^{*} \mid<y$. Hence $R<* * S *$.

For the sixth claim, let $R<* * S$ and S s** S^{*}. By the second claim, we have only to consider the case S =** S^{*}. Let R be isomorphic to $\mathrm{S} \mid<\mathrm{y}$. By Lemma 5.7.10, $\mathrm{S} \mid<\mathrm{y}$ is isomorphic to $S^{*} \mid<z$, for some $z \in \operatorname{dom}\left(S^{*}\right)$. By the third claim, R is isomorphic to $S^{*} \mid<z$. Hence $R<* * S^{*}$.

The seventh and eighth claims are immediate from Lemmas 5.7.12 and 5.7.13.

For the ninth claim, let $R \leq^{* *} S$ and $S \leq^{* *} R$. Assume R <** S. By the sixth claim $R<* * R$, which is a contradiction. Assume S <** R. By the sixth claim, S <** S, which is also a contradiction. By the eighth claim, R s** $S \operatorname{v}$ s** R. Under either disjunct, R =** S. QED

LEMMA 5.7.16. Every nonempty set of pre well orderings has a s** least element.

Proof: Let A be a nonempty set of pre well orderings, and fix $S \in A$. We can assume that there exists $R \in A$ such that R <** S, for otherwise, S is a s** minimal element of A.

By Lemma 5.7.5, define

$$
B \approx\{y \in \operatorname{dom}(S):(\exists R \in A)(T=* * S \mid<y)\}
$$

Let y be an S least element of B. Let $R \in A$ be isomorphic to $\mathrm{Sl} \mid<\mathrm{y}$.

We claim that R is a s** least element of A. To see this, by trichotomy, let $R^{*}<* * R, R^{*} \in A$. Then $R^{*}<* * S \mid<y, ~ s i n c e ~ R$ is isomorphic to $\mathrm{S} \mid<\mathrm{y}$.

Let R^{*} be isomorphic to $(S \mid<y) \mid<z, z<_{S} y$. Then R^{*} is isomorphic to $S \mid<z, z<s y$. This contradicts the choice of y. QED

DEFINITION 5.7.20. For $x, y \in D$, we define $x<\# y$ if and only
there exists a pre well ordering $S \times y$ such that for every pre well ordering $R \leq x, R<* * S$.

We caution the reader that the \leq in the above definition is not to be confused with $\leq^{* *}$. It is from the $<$ of D in the structure M\#. In particular, x, y generally will not be pre well orderings. Thus here we are treating R,S as points.

DEFINITION 5.7.21. We define x s\# y if and only if
for all pre well orderings $R \leq x$ there exists a pre well ordering $S \leq y$ such that $R \leq * *$.

LEMMA 5.7.17. <\# is an irreflexive and transitive relation on D. s\# is a reflexive and transitive relation on D. Let $x, y \in D . x \leq \# y v y<\# x . x<\# y \rightarrow x \leq \# y .(x \leq \# y \wedge y<\#$ $z) \rightarrow x<\# z .(x<\# y \wedge y \leq \# z) \rightarrow x<\# z . x \leq y \rightarrow x \leq \# y . x$ $<\# y \rightarrow x<y . x \leq \# y \leftrightarrow \neg y<\# x . x<\# y \leftrightarrow \neg y \leq \# x$.

Proof: For the first claim, <\# is irreflexive since <** is irreflexive. Suppose $x<\#$ y and $y<\#$ z. Let $S \leq y$ be a pre well ordering such that for all pre well orderings $R \leq x, R$ <** S. Let $S^{*} \leq \mathrm{z}$ be a pre well ordering such that for all pre well orderings $R \leq y, R<* * S *$. Then $S<* * S *$. Hence for all pre well orderings $R \leq x, R<* * S<* * S *$. Hence for all pre well orderings $R \leq x, R<* * S *$, by the transitivity of <**. Since $S^{*} \leq \mathrm{z}$, we have $\mathrm{x} \leq \# \mathrm{z}$.

For the second claim, $x \leq \#$ x since $\leq * *$ on pre well orderings is reflexive. Suppose $x \leq \# y$ and $y \leq \# z$. Let $R \leq x$. Let $S \leq$ $y, R \leq * * S . L e t S * \leq z, S \leq * * S^{*}$. By the transitivity of s**, R s** S^{*}.

For the third claim, let $\neg(x \leq \# y)$. Let $R \leq x$ be a pre well ordering such that for all pre well orderings $S \leq y$, we have $\neg R \leq * * S$. We claim that $y<\# x$. To see this, let $S \leq y$ be a pre well ordering. Then $\neg \mathrm{R} \leq * * \mathrm{~S}$. By Lemma 5.7.15, $\mathrm{S}<* * \mathrm{R}$.

For the fourth claim, let $x<\#$ y. Let $S \leq y$ be a pre well ordering such that for all pre well orderings $R \leq x, R<* *$ S. Let $R \leq x$ be a pre well ordering. Then $R \leq * *$. Hence x s\# y.

For the fifth claim, let $x \leq \# y$ and $y<\# z . ~ L e t ~ S ~ s ~ b e ~ a ~$ pre well ordering such that for all pre well orderings $R \leq$ $y, R<* * S$. Let $R \leq x$ be a pre well ordering. Let $S^{*} \leq y$ be a pre well ordering such that R s** S^{*}. Then $S^{*}<* * S$. By Lemma 5.7.15, R <** S. We have verified that $x<\# z$.

For the sixth claim, let $x<\# y$ and $y \leq \# z . ~ L e t ~ S ~ y ~ b e ~ a ~$ pre well ordering such that for all pre well orderings $R \leq$ $\mathrm{x}, \mathrm{R}<* * \mathrm{~S}$. Let $\mathrm{S}^{*} \leq \mathrm{z}$ be a pre well ordering such that S s** S^{*}. By Lemma 5.7.15, for all pre well orderings $R \leq x, R$ <** S^{*}. Hence $x<\# z$.

The seventh claim is obvious.
For the eight claim, let $x<\# y$. Let $S \leq y$ be a pre well ordering, where for all pre well orderings $R \leq x$, we have R
<** S. If $y \leq x$ then $S \leq x$, and so $S<* *$. This is a contradiction. Hence $x<y$.

For the ninth claim, the converse is the first claim. Suppose $x \leq \# y \wedge y<\#$ x. By the third claim, $x<\# x$, which is impossible.

For the tenth claim, the converse is the first claim. Suppose $x<\# y ~ \wedge ~ y ~ \leq \# ~ x . ~ B y ~ t h e ~ t h i r d ~ c l a i m, ~ y ~<\# ~ y, ~ w h i c h ~$ is impossible. QED

We now define $x=\# y$ if and only if $x \leq \# y \wedge y \leq \# x$.
LEMMA 5.7.18. $=\#$ is an equivalence relation on D. Let $x, y \in$ D. $x \leq \# y \leftrightarrow(x<\# y v x=\# y) . x<\# y v y<\# x \vee x=\# y$, with exclusive v.

Proof: For the first claim, reflexivity and symmetry are obvious, by Lemma 5.7.17. Let $x=\# y$ and $y=\# z$. Then $x \leq \# y$ and $y \leq \# z$. Hence $x \leq \# z$. Also $z \leq \# y$ and $y \leq \# x$. Hence $z \leq \#$ x. Therefore $x=\# z$.

For the second claim, let $x, y \in D$. By Lemma 5.7.17, $x \leq \# y$ $v y<\# x . B y$ the first claim, $x<\# y v y<\# x$ or $x=\# y$.

To see that the v is exclusive, suppose $x<\#$ y, $y<\#$ x. By Lemma 5.7.17, $x<\#$ x, which is a contradiction. Suppose x <\# y, $x=\#$ y. By Lemma 5.7.17, $x<\# x$, which is a contradiction. Suppose $y<\# x, x=\# y . B y$ Lemma 5.7.17, y <\# y, which is a contradiction. QED

DEFINITION 5.7.22. We say that S is x-critical if and only if
i) S is a pre well ordering;
ii) for all pre well orderings $R \leq x, R<* * S ;$
iii) for all $y \in \operatorname{dom}(S), S \mid<y$ is $\leq^{* *}$ some pre well ordering $R \leq x$.

LEMMA 5.7.19. Assume $(\forall y \in x)(y$ is a pre well ordering). Then there exists a pre well ordering S such that $(\forall R \in$ x) ($\mathrm{R} \leq * * \mathrm{~S}) \wedge(\forall u \in \operatorname{dom}(S))(\exists R \in \mathrm{x})(\mathrm{S} \mid<u<* * R)$.

Proof: Let x be as given. Let $\mathrm{x}<\mathrm{d}_{\mathrm{r}}, \mathrm{r} \geq 1$. By Lemma 5.7.20 iv), define

$$
E \approx\left\{y \leq d_{r+1}:\right.
$$

$(\exists R, z)(R \in x \wedge y$ is an $R \mid<z)\}$.
By Lemma 5.7.5, we define

$$
\begin{gathered}
S(u, v) \leftrightarrow \\
u, v \in E \wedge u \leq \leq^{\star *} v .
\end{gathered}
$$

Then S is uniquely defined up to \equiv^{\prime}. By Lemmas 5.7.15, 5.7.16, S is a pre well ordering.

Let $R \in x$ and $z \in \operatorname{dom(R).~By~Lemma~5.6.18~iv),~}$

$$
(\exists y)(y \text { is an } R \mid<z) \text {. }
$$

By Lemma 5.6.18 iii), let $p \geq r+1$ be such that

$$
\left(\exists y<d_{p}\right)(y \text { is an } R \mid<z) .
$$

By Lemma 5.7.20 v),

$$
\left(\exists y<d_{r+1}\right)(y \text { is an } R \mid<z) .
$$

Hence every $R \mid<z, R \in x$, is isomorphic to an element of E.
We claim that we can define an isomorphism T_{R} from any given $R \in x$, onto S or a proper initial segment of S, as follows. T_{R} relates each $z \in \operatorname{dom}(R)$ to the elements of E that are isomorphic to $R \mid<z$. Note that each $z \in \operatorname{dom}(R)$ gets related by T_{R} to something; i.e., all of the $R \mid<z$ lying in E.

To verify the claim, we first show that rng(T_{R}) is closed downward under s** in E. Fix $T_{R}(z, w)$. Let w^{*} be an S least
 must act as an isomorphism from some proper initial segment J of $R \mid<z$ onto $S \mid<w^{*}$. We can assume $J \in E$ (by taking an isomorphic copy). Hence $\mathrm{T}_{\mathrm{R}}\left(\mathrm{J}, \mathrm{w}^{*}\right)$, contradicting that $\mathrm{w}^{*} \notin$ rng (T_{R}).

Since rng (T_{R}) is closed downward under $\leq^{* *}$ in E, we see that rng $\left(T_{R}\right) \equiv \mathrm{E}$, or $\operatorname{rng}\left(\mathrm{T}_{\mathrm{R}}\right) \equiv \mathrm{S} \mid<\mathrm{v}$, for some $\mathrm{v} \in \mathrm{E}$. From the definition of T_{R}, T_{R} is an isomorphism from R onto S or a proper initial segment of S. Hence $R \leq^{* *} S$.

Now let $u \in \operatorname{dom}(S)$. Then u is some $R \mid<z, R \in x$. Therefore u $<* * R$, for some $R \in x$. QED

LEMMA 5.7.20. Assume $(\forall y \in x)(y$ is a pre well ordering). Then there exists a pre well ordering S such that $(\forall R \in$ x) ($\mathrm{R}<* * S$) $\wedge(\forall R<* * S)(\exists y \in x)(R \leq * * y)$.

Proof: Let x be as given.
case $1 . \mathrm{x}$ has a s** greatest element R. Set $\mathrm{S} \equiv \mathrm{R}^{+}$.
case 2. Otherwise. Set S to be as provided by Lemma 5.7.19 applied to x.

QED
LEMMA 5.7.21. For all x, there exists an x-critical S. If S is x -critical then $\mathrm{x}<\mathrm{S}$.

Proof: Let x be given. By Lemma 5.6.18 iv), define

$$
x^{\star} \approx\{R: R \leq x \wedge R \text { is a pre well ordering }\}
$$

Let S be as provided by Lemma 5.7.20. Then S is x-critical.
Now let S be x-critical. If $S \leq x$ then $S<* S$ which is impossible by ii) in the definition of x-critical. QED

LEMMA 5.7.22. For all x, all x-critical S are isomorphic. For all $x, y, x<\# y$ if and only if $(\exists R, S)(R$ is x-critical \wedge S is y-critical $\wedge R<* * S)$.

Proof: Let R,S be x-critical. Suppose $R<* * S$, and let R =** $S \mid<y$. By clause iii) in the definition of x-critical, let $S \mid<y \leq * * R^{*} \leq x, R^{*}$ a pre well ordering. By clause ii) in the definition of R is x-critical, $R^{*}<* * R$. Hence $R \leq^{* *}$ $R^{*}<* * R$. This is a contradiction. Hence $\neg(R<* * S)$. By symmetry, we also obtain $\neg(S<* * R)$. Hence R, S are isomorphic.

For the second claim, let $x, y \in D$. First assume $x<\# y$. Let R be x-critical and S be y-critical. Let $S^{*} \leq y$ be a pre well ordering such that for all pre well orderings $R^{*} \leq x$, we have R* <** S^{*}.

We claim that $R \leq^{* *} S^{*}$. To see this, suppose $S^{*}<* * R$, and let S^{*} be isomorphic to $R \mid<z$. Since R is x-critical, let $R \mid<z \leq * * R^{*} \leq x$, where R^{*} is a pre well ordering. Then S^{*} s** R*. Since $R^{*} \leq x$, we have $R^{*}<* * S^{*}$, which is a contradiction. Thus R s** S^{*}.

Note that $S^{*}<\star * S$ since $S^{*} \leq y$ and S is Y-critical. Hence R <** S.

For the converse, assume R is x-critical, S is y-critical, and $R<* * S$. Let R be isomorphic to $S \mid<z$. Since S is Y critical, let $S \mid<z \leq * * R^{*} \leq y, ~ w h e r e ~ R * ~ i s ~ a ~ p r e ~ w e l l ~$ ordering. Then $R \leq * * R^{*} \leq Y$.

We claim that for all pre well orderings $S^{*} \leq x, S *<* * R^{*}$. To see this, let $S^{*} \leq x$ be a pre well ordering. Since R is x-critical, $S^{*}<\star * R \leq * * R^{*} \leq y$.

We have shown that $x<\# y$ using $R^{*} \leq y, ~ a s ~ r e q u i r e d . ~ Q E D$

LEMMA 5.7.23. Let $n \geq 1$. For all $x \leq d_{n}$ there exists $x-$ critical $S<d_{n+1} \cdot d_{n}<\# d_{n+1}$.

Proof: Let $n \geq 1$ and $x \leq d_{n}$. By Lemmas 5.7.21 and 5.6.18 ii), there exists $m>n$ such that the following holds.

$$
\left(\exists S<d_{m}\right)(S \text { is } x \text {-critical). }
$$

By Lemma 5.6.18 v),

$$
\left(\exists S<d_{n+1}\right)(S \text { is } x \text {-critical). }
$$

For the second claim, by the first claim let $R<d_{n+1}$, where R is d_{n}-critical. Let S be d_{n+1}-critical. Then $R<* * S . B y$ Lemma 5.7.22, $d_{n}<\# d_{n+1}$. QED

LEMMA 5.7.24. If $y \in x$ then x has $a<\#$ least element. Every first order property with parameters that holds of some x, holds of $a<\#$ least $x .0$ is $a<\#$ least element.

Proof: Let $y \in x$. By Lemma 5.6 .18 ii), let $n \geq 1$ be such that $x \leq d_{n}$. By Lemma 5.7.23, for each $y \in x$ there exists a y-critical $S<d_{n+1}$. By Lemma 5.6.18 iv), we can define

$$
B \approx\left\{S<d_{n+1}:(\exists y \in x)(S \text { is } y \text {-critical })\right\}
$$

uniquely up to \equiv.

By Lemma 5.7.16, let S be $a<* *$ least element of B. Let S be y-critical, $y \in x$. We claim that y is a $<\#$ minimal element of x. Suppose $z<\# y, z \in x . B y$ Lemma 5.7.23, let R be z-critical, $R \in B$. By the choice of $S, S \leq * * R$. By Lemma
5.7.22, let R^{*}, S^{*} be such that R^{*} is z-critical, S^{*} is y^{-} critical, and R* <** S^{*}. By the first claim of Lemma 5.7.22, $\mathrm{R}<* * \mathrm{~S}$. This is a contradiction.

For the second claim, let $\varphi(y)$. By Lemma 5.6.18 ii), let y $<d_{n}$. By Lemma 5.6.18 iv), let $x \approx\left\{y<d_{n+1}: \varphi(y)\right\}$. By the first claim, let y be $a<\#$ minimal element of x. Suppose $\varphi(z), z<\# y . S i n c e ~ z ~ \nexists x$, we have $z \geq d_{n+1}$. Since $z<\# y$, we have $z<y$ (Lemma 5.7.17). This contradicts $y<d_{n+1} \wedge z \geq$ d_{n+1}.

The third claim follows immediately from the last claim of Lemma 5.7.17. QED

LEMMA 5.7.25. If $x \leq y$ then $x \leq \# y$. If $x \leq y \leq z$ and $x=\# z$, then $x=\# y=\# z$.

Proof: The first claim is trivial.
For the second claim, let $x \leq y \leq z, x=\# z$. Using the first claim and Lemmas 5.7.17, 5.7.18, $x \leq \# y \leq \# z \leq \# x . H e n c e ~ x$ =\# y =\# z. QED

From Lemma 5.7.25, we obtain a picture of what <\# looks like.

LEMMA 5.7.26. =\# is an equivalence relation on D whose equivalence classes are nonempty intervals in D (not necessarily with endpoints). These are called the intervals of $=\# . x$ <\# y if and only if the interval of $=\#$ in which x lies is entirely below the interval of $=\#$ in which y lies. There is no highest interval for =\#. The d's lie in different intervals of $=\#$, each entirely higher than the previous.

Proof: For the first claim, =\# is an equivalence relation by Lemma 5.7.18. Suppose $x<y, x=\# y$. By Lemma 5.7.25, any $x<z<y$ has $x=\# z=\# y$. So the equivalence classes under =\# are intervals in <.

For the second claim, let $x<\# y$. Let z lie in the same interval of $=\#$ as x. Let w lie in the same interval of $=\#$ as y. Then $x=* z, y=* w$. By Lemma 5.7.18, $z<\# w . B y$ Lemma 5.7.17, $\mathrm{z}<\mathrm{w}$.

Conversely, assume the interval of $=\#$ in which x lies is entirely below the interval of $=\#$ in which y lies. Then $\neg(x$
=\# y). By Lemma 5.7.18, $x<\#$ y v y <\# x. The later implies $y<x$, which is impossible. Hence $x<\# y$.

For the final claim, by Lemma 5.7.23, each $d_{n}<\# d_{n+1}$. By the second claim, the intervals of $=\#$ in which d_{n} lies is entirely below the interval of $=\#$ in which d_{n+1} lies. QED

Recall the component NAT in the structure M\#.
LEMMA 5.7.27. There is a binary relation RNAT (recursively defined natural numbers) such that
i) dom(RNAT) $\approx\{x: \operatorname{NAT}(x)\} ;$
ii) $(\forall y)(\operatorname{RNAT}(0, y) \leftrightarrow y$ is a $<\#$ least element);
iii) $(\forall \mathrm{x})(\mathrm{NAT}(\mathrm{x}) \rightarrow(\forall \mathrm{w})(\operatorname{RNAT}(\mathrm{x}+1, \mathrm{w}) \leftrightarrow(\exists \mathrm{z})(\operatorname{RNAT}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{w}$
is an immediate successor of z in <\#)));
iv) RNAT < d_{2}.

Any two RNAT's (even without iv)) are \equiv^{\prime}. If NAT(x) then $\{y$: RNAT (x,y) \} forms an equivalence class under =\#.

Proof: We will use the following facts. The set of all <\# minimal elements exists and is nonempty. For all y, the set of all immediate successors of y in <\# exists and is nonempty. These follow from Lemmas 5.7.24, 5.7.26, and 5.6.18 iv).

DEFINITION 5.7.23. We say that a binary relation R is $x-$ special if and only if
i) NAT(x);
ii) $\operatorname{dom}(R) \approx\{y: y \leq x\}$;
iii) $(\forall y)(R(0, y) \leftrightarrow y$ is a <\# minimal element);
iv) $(\forall y \leq x)(\forall w)(R(y+1, w) \leftrightarrow(\exists z)(R(y, z) \wedge w$ is an immediate successor of z in <\#)).

We claim that for all x with NAT(x), there exists an x special R. This is proved by induction, which is supported by Lemma 5.6.18 iv), vi), vii), and Lemma 5.7.5. The basis case $\mathrm{x}=0$ is immediate.

For the induction case, let R be x-special. By Lemma 5.7.5, define

$$
S(y, w) \leftrightarrow R(y, w) \vee(y=x+1 \wedge
$$

($\exists \mathrm{z})(\mathrm{R}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{w}$ is an immediate successor of z in <\#)).
uniquely up to \equiv '. We claim that S is $x+1$-special. It is clear that $\operatorname{dom}(S) \approx\{y: y \leq x+1\}$ since $\operatorname{dom}(R) \approx\{y: y \leq x\}$
and we can find immediate successors in <\#. Also the conditions

$$
\begin{gathered}
(\forall \mathrm{y})(\mathrm{S}(0, \mathrm{y}) \leftrightarrow \mathrm{y} \text { is a <\# minimal element). } \\
(\forall \mathrm{Y} \leq \mathrm{x})(\forall \mathrm{w})(\mathrm{S}(\mathrm{y}+1, \mathrm{w}) \leftrightarrow
\end{gathered}
$$

($\exists \mathrm{z})(\mathrm{R}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{w}$ is an immediate successor of z in <\#)).
are inherited from R. To see that
$(\forall \mathrm{w})(\mathrm{S}(\mathrm{x}+1, \mathrm{w}) \leftrightarrow$
$(\exists \mathrm{z})(\mathrm{S}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{w}$ is an immediate successor of z in <\#))
we need to know that $\{z: R(x, z)\}$ forms an equivalence class under =\#. This is proved by induction on x from 0 through x.

We have thus shown that there exists an x-special R for all x with NAT(x). Another induction on NAT shows that

$$
\text { 1) } \begin{gathered}
\text { NAT }(x) \wedge \operatorname{NAT}(y) \wedge x \leq y \wedge R \text { is } x-\text { special } \wedge \\
\\
S \text { is } y-\text { special } \wedge z \leq x \rightarrow \\
R(z, w) \leftrightarrow S(z, w) .
\end{gathered}
$$

We also claim that

$$
\text { NAT (x) } \rightarrow
$$

there exists an x-special $R<d_{2}$.
To see this, let NAT(x). By Lemma 5.6.18 iii), let $n>1$ be so large that

$$
\left(\exists y<d_{n}\right)(y \text { is } x \text {-special). }
$$

By Lemma 5.6.18 vi), $x<d_{1}$. Hence by Lemma 5.6.18 v),

$$
\left(\exists y<d_{2}\right)(y \text { is } x \text {-special). }
$$

Because of this d_{2} bound, we an apply Lemma 5.7.5 to form a union RNAT of the x-special relations with NAT(x), uniquely up to \equiv '. Claims i)-iii) are easily verified using 1). Thus we have
(ヨR) (R is an RNAT $\wedge R$ obeys clauses i)-iii)).
Hence by Lemma 5.6.18 v),
(ヨR < d_{2}) (R is an RNAT $\wedge R$ obeys clauses i)-iii)).
(ヨR) (R obeys clauses i)-iv)).
The remaining claims can be proved from properties i)-iii) by induction. QED

DEFINITION 5.7.24. We fix the RNAT of Lemma 5.7.27, which is unique up to \equiv^{\prime}.

The limit point provided by the next Lemma will be used to interpret ω.

LEMMA 5.7.28. There is a <\# least limit point of <\#. I.e., there exists x such that
i) (ヨy) (y <\# x);
ii) ($\forall \mathrm{y}$ <\# x) ($\left.\mathrm{J}_{\mathrm{z}}<\# \mathrm{x}\right)(\mathrm{y}<\# \mathrm{z})$;
iii) for all x^{*} with properties i),ii), $x \leq \# x^{*}$. All <\# least limit points of <\# are =\#, and < d_{2}.

Proof: We say that z is an ω if and only if z is a <\# least limit point of <\#; i.e., z obeys i)-iii).

By an obvious induction, if NAT(x) then $\{z:(\exists y \leq$
x) (RNAT(y,z))\} forms an initial segment of <\#. Therefore rng (RNAT) forms an initial segment of <\#. Since RNAT < d_{2}, rng (RNAT) $\subseteq\left[0, \mathrm{~d}_{2}\right)$). According to Lemma 5.7.24, let z be <\# least such that ($\forall \mathrm{x} \in \mathrm{rng}(\mathrm{RNAT}))(\mathrm{x}<\# \mathrm{z})$.

It is clear that z obeys claims i),ii). Suppose x^{*} has properties i),ii). By an obvious induction, we see that ($\forall y$ \in rng(RNAT)) (y <\# x*). Hence z s\# x^{*}. Thus we have verified claim iii) for z. I.e., z is an ω.

Suppose z, z^{*} are $\omega^{\prime} s$. By iii), $z \leq \# z^{*}, z^{*} \leq \# ~ z . ~ H e n c e ~ z ~=\# ~$ z*.

By Lemma 5.6.18 iii), let $n>1$ be such that
"there exists an $\omega<d_{n}$ ".
Hence By Lemma 5.6.18 v),
"there exists an $\omega<\mathrm{d}_{2}$ ".
Finally, we establish that every ω is $<d_{2}$. Suppose
"there exists an $\omega>d_{2}$ ".

By Lemma 5.6.18 v),

$$
\text { "there exists an } \omega>d_{3} " .
$$

Hence the ω 's form an interval, with an element $<d_{2}$ and an element $>d_{3}$. Hence $d_{2}=\# d_{3}$. This contradicts Lemma 5.7.26. QED

We are now prepared to define the system M^{\wedge}.
DEFINITION 5.7.25. $\mathrm{M}^{\wedge}=(\mathrm{C},<, 0,1,+,-$
,•, $\left.\uparrow, \log , \omega, \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, Y_{1}, Y_{2}, \ldots\right)$, where the following components are defined below.
i) ($\mathrm{C},<$) is a linear ordering;
ii) C_{1}, C_{2}, \ldots are elements of C;
iii) for $k \geq 1, Y_{k}$ is a set of k-ary relations on C;
iv) $0,1, \omega$ are elements of C;
v) +,-,• are binary functions from C into C; vi) $\uparrow, l o g$ are unary functions from C into C.

DEFINITION 5.7.26. For $x \in D$, we write $[x]$ for the equivalence class of x under =\#. Recall from Lemma 5.7.26 that each [x] is a nonempty interval in (D, <).

DEFINITION 5.7.27. We define $C=\{[x] ; x \in D\}$. We define $[x]<[y] \leftrightarrow x<\# y$. For all $n \geq 1$, we define $c_{n}=\left[d_{n+1}\right]$.

DEFINITION 5.7.28. Let $k \geq 1$. We define Y_{k} to be the set of all k-ary relations R on C, where there exists a k-ary relation S on D, internal to $M \#$, (i.e., given by a point in D), such that for all $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \in \mathrm{C}$,

$$
R\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow
$$

$\left(\exists y_{1}, \ldots, y_{k} \in D\right)\left(y_{1} \in x_{1} \wedge \ldots \wedge y_{k} \in x_{k} \wedge S\left(y_{1}, \ldots, y_{k}\right)\right)$.
Since k-ary relations S on D are required to be bounded in D, by Lemma 5.7.26 every $R \in Y_{k}$ is bounded in C.

DEFINITION 5.7.29. By Lemma 5.7.28, we define the ω of M^{\wedge} to be [z], where z is an ω of $M \#$, as defined in the first line of the proof of Lemma 5.7.28.

DEFINITION 5.7.30. Define the following function f
externally. For each $x \in D$ such that NAT (x), let $f(x)=\{y$: RNAT $(x, y)\}$. Note that by Lemma 5.7.27, $f(x) \in C$. Note that
the relation $y \in f(x)$ is internal to M\#. Also by Lemma 5.7.28 and an internal induction argument, f is one-one.

DEFINITION 5.7.31. We define 0 to be $f(0)=[0]$, and 1 to be f(1).

DEFINITION 5.7.32. For x, y such that NAT(x),NAT(y), we define

$$
\begin{gathered}
f(x)+f(y)=f(x+y) . \\
f(x)-f(y)=f(x-y) . \\
f(x) \cdot f(y)=f(x \cdot y) . \\
f(x) \uparrow=f(x \uparrow) . \\
\log (f(x))=f(\log (x)) .
\end{gathered}
$$

Here the operations on the left side are in M^{\wedge}, and the operations on the right side are in M\#. Note that the above definitions of $+,-, \bullet, l o g$ on $r n g(f)$ are internal to $M \#$.

DEFINITION 5.7.33. Let $u, v \in C$ where $\neg(u, v \in r n g(f))$. We define

$$
u+v=u-v=u \bullet v=u \uparrow=\log (u)=[0] .
$$

We now define the language L^{\wedge} suitable for M^{\wedge}, without the $c^{\prime} \mathrm{s}$.

DEFINITION 5.7.34. L^{\wedge} is based on the following primitives.
i) The binary relation symbol <;
ii) The constant symbols $0,1, \omega$;
iii) The unary function symbols $\uparrow, l o g ;$
iv) The binary function symbols +,-,•;
v) The first order variables $\mathrm{v}_{\mathrm{n}}, \mathrm{n} \geq 1$;
vi) The second order variables $B^{n}{ }_{m}, n, m \geq 1$;

In addition, we use $\forall, \exists, \neg, \wedge, \vee, \rightarrow, \leftrightarrow,=$. Commas and parentheses are also used. "B" indicates "bounded set".

DEFINITION 5.7.35. The first order terms of L^{\wedge} are inductively defined as follows.
i) The first order variables $\mathrm{v}_{\mathrm{n}}, \mathrm{n} \geq 1$ are first order terms of L^{\wedge};
ii) The constant symbols $0,1, \omega$ are first order terms of L^{\wedge}; iii) If s, t are first order terms of L^{\wedge} then $s+t, s-t, s \cdot t$, $t \uparrow, \log (t)$ are first order terms of L^{\wedge}.

DEFINITION 5.7.36. The atomic formulas of L^{\wedge} are of the form

$$
\begin{gathered}
s=t \\
s<t \\
B_{m}^{n}\left(t_{1}, \ldots, t_{n}\right)
\end{gathered}
$$

where $s, t, t_{1}, \ldots, t_{n}$ are first order terms and $n \geq 1$. The formulas of L^{\wedge} are built up from the atomic formulas of L^{\wedge} in the usual way using the connectives and quantifiers.

Note that there is no epsilon relation in L^{\wedge}.
The first order quantifiers range over C. The second order quantifiers $B_{k}{ }_{k}$ range over Y_{n}.

LEMMA 5.7.29. Let $k \geq 1$ and $R \subseteq C^{k}$ be M^{\wedge} definable (with first and second order parameters allowed). Then $\left\{\left(x_{1}, \ldots, x_{k}\right): R\left(\left[x_{1}\right], . .,\left[x_{k}\right]\right)\right\}$ is $M \#$ definable (with parameters allowed). If R is M^{\wedge} definable without parameters, then $\left\{\left(x_{1}, \ldots, x_{k}\right): R\left(\left[x_{1}\right], \ldots,\left[x_{k}\right]\right)\right\}$ is $M \#$ definable without parameters.

Proof: The construction of M^{\wedge} takes place in M\#, where equality in M^{\wedge} is given by the equivalence relation $=\#$ in M\#. Note that $=\#$ is defined in M\# without parameters. The $<, 0,1, \omega$ of M^{\wedge} are also defined without parameters.

Let $k \geq 1$. The relations in Y_{k} are each coded by arbitrary internal k ary relations R in $M \#$, where the application relation "the relation coded by R holds at points x_{1}, \ldots, x_{k} " is defined in M\# without parameters.

Using these considerations, it is straightforward to convert M^{\wedge} definitions to M\# definitions. QED

LEMMA 5.7.30. There exists a structure $M^{\wedge}=(C,<, 0,1,+,-$ $\left., \cdot \uparrow, \log , \omega, C_{1}, C_{2}, \ldots, Y_{1}, Y_{2}, \ldots\right)$ such that the following holds.
i) ($\mathrm{C},<$) is a linear ordering;
ii) ω is the least limit point of ($C,<$);
iii) (\{x: $\mathrm{x}<\omega\},<, 0,1,+,-, \cdot \uparrow, \log)$ satisfies $\operatorname{TR}\left(\Pi^{0}{ }_{1}, \mathrm{~L}\right)$;
iv) For all $x, y \in C, \neg(x<\omega \wedge y<\omega) \rightarrow x+y=x \cdot y=x-y=$ $x \uparrow=\log (x)=0$;
v) The $c_{n}, n \geq 1$, form a strictly increasing sequence of elements of C, all > ω, with no upper bound in C;
vi) For all $k \geq 1, Y_{k}$ is a set of k-ary relations on C whose field is bounded above;
vii) Let $k \geq 1$, and φ be a formula of L^{\wedge} in which the k-ary second order variable $B^{k}{ }_{n}$ is not free, and the variables $B^{m}{ }_{r}$ range over Y_{r}. Then $\left(\exists B_{n}^{k} \in Y_{k}\right)\left(\forall x_{1}, \ldots, x_{k}\right)\left(B_{n}^{k}\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow\right.$ $\left.\left(x_{1}, \ldots, x_{k} \leq y \wedge \varphi\right)\right)$;
viii) Every nonempty M^{\wedge} definable subset of C has $a<$ least element;
ix) Let $r \geq 1$ and $\varphi\left(v_{1}, \ldots, v_{2 r}\right)$ be a formula of L^{\wedge}. Let $1 \leq$ $i_{1}, \ldots, i_{2 r}$, where (i_{1}, \ldots, i_{r}) and ($i_{r+1}, \ldots, i_{2 r}$) have the same order type and the same min. Let $y_{1}, \ldots, y_{r} \in C, y_{1}, \ldots, y_{r} \leq$ $\min \left(C_{i_{-} 1}, \ldots, c_{i_{-} r}\right) . \operatorname{Then} \varphi\left(C_{i_{-} 1}, \ldots, C_{i_{-}} r Y_{1}, \ldots, Y_{r}\right) \leftrightarrow$ $\varphi\left(\mathrm{C}_{\mathrm{i}_{-} r+1}, \ldots, \mathrm{C}_{\mathrm{i}_{-} 2 r}, \mathrm{Y}_{1}, \ldots, \mathrm{~V}_{\mathrm{r}}\right)$.

Proof: We show that the M^{\wedge} we have constructed obeys these properties. Claim i) is by construction, since <\# is irreflexive, transitive, and has trichotomy. Claim ii) is by the definition of ω (see Definition 5.7.29).

For claim iii), note that the f used in the construction of M^{\wedge} defines an isomorphism from the (\{x: NAT(x) \},0,1,+,,•, $\uparrow, \log)$ of $M \#$ onto the ($\{x: x<\omega\},<, 0,1,+,-, \cdot \uparrow, \log)$ of M^. Now apply Lemma 5.6.18 viii).

Claim iv) is by construction.
For claim v), for all $n \geq 1, c_{n}=\left[d_{n+1}\right]$. By Lemma 5.7.26, the C_{n} 's are strictly increasing. Let $[\mathrm{x}] \in \mathrm{C}$. By Lemma 5.6.18 iii), let $x<d_{m+1}$, in M\#. By Lemma 5.7.17, $\neg\left(d_{m+1}<\#\right.$ $x)$. Therefore $x \leq \# d_{m+1}$. Hence $[x] \leq\left[d_{m+1}\right]=c_{m}$. Hence the C_{n} 's have no upper bound in C. By Lemma 5.7.27, any ω of $\mathrm{M} \#$ is <\# d2 in M\#. Hence $\omega<\mathrm{C}_{1}$ in M^{\wedge}.

Claim vi) is by construction. This uses that there is no <\# greatest point in M\# (Lemma 5.7.26).

For claim vii), it suffices to show that every M^ definable relation R on C whose field is bounded above (\leq on C) lies in Y_{k}. By Lemma 5.7.29, the k-ary relation S on D given by

$$
S\left(y_{1}, \ldots, y_{k}\right) \leftrightarrow R\left(\left[y_{1}\right], \ldots,\left[y_{k}\right]\right)
$$

is M\# definable. Since the field of R is bounded above (\leq on C), the field of S is bounded above (< on D). This uses that < on C has no greatest element (Lemma 5.7.26). Hence we can take S to be internal to $M \#$; i.e., given by a point in D. Therefore $R \in Y_{k}$.

For claim viii), let R be a nonempty M^{\wedge} definable subset of C. By Lemma 5.7.29, $S \approx\{y:[y] \in R\}$ is nonempty and $M \#$ definable. By Lemma 5.7.24, let y be $a<\#$ least element of S.

We claim that in M^{\wedge}, [y] is the < least element of R. To see this, let [z] $\in R,[z]<[y] . ~ T h e n ~ z ~<\# ~ y ~ a n d ~ z ~ \in ~ S, ~$ which contradicts the choice of y.

For claim ix), let $\varphi\left(x_{1}, \ldots, x_{2 r}\right), i_{1}, \ldots, i_{2 r}, y_{1}, \ldots, y_{r}$ be as given. Let $i=m i n\left(i_{1}, \ldots, i_{r}\right)$. Since $y_{1}, \ldots, y_{r} \leq c_{i}=\left[d_{i+1}\right]$, every element of the equivalence classes y_{1}, \ldots, y_{r} is $\leq \#$ $\mathrm{d}_{\mathrm{i}+1}$. Hence we can write $\mathrm{y}_{1}=\left[\mathrm{z}_{1}\right], \ldots, \mathrm{y}_{\mathrm{r}}=\left[\mathrm{z}_{\mathrm{r}}\right]$, where $z_{1}, \ldots, z_{r} \leq d_{i+1}$.

By Lemma 5.7.29, the $2 r$-ary relation S on D given by

$$
S\left(w_{1}, \ldots, w_{2 r}\right) \leftrightarrow
$$

$\varphi\left(\left[w_{1}\right], \ldots,\left[w_{2 r}\right]\right)$ holds in M^{\wedge}
is definable in $\mathrm{M} \#$ without parameters.
Note that min $\left(i_{1}+1, \ldots, i_{2 r}+1\right)=i+1$. Hence by Lemma 5.6.18 v), we have

$$
\begin{aligned}
& S\left(d_{i_{i} 1+1}, \ldots, d_{i_{i}}^{r+1}, z_{1}, \ldots, z_{r}\right) \leftrightarrow \\
& \left.S\left(d_{i_{-}}\right) \text {r+1+1}, \ldots, \bar{d}_{i_{-} 2 r+1}, z_{1}, \ldots, z_{r}\right) .
\end{aligned}
$$

Hence in M^{\wedge},

$$
\begin{aligned}
& \varphi\left(\mathrm{C}_{\mathrm{i}_{-} 1}, \ldots, \mathrm{C}_{\mathrm{i}_{-} \mathrm{r}},\left[\mathrm{z}_{1}\right], \ldots,\left[\mathrm{z}_{\mathrm{r}}\right]\right) \leftrightarrow \\
& \varphi\left(\mathrm{C}_{\mathrm{i}_{-}}{ }^{r+1}, \ldots, \overline{\mathrm{c}}_{\mathrm{i}_{-} 2 r},\left[\mathrm{z}_{1}\right], \ldots,\left[\mathrm{z}_{\mathrm{r}}\right]\right) . \\
& \varphi\left(\mathrm{C}_{\mathrm{i}_{1}}, \ldots, \mathrm{C}_{\mathrm{i}_{\mathrm{r}}}, \mathrm{Y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right) \leftrightarrow \\
& \varphi\left(\mathrm{C}_{\mathrm{i}_{-} r+1}, \ldots, \mathrm{C}_{\mathrm{i}_{2}} 2 r, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right) .
\end{aligned}
$$

QED

