5.7. Transfinite induction, comprehension, indiscernibles, infinity, Π_{1}^{0} correctness.

We now fix $M# = (D, <, \in, NAT, 0, 1, +, -, \cdot, \uparrow, \log, d_1, d_2, ...)$ as given by Lemma 5.6.18.

While working in M#, we must be cautious.

a. The linear ordering < may not be internally well ordered. In fact, there may not even be a < minimal element above the initial segment given by NAT.b. We may not have extensionality.

Note that we have lost the internally second order nature of M* as we passed from M* to the present M# in section 5.6. The goal of this section is to recover this internally second order aspect, and gain internal well foundedness of <.

To avoid confusion, we use the three symbols =, =, \approx . Here = is the standard identity relation we have been using throughout the book.

DEFINITION 5.7.1. We use = for extensionality equality in the form

 $x = y \Leftrightarrow (\forall z) (z \in x \Leftrightarrow z \in y).$

DEFINITION 5.7.2. We use \approx as a special symbol in certain contexts.

DEFINITION 5.7.3. We write x $\thickapprox \varnothing$ if and only if x has no elements.

We avoid using the notation $\{x_1, \ldots, x_k\}$ out of context, as there may be more than one set represented in this way.

DEFINITION 5.7.4. Let $k \ge 1$. We write $x \approx \{y_1, \ldots, y_k\}$ if and only if

 $(\forall z) (z \in x \Leftrightarrow (z = y_1 \lor \ldots \lor z = y_k)).$

LEMMA 5.7.1. Let $k \ge 1$. For all y_1, \ldots, y_k there exists $x \approx \{y_1, \ldots, y_k\}$. Here x is unique up to \equiv .

Proof: Let $y = max(y_1, \dots, y_k)$. By Lemma 5.6.18 iv),

 $(\exists x) (\forall z) (z \in x \leftrightarrow (z \leq y \land (z = y_1 \lor \ldots \lor z = y_k))).$ The last claim is obvious. OED DEFINITION 5.7.5. We write $x \approx \langle y, z \rangle$ if and only if there exists a, b such that i) $x \approx \{a, b\};$ ii) a $\approx \{y\};$ iii) b ≈ {y,z}. LEMMA 5.7.2. If $x \approx \langle y, z \rangle \land w \in x$, then $w \approx \{y\} \lor w \approx \{y, z\}$. If $x \approx \langle y, z \rangle \wedge x \approx \langle u, v \rangle$, then $y = u \wedge z = v$. For all y, z, there exists $x \approx \langle y, z \rangle$. Proof: For the first claim, let x, y, z, w be as given. Let a,b be such that $x \approx \{a,b\}$, $a \approx \{y\}$, $b \approx \{y,z\}$. Then w = a vw = b. Hence $w \approx \{y\} \vee w \approx \{y, z\}$. For the second claim, let x $\approx \langle y, z \rangle$, x $\approx \langle u, v \rangle$. Let $x \approx \{a,b\}, a \approx \{y\}, b \approx \{y,z\}$ $x \approx \{c,d\}, c \approx \{u\}, d \approx \{u,v\}.$ Then $(a = c \lor a = d) \land (b = c \lor b = d) \land (c = a \lor c = b) \land (d = c \lor c = d)$ a v d = b). Since $a = c \vee a = d$, we have $y = u \vee (y = u = v)$. Hence y = vu. We have $b \approx \{y, z\}$, $d \approx \{y, v\}$. If b = d then z = v. So we can assume $b \neq d$. Hence b = c, d = a. Therefore u = y = z, y = u= v. For the third claim, let y,z. By Lemma 5.7.1, let a \approx {y} and $b \approx \{y, z\}$. Let $x \approx \{a, b\}$. Then $x \approx \langle y, z \rangle$. QED DEFINITION 5.7.6. Let $k \ge 2$. We inductively define $x \approx$ $\langle y_1, \ldots, y_k \rangle$ as follows. $x \approx \langle y_1, \ldots, y_{k+1} \rangle$ if and only if $(\exists z)$ (x $\approx \langle z, y_3, \dots, y_{k+1} \rangle \land z \approx \langle y_1, y_2 \rangle$). In addition, we define $x \approx \langle y \rangle$ if and only if x = y. LEMMA 5.7.3. Let $k \ge 1$. If $x \approx \langle y_1, \ldots, y_k \rangle$ and $x \approx$ $\langle z_1, \ldots, z_k \rangle$, then $y_1 = z_1 \land \ldots \land y_k = z_k$. For all y_1, \ldots, y_k , there exists x such that $x \approx \langle y_1, \ldots, y_k \rangle$.

Proof: The first claim is by external induction on $k \ge 2$, the case k = 1 being trivial. The basis case k = 2 is by Lemma 5.7.2. Suppose this is true for a fixed $k \ge 2$. Let $x \approx \langle y_1, \ldots, y_{k+1} \rangle$, $x \approx \langle z_1, \ldots, z_{k+1} \rangle$. Let u,v be such that $x \approx \langle u, y_3, \ldots, y_{k+1} \rangle$, $x \approx \langle v, z_3, \ldots, z_{k+1} \rangle$, $u \approx \langle y_1, y_2 \rangle$, $v \approx \langle z_1, z_2 \rangle$. By induction hypothesis, $u = v \land y_3 = z_3 \land \ldots \land y_{k+1} = z_{k+1}$. By Lemma 5.7.2, since u = v, we have $y_1 = z_1 \land y_2 = z_2$.

The second claim is also by external induction on $k \ge 2$, the case k = 1 being trivial. The basis case k = 2 is by Lemma 5.7.2. Suppose this is true for a fixed $k \ge 2$. Let y_1, \ldots, y_{k+2} . By Lemma 5.7.2, let $z \approx \langle y_1, y_2 \rangle$. By induction hypothesis, let $x \approx \langle z, y_3, \ldots, y_{k+2} \rangle$. Then $x \approx \langle y_1, \ldots, y_{k+2} \rangle$. QED

DEFINITION 5.7.7. Let $k \ge 1$. We say that R is a k-ary relation if and only if $(\forall x \in R) (\exists y_1, \ldots, y_k) (x \approx \langle y_1, \ldots, y_k \rangle)$. If R is a k-ary relation then we define $R(y_1, \ldots, y_k)$ if and only if

$$(\exists x \in R) (x \approx \langle y_1, \ldots, y_k \rangle).$$

Note that if R is a k-ary relation with $R(y_1, \ldots, y_k)$, then there may be more than one $x \in R$ with $x \approx \langle y_1, \ldots, y_k \rangle$.

We use set abstraction notation with care.

DEFINITION 5.7.8. We write

$$x \approx \{y: \phi(y)\}$$

if and only if

$$(\forall y) (y \in x \Leftrightarrow \varphi(y)).$$

If there is such an x, then x is unique up to =.

Let R,S be k-ary relations. The notion $R \equiv S$ is usually too strong for our purposes.

DEFINITION 5.7.9. We define $R \equiv ' S$ if and only if

$$(\forall x_1, \ldots, x_k) (R(x_1, \ldots, x_k) \Leftrightarrow S(x_1, \ldots, x_k)).$$

DEFINITION 5.7.10. We define R \subseteq ' S if and only if

$$(\forall x_1, \dots, x_k) (R(x_1, \dots, x_k) \rightarrow S(x_1, \dots, x_k).$$
We now prove comprehension for relations. To do this, we need a bounding lemma.
LEMMA 5.7.4. Let $n, k \ge 1$, and $x_1, \dots, x_k \le d_n$. There exists $y \approx \{x_1, \dots, x_k\}$ such that $y \le d_{n+1}$. There exists $z \approx \langle x_1, \dots, x_k \rangle$ such that $z \le d_{n+1}$.
Proof: Let k, n, x_1, \dots, x_k be as given. By Lemmas 5.7.1 and 5.7.3,

$$(\exists y) (y \approx \{x_1, \dots, x_k\}).$$

$$(\exists z) (z \approx \langle x_1, \dots, x_k \rangle).$$
By Lemma 5.6.18 iii), let $r > n$ be such that

$$(\exists y \le d_r) (y \approx \{x_1, \dots, x_k\}).$$

$$(\exists z \le d_r) (z \approx \langle x_1, \dots, x_k \rangle).$$
By Lemma 5.6.18 v),

$$(\exists y \le d_{n+1}) (y \approx \{x_1, \dots, x_k\}).$$

$$(\exists z \le d_{n+1}) (z \approx \langle x_1, \dots, x_k \rangle).$$
QED
LEMMA 5.7.5. Let $k, n \ge 1$ and $\varphi(v_1, \dots, v_{k+n})$ be a formula of L#. Let y_1, \dots, y_k (R $(x_1, \dots, x_k) \Leftrightarrow (x_1, \dots, x_k \le z \land x_k)$).

Proof: Let $k, n, m, \varphi, y_1, \ldots, y_n, z$ be as given. By Lemma 5.6.18 iii), let $r \ge 1$ be such that $y_1, \ldots, y_n, z \le d_r$. By Lemma 5.6.18 iv), let R be such that

> 1) $(\forall x) (x \in \mathbb{R} \iff (x \leq d_{r+1} \land (\exists x_1, \ldots, x_k \leq z)))$ $(x \approx \langle x_1, \ldots, x_k \rangle \land \phi(x_1, \ldots, x_k, y_1, \ldots, y_n)))).$

Obviously R is a k-ary relation. We claim that

 $\phi(x_1, \ldots, x_k, y_1, \ldots, y_n))).$

$$(\forall x_1, \ldots, x_k) (R(x_1, \ldots, x_k) \Leftrightarrow (x_1, \ldots, x_k \leq z \land \varphi(x_1, \ldots, x_k, y_1, \ldots, y_n))).$$

To see this, fix x_1, \ldots, x_k . First assume $R(x_1, \ldots, x_k)$. Let $x \approx \langle x_1, \ldots, x_k \rangle$, $x \in R$. By 1),

$$x \leq d_{r+1} \wedge (\exists x_1^*, \dots, x_k^* \leq z) (x = \langle x_1^*, \dots, x_k^* \rangle \wedge \\ \phi(x_1^*, \dots, x_k^*, y_1, \dots, y_n)).$$

Let x_1^*, \ldots, x_k^* be as given by this statement. By Lemma 5.7.3, $x_1^* = x_1, \ldots, x_k^* = x_k$. Hence $x_1, \ldots, x_k \le z \land \varphi(x_1, \ldots, x_k, y_1, \ldots, y_n)$.

Now assume

 $x_1, ..., x_k \leq z \land \phi(x_1, ..., x_k, y_1, ..., y_n).$

By Lemma 5.7.4, let

 $x \approx \langle x_1, \ldots, x_k \rangle \land x \leq d_{r+1}.$

By 1), $x \in R$. Hence $R(x_1, \ldots, x_k)$. QED

LEMMA 5.7.6. If $x \approx \{y_1, \ldots, y_k\}$ then each $y_i < x$. If $x \approx \langle y_1, \ldots, y_k \rangle$, $k \ge 2$, then each $y_i < x$. If $x \approx \langle y_1, \ldots, y_k \rangle$, $k \ge 1$, then each $y_i \le x$. If $R(x_1, \ldots, x_k)$ then each $x_i < R$.

Proof: The first claim is evident from Lemma 5.6.18 ii). The second claim is by external induction on $k \ge 2$. For the basis case k = 2, note that if $x \approx \langle y, z \rangle$ then y, z are both elements of elements of x, and apply Lemma 5.6.18 ii). Now assume true for fixed $k \ge 2$. Let $x \approx \langle y_1, \ldots, y_{k+1} \rangle$, and let $z \approx \langle y_1, y_2 \rangle$, $x \approx \langle z, y_3, \ldots, y_{k+1} \rangle$, By induction hypothesis, $z, y_3, \ldots, y_{k+1} < x$, and also $y_1, y_2 < x$.

The third claim involves only the new case k = 1, which is trivial.

For the final claim, let $R(x_1, \ldots, x_k)$. Let $x \approx \langle x_1, \ldots, x_k \rangle$, $x \in R$. By the second claim and Lemma 5.6.18 iii), $x_1, \ldots, x_k \leq x < R$. QED

DEFINITION 5.7.11. A binary relation is defined to be a 2ary relation. Let R be a binary relation. We "define"

 $\begin{array}{l} \mbox{dom}(R) \ \approx \ \{x: \ ({\tt J}y) \ (R(x,y)) \} \,, \\ \mbox{rng}(R) \ \approx \ \{x: \ ({\tt J}y) \ (R(y,x)) \} \,, \\ \mbox{fld}(R) \ \approx \ \{x: \ ({\tt J}y) \ (R(x,y) \ \lor \ R(y,x)) \} \,. \end{array}$

Note that this constitutes a definition of dom(R), rng(R), fld(R) up to \equiv .

LEMMA 5.7.7. For all binary relations R, dom(R) and rng(R) and fld(R) exist.

Proof: Let R be a binary relation. By Lemma 5.6.18 iv), let A,B,C be such that

 $\begin{array}{l} (\forall x) (x \in A \Leftrightarrow (x \leq R \land (\exists y) (R(x, y))) \\ (\forall x) (x \in B \Leftrightarrow (x \leq R \land (\exists y) (R(y, x))) \\ (\forall x) (x \in C \Leftrightarrow (x \leq R \land (\exists y) (R(x, y) \lor R(y, x)))) \end{array}$

By Lemma 5.7.6,

 $\begin{array}{c} (\forall x) \ (x \in A \iff (\exists y) \ (R(x, y)) \ . \\ (\forall x) \ (x \in B \iff (\exists y) \ (R(y, x)) \ . \\ (\forall x) \ (x \in C \iff (\exists y) \ (R(x, y) \lor R(y, x))) \ . \end{array}$

QED

DEFINITION 5.7.12. A pre well ordering is a binary relation R such that

 $\begin{array}{l} \text{i)} \quad (\forall x \in \text{fld}(R)) (R(x,x)); \\ \text{ii)} \quad (\forall x, y, z \in \text{fld}(R)) ((R(x,y) \land R(y,z)) \rightarrow R(x,z)); \\ \text{iii)} \quad (\forall x, y \in \text{fld}(R)) (R(x,y) \lor R(y,x)); \\ \text{iv)} \quad (\forall x \subseteq \text{fld}(R)) (\neg (x \approx \emptyset) \rightarrow (\exists y \in x) (\forall z \in x) (R(y,z))). \end{array}$

Note that R is a pre well ordering if and only if R is reflexive, transitive, connected, and every nonempty subset of its field (or domain) has an R least element.

Note that all pre well orderings are reflexive. Clearly for pre well orderings R, dom(R) = rng(R) = fld(R).

Let R be a reflexive and transitive relation.

DEFINITION 5.7.13. It will be convenient to write R(x,y) as $x \leq_R y$, and write $x =_R y$ for $x \leq_R y \land y \leq_R x$. We also define $x \geq_R y \leftrightarrow y \leq_R x$, $x <_R y \leftrightarrow x \leq_R y \land \neg y \leq_R x$, $x >_R y \leftrightarrow y <_R x$, and $x \neq_R y \leftrightarrow \neg x =_R y$.

DEFINITION 5.7.14. Let R be a pre well ordering and $x \in fld(R)$. We "define" the binary relations R| < x by

 $(\forall y, z) (R | \langle x(y, z) \leftrightarrow y \leq_R z \langle_R x)).$

Note that R|<x is unique up to ='. Also note that by Lemma 5.7.5, R|<x exists. Furthermore, it is easy to see that R|<x is a pre well ordering.

When we write R| < x, we require that $x \in fld(R)$.

DEFINITION 5.7.15. Let R,S be pre well orderings. We say that T is an isomorphism from R onto S if and only if

i) T is a binary relation; ii) dom(T) = dom(R), rng(T) = dom(S); iii) Let T(x,y), T(z,w). Then $x \leq_R z \Leftrightarrow y \leq_S w$; iv) Let $x =_R u$, $y =_S v$. Then $T(x,y) \Leftrightarrow T(u,v)$.

LEMMA 5.7.8. Let R,S be pre well orderings, and T be an isomorphism from R onto S. Let T(x,y), T(z,w). Then $x <_R z \Leftrightarrow y <_S w$, and $x =_R z \Leftrightarrow y =_S w$.

Proof: Let R,S,T,x,y,z,w be as given. Suppose $x <_R z$. Then $y \leq_S w$. If $w \leq_S y$ then $z \leq_R x$. Hence $y <_R w$. Suppose $y <_S w$. Then $x \leq_R z$. If $z \leq_R x$ then $w \leq_S y$. Hence $x <_R z$. Suppose $x =_R z$. Then $y \leq_S w$ and $w \leq_S y$. Hence $y =_S w$. Suppose $y =_S w$. Then $x \leq_R z$ and $z \leq_R x$. Hence $x =_R z$. QED

LEMMA 5.7.9. Let R,S be pre well orderings. Let a,b \in dom(S). Let T be an isomorphism from R onto S|<a, and T* be an isomorphism from R onto S|<b. Then a =_s b and T =' T*.

Proof: Let R,S,a,b,T,T* be as given. Suppose there exists $x \in \text{dom}(R)$ such that for some y, $\neg(T(x,y) \Leftrightarrow T^*(x,y))$. By Lemma 5.6.18 iv), let x be R least with this property.

case 1. (\exists y) (T(x,y) $\land \neg$ T*(x,y)). Let T(x,y), \neg T*(x,y). Also let T*(x,y*). If y =_s y* then by clause iv) in the definition of isomorphism, T*(x,y). Hence \neg y =_s y*.

case 1a. $y <_{s} y^{*}$. Then $y <_{s} b$. Let $T^{*}(x^{*}, y)$.

Suppose $x^* <_R x$. If $\neg T(x^*, y)$, then we have contradicted the choice of x. Hence $T(x^*, y)$. But this contradicts T(x, y) by Lemma 5.7.8.

Suppose x \leq_R x*. By T*(x,y*), T*(x*,y) and Lemma 5.7.8, y* \leq_s y. This is a contradiction.

case 1b. $y^* <_s y$. Then $y^* <_s a$. Let $T(x^*, y^*)$. By T(x, y) and Lemma 5.7.8, $x^* <_R x$. By the choice of x, since $T(x^*, y^*)$, we

have $T^*(x^*, y^*)$. By Lemma 5.7.8, since $T^*(x, y^*)$, we have $x =_R x^*$. Since T(x, y), by Lemma 5.7.8 we have $y =_S y^*$. This is a contradiction.

case 2. $(\exists y)$ $(\neg T(x,y) \land T^*(x,y))$. Let $\neg T(x,y)$, $T^*(x,y)$. This is the same as case 1, interchanging a,b, and T,T^* .

We have now established that $T \equiv ' T^*$. If a <_s b then a \in rng(T^{*}) but a \notin rng(T). This contradicts $T \equiv ' T^*$. If b <_s a then b \in rng(T) but b \notin rng(T^{*}). This also contradicts T =' T^{*}. Therefore a =_s b. QED

DEFINITION 5.7.16. Let R,S be pre well orderings. Let T be an isomorphism from R onto S. Let $x \in \text{dom}(R)$. We write T| < xfor "the" restriction of T to first arguments $u <_R x$. We write $T| \le x$ for "the" restriction of T to first arguments u $\le_R x$. Note that T| < x, $T| \le x$ are each unique up to ='.

LEMMA 5.7.10. Let R,S be pre well orderings. Let T be an isomorphism from R onto S, and T(x,y). Then T|<x is an isomorphism from R|<x onto S|<y.

Proof: Let R,S,T,x,y be as given. It suffices to show that $rng(T|<x) \equiv \{b: b <_{s} y\}$. Let $b <_{s} y$. Let T(a,b). By Lemma 5.7.8, $a <_{R} x$. Hence $b \in rng(T|<x)$. QED

LEMMA 5.7.11. Let R,S be pre well orderings, T be an isomorphism from R onto S, and T* be an isomorphism from R|<x onto S|<y. Then T* =' T|<x and T(x,y).

Proof: Let R,S,T,T*,x,y be as given. Let $T(x,y^*)$. By Lemma 5.7.10, T|<x is an isomorphism from R|<x onto $S|<y^*$. By Lemma 5.7.9, $y =_S y^*$ and $T|<x \equiv' T^*$. Hence T(x,y). QED

DEFINITION 5.7.17. Let T be a binary relation. We write T^{-1} for the binary relation given by $T^{-1}(x,y) \Leftrightarrow T(y,x)$. By Lemma 5.7.5, T^{-1} exists. Obviously T^{-1} is unique up to ='.

LEMMA 5.7.12. Let R,S be pre well orderings, and T be an isomorphism from R onto S. Then T^{-1} is an isomorphism from S onto R.

Proof: Let R,S,T be as given. Obviously dom $(T^{-1}) \equiv dom(S)$ and rng $(T^{-1}) \equiv dom(R)$. Let $T^{-1}(x,y)$, $T^{-1}(z,w)$. Then T(y,x), T(w,z). Hence $y \leq_R w \Leftrightarrow x \leq_S z$.

Finally, let $T^{-1}(x,y)$, $x =_R u$, $y =_S v$. Then T(y,x), T(v,u), $T^{-1}(u,v)$. OED DEFINITION 5.7.18. Let R be a pre well ordering. We can append a new point ∞ on top and form the extended pre well ordering R^+ . The canonical way to do this is to use R itself as the new point. This defines R^+ uniquely up to ='. Clearly $R^+ | < \infty \equiv ' R$. LEMMA 5.7.13. Let R,S be pre well orderings. Exactly one of the following holds. 1. R,S are isomorphic. 2. R is isomorphic to some S | < y, $y \in dom(S)$. 3. Some R| < x, $x \in dom(R)$, is isomorphic to S. In case 2, the y is unique up to $=_{s}$. In case 3, the x is unique up to $=_{R}$. In all three cases, the isomorphism is unique up to \equiv' . Proof: We first prove the uniqueness claims. For case 1, let T,T* be isomorphisms from R onto S. Then T,T* are isomorphisms from R onto $S^+ | < \infty$. By Lemma 5.7.9, T =' T*. For case 2, Let T be an isomorphism from R onto S|<y, and T^* be an isomorphism from R onto S|<y*. Apply Lemma 5.7.9. For case 3, Let T be an isomorphism from R < x onto S, and T* be an isomorphism from $R | < x^*$ onto S. By Lemma 5.7.12, T^{-1} is an isomorphism from S onto R|<x, and $T^{*^{-1}}$ is an isomorphism from S onto $R|<x^*$. Apply Lemma 5.7.9. For uniqueness, it remains to show that at most one case applies. Suppose cases 1,2 apply. Let T be an isomorphism from R onto S, and T* be an isomorphism from R onto S|<y. Then T is an isomorphism from R onto $S^+|<\infty$, and T* is an isomorphism from R onto $S^+| < y$. By Lemma 5.7.9, y is ∞ , which is a contradiction. Suppose cases 1,3 hold. Let T be an isomorphism from R onto S, and T* be an isomorphism from R | < x onto S. Then T^{-1} is an isomorphism from S onto $R^+ | < \infty$, and $T^{\star^{-1}}$ is an isomorphism from S onto $R^+| < x$. By Lemma 5.7.9, x is ∞ , which is a contradiction.

Suppose cases 2,3 hold. Let T be an isomorphism from R onto S|<y and T* be an isomorphism from R|<x onto S. By Lemma 5.7.10, T|<x is an isomorphism from R|<x onto S|<z, where

T(x,z). Hence T|<x is an isomorphism from R|<x onto S^+ |<z. Also T* is an isomorphism from R|<x onto S^+ |< ∞ . Hence by Lemma 5.7.9, z is ∞ . This is a contradiction.

We now show that at least one of 1-3 holds. Consider all isomorphisms from some $R^+| < x$ onto some $S^+| < y$, $x \in \text{dom}(R^+)$, $y \in \text{dom}(S^+)$. We call these the local isomorphisms.

We claim the following, concerning these local isomorphisms. Let T be an isomorphism from $R^+|<x$ onto $S^+|<y$, and T* be an isomorphism from $R^+|<x^*$ onto $S^+|<y^*$. If $x =_{R^+} x^*$ then $y =_{S^+} y^*$ and T =' T*. If $x <_{R^+} x^*$ then $y <_{S^+} y^*$ and T =' T*. If $x <_{R^+} x^*$ then $y <_{S^+} y^*$ and T =' T*|<x. If $x^* <_{R^+} x$ then $y^* <_{S^+} y$ and T* =' T|<x*.

To see this, let T, T^*, x, y be as given.

case 1. $x =_{R^+} x^*$. Apply Lemma 5.7.9.

case 2. $x^* <_{R^+} x$. Suppose $y \leq_{S^+} y^*$. Let $T(x^*, z)$, $z <_{S^+} y$. By Lemma 5.7.10, $T|<x^*$ is an isomorphism from $R^+|<x^*$ onto $S^+|<z$. By Lemma 5.7.9, $T^* \equiv' T|<x^*$ and $z =_{S^+} y^*$. This is a contradiction. Hence $y^* <_{S^+} y$. By Lemma 5.7.10, $T|<x^*$ is an isomorphism from $R^+|<x^*$ onto $S^+|<w$, where $T(x^*,w)$, $w <_{S^+} y$. By Lemma 5.7.9, $T^* \equiv' T|<x^*$.

case 3. x \leq_{R+} x*. Symmetric to case 2.

By Lemma 5.7.5, we can form the union T of all of the local isomorphisms, since the underlying arguments are all in $dom(R^+)$ or $dom(S^+)$, both of which are bounded.

By the pairwise compatibility of the local isomorphisms, T obeys conditions iii),iv) in the definition of isomorphism. It is also clear that the domain of T is closed downward in R^+ , and the range of T is closed downward in S^+ . Hence dom(T) \approx {u: u <_{R+} x}, rng(T) \approx {v: v <_{S+} y}, for some x \in dom(R^+), y \in dom(S^+). Hence T is an isomorphism from R^+ |<x onto S^+ |<y.

We now argue by cases.

case 1. x,y are ∞ . Then T is an isomorphism from R onto S. case 2. x is ∞ , y \in dom(S). Then T is an isomorphism from R onto S|<y*, y^ defined below. case 3. $x\in dom(R)$, y is $\infty.$ Then T is an isomorphism from $R|{<}x^*$ onto S, x^{\wedge} defined below.

case 4. $x \in dom(R)$, $y \in dom(S)$. Then T is an isomorphism from R|<x onto S|<y. Using Lemma 5.7.5, let T* be defined by

 $\begin{array}{rcl} \mathbb{T}^{\star}\left(u,v\right) & \nleftrightarrow \\ \mathbb{T}\left(u,v\right) & \mathsf{V} & \left(u =_{\mathbb{R}} x \land v =_{\mathbb{S}} y\right). \end{array}$

Then T* is an isomorphism from R|<x^ onto S|<y^, where x^,y^ are respective immediate successors of x,y in R⁺,S⁺. This contradicts the definition of T. QED

LEMMA 5.7.14. Let R,S,S* be pre well orderings. Let T be an isomorphism from R onto S, and T* be an isomorphism from S onto S*. Define $T^{**}(x,y) \Leftrightarrow (\exists z) (T(x,z) \land T^{*}(z,y))$, by Lemma 5.7.5. Then T** is an isomorphism from R onto S*.

Proof: Let $R, S, S^*, T, T^*, T^{**}$ be as given. Note that T^{**} is defined up to \equiv' . Obviously dom $(T^{**}) \equiv dom(R)$, $rng(T^{**}) \equiv dom(S^*)$.

Suppose $T^*(x,y)$, $T^*(x^*,y^*)$. Let T(x,z), $T^*(z,y)$, $T(x^*,w)$, $T^*(w,y^*)$. Then $x \leq_R x^* \Leftrightarrow z \leq_S w$, $z \leq_R w \Leftrightarrow y \leq_S y^*$. Therefore $x \leq_R x^* \Leftrightarrow y \leq_S y^*$.

Suppose $T^{**}(x,y)$, $x =_R u$, $y =_{S'} v$. Let T(x,z), $T^{*}(z,y)$. Then T(u,z), $T^{*}(z,v)$. Hence $T^{**}(u,v)$. QED

We introduce the following notation in light of Lemma 5.7.13.

DEFINITION 5.7.19. Let R,S be pre well orderings. We define

 $R = ** S \Leftrightarrow$ R,S are pre well orderings and R,S are isomorphic.

 $R < ** S \Leftrightarrow$ R,S are pre well orderings and there exists y \in fld(S) such that R and S|<y are isomorphic.

 $\begin{array}{rrrrr} \mathbb{R} & \leq^{**} \ \mathbb{S} & \longleftrightarrow \\ \mathbb{R} & <^{**} \ \mathbb{S} & \mathsf{v} & \mathbb{R} & =^{**} \ \mathbb{S}. \end{array}$

LEMMA 5.7.15. In <**, the y is unique up to $=_s$. <** is irreflexive and transitive on pre well orderings. =** is an

equivalence relation on pre well orderings. \leq^{**} is reflexive and transitive and connected on pre well orderings. Let R,S,S* be pre well orderings. (R \leq^{**} S \land S $<^{**}$ S*) \rightarrow R $<^{**}$ S*. (R $<^{**}$ S \land S \leq^{**} S*) \rightarrow R $<^{**}$ S*. R $<^{**}$ S \lor S $<^{**}$ R \lor R =** S, with exclusive \lor . R \leq^{**} S \lor S \leq^{**} R. (R \leq^{**} S \land S \leq^{**} R) \rightarrow R =** S.

Proof: We apply Lemmas 5.7.13 and 5.7.14. For the first claim, if R <** S then we are in case 2 of Lemma 5.7.13, and the y is unique up to $=_s$.

For the second claim, <** is irreflexive since R <** R implies that cases 1,2 both hold in Lemma 5.7.13 for R,R. Also, suppose R <** S, S <** S*. Let T be an isomorphism from R onto S|<y, and T* be an isomorphism from S onto $S^*|<z$. By Lemma 5.7.10, Let T** be an isomorphism from S|<y onto S*|<w. By Lemma 5.7.14, there is an isomorphism from R onto S*|<w. Hence R <** S*.

For the third claim, note that R = ** R because there is an isomorphism from R onto R by defining $T(x,y) \Leftrightarrow x =_R y$. Now suppose R = ** S, and let T be an isomorphism from R onto S. By Lemma 5.7.12, T^{-1} is an isomorphism from S onto R. Hence S = ** R. Finally, suppose R = ** S, S = ** S*, and let T be an isomorphism from R onto S, T* be an isomorphism from S onto S*. By Lemma 5.7.14, R = ** S*.

For the fourth claim, since R =** R, we have R \leq ** R. For transitivity, let R \leq ** S, S \leq ** S*. If R <** S, S <** S*, then by the second claim, R <** S*, and so R \leq ** S*. If R =** S, S =** S*, then by Lemma 5.7.14, R =** S*, and so R \leq ** S*. The remaining two cases for transitivity follow from the fifth and sixth claims. Connectivity of \leq ** is by Lemma 5.7.13.

For the fifth claim, let R $\leq **$ S and S <** S*. By the second claim, we have only to consider the case R =** S. Let S be isomorphic to S*|<y. Since R is isomorphic to S, by the third claim, R is isomorphic to S*|<y. Hence R <** S*.

For the sixth claim, let R <** S and S \leq ** S*. By the second claim, we have only to consider the case S =** S*. Let R be isomorphic to S|<y. By Lemma 5.7.10, S|<y is isomorphic to S*|<z, for some z \in dom(S*). By the third claim, R is isomorphic to S*|<z. Hence R <** S*.

The seventh and eighth claims are immediate from Lemmas 5.7.12 and 5.7.13.

For the ninth claim, let R \leq^{**} S and S \leq^{**} R. Assume R $<^{**}$ S. By the sixth claim R $<^{**}$ R, which is a contradiction. Assume S $<^{**}$ R. By the sixth claim, S $<^{**}$ S, which is also a contradiction. By the eighth claim, R \leq^{**} S v S \leq^{**} R. Under either disjunct, R $=^{**}$ S. QED

LEMMA 5.7.16. Every nonempty set of pre well orderings has a \leq^{**} least element.

Proof: Let A be a nonempty set of pre well orderings, and fix $S \in A$. We can assume that there exists $R \in A$ such that $R <^{**} S$, for otherwise, S is a \leq^{**} minimal element of A.

By Lemma 5.7.5, define

B ≈ {y ∈ dom(S): ($\exists R ∈ A$) (T =** S|<y)}.

Let y be an S least element of B. Let $R \in A$ be isomorphic to S| < y.

We claim that R is a \leq^{**} least element of A. To see this, by trichotomy, let R* <** R, R* \in A. Then R* <** S|<y, since R is isomorphic to S|<y.

Let R* be isomorphic to (S|<y)|<z, z <_S y. Then R* is isomorphic to S|<z, z <_S y. This contradicts the choice of y. QED

DEFINITION 5.7.20. For $x, y \in D$, we define x < # y if and only

there exists a pre well ordering $S \le y$ such that for every pre well ordering $R \le x$, R < ** S.

We caution the reader that the \leq in the above definition is not to be confused with \leq^{**} . It is from the < of D in the structure M#. In particular, x,y generally will not be pre well orderings. Thus here we are treating R,S as points.

DEFINITION 5.7.21. We define $x \leq \# y$ if and only if

for all pre well orderings R \leq x there exists a pre well ordering S \leq y such that R \leq^{**} S.

LEMMA 5.7.17. <# is an irreflexive and transitive relation on D. <# is a reflexive and transitive relation on D. Let $x,y \in D$. $x \le \# y \lor y < \# x$. $x < \# y \rightarrow x \le \# y$. $(x \le \# y \land y < \# z) \rightarrow x < \# z$. $(x < \# y \land y \le \# z) \rightarrow x < \# z$. $x \le y \rightarrow x \le \# y$. $x \le \# y \Rightarrow x \le \# y$. $x \le \# y \Rightarrow x \le \# y$.

Proof: For the first claim, <# is irreflexive since <** is irreflexive. Suppose x <# y and y <# z. Let S \leq y be a pre well ordering such that for all pre well orderings R \leq x, R <** S. Let S* \leq z be a pre well ordering such that for all pre well orderings R \leq y, R <** S*. Then S <** S*. Hence for all pre well orderings R \leq x, R <** S <** S*. Hence for all pre well orderings R \leq x, R <** S*, by the transitivity of <**. Since S* \leq z, we have x \leq # z.

For the second claim, $x \le \# x$ since $\le **$ on pre well orderings is reflexive. Suppose $x \le \# y$ and $y \le \# z$. Let $R \le x$. Let $S \le y$, $R \le ** S$. Let $S^* \le z$, $S \le ** S^*$. By the transitivity of $\le **$, $R \le ** S^*$.

For the third claim, let $\neg (x \le \# y)$. Let $R \le x$ be a pre well ordering such that for all pre well orderings $S \le y$, we have $\neg R \le^{**} S$. We claim that y < # x. To see this, let $S \le y$ be a pre well ordering. Then $\neg R \le^{**} S$. By Lemma 5.7.15, $S <^{**} R$.

For the fourth claim, let x < # y. Let $S \le y$ be a pre well ordering such that for all pre well orderings $R \le x$, R < ** S. Let $R \le x$ be a pre well ordering. Then $R \le **$ S. Hence $x \le \# y$.

For the fifth claim, let $x \le \# y$ and y < # z. Let $S \le z$ be a pre well ordering such that for all pre well orderings $R \le y$, R < ** S. Let $R \le x$ be a pre well ordering. Let $S^* \le y$ be a pre well ordering such that $R \le ** S^*$. Then $S^* < ** S$. By Lemma 5.7.15, R < ** S. We have verified that x < # z.

For the sixth claim, let x < # y and $y \le \# z$. Let $S \le y$ be a pre well ordering such that for all pre well orderings $R \le x$, R < ** S. Let $S^* \le z$ be a pre well ordering such that $S \le ** S^*$. By Lemma 5.7.15, for all pre well orderings $R \le x$, $R < ** S^*$. Hence x < # z.

The seventh claim is obvious.

For the eight claim, let x <# y. Let S \leq y be a pre well ordering, where for all pre well orderings R \leq x, we have R

<** S. If $y \le x$ then $S \le x$, and so S < ** S. This is a contradiction. Hence x < y. For the ninth claim, the converse is the first claim. Suppose $x \leq \# y \land y \leq \# x$. By the third claim, $x \leq \# x$, which is impossible. For the tenth claim, the converse is the first claim. Suppose x <# y \wedge y <# x. By the third claim, y <# y, which is impossible. QED We now define x = # y if and only if $x \leq \# y \land y \leq \# x$. LEMMA 5.7.18. =# is an equivalence relation on D. Let $x, y \in$ D. $x \leq \# y \Leftrightarrow (x < \# y \lor x = \# y)$. $x < \# y \lor y < \# x \lor x = \# y$, with exclusive v. Proof: For the first claim, reflexivity and symmetry are obvious, by Lemma 5.7.17. Let x = # y and y = # z. Then $x \leq \# y$ and y <# z. Hence x <# z. Also z <# y and y <# x. Hence z <# x. Therefore x = # z. For the second claim, let $x, y \in D$. By Lemma 5.7.17, $x \leq \# y$ $v \neq = x$. By the first claim, $x \neq v \neq x$ or x = # y. To see that the v is exclusive, suppose x < # y, y < # x. By Lemma 5.7.17, x <# x, which is a contradiction. Suppose x <# y, x =# y. By Lemma 5.7.17, x <# x, which is a</pre> contradiction. Suppose y <# x, x =# y. By Lemma 5.7.17, y <# y, which is a contradiction. QED</pre> DEFINITION 5.7.22. We say that S is x-critical if and only if i) S is a pre well ordering; ii) for all pre well orderings R \leq x, R $<^{**}$ S; iii) for all $y \in \text{dom}(S)$, S | < y is \leq^{**} some pre well ordering $R \leq x$. LEMMA 5.7.19. Assume $(\forall y \in x)$ (y is a pre well ordering). Then there exists a pre well ordering S such that ($\forall R \in$ x) (R \leq^{**} S) \land ($\forall u \in dom(S)$) ($\exists R \in x$) (S|<u <** R). Proof: Let x be as given. Let $x < d_r$, $r \ge 1$. By Lemma 5.7.20 iv), define

 $E \approx \{y \leq d_{r+1}:$

 $(\exists R, z) (R \in x \land y \text{ is an } R|<z) \}.$ By Lemma 5.7.5, we define $S(u,v) \Leftrightarrow u,v \in E \land u \leq^{**} v.$ Then S is uniquely defined up to ='. By Lemmas 5.7.15, 5.7.16, S is a pre well ordering. Let R \in x and z \in dom(R). By Lemma 5.6.18 iv), $(\exists y) (y \text{ is an } R|<z).$ By Lemma 5.6.18 iii), let p \geq r+1 be such that $(\exists y < d_p) (y \text{ is an } R|<z).$ By Lemma 5.7.20 v),

 $(\exists y < d_{r+1})$ (y is an R|<z).

Hence every $\mathbb{R}|<z$, $\mathbb{R} \in x$, is isomorphic to an element of E.

We claim that we can define an isomorphism T_R from any given $R \in x$, onto S or a proper initial segment of S, as follows. T_R relates each $z \in \text{dom}(R)$ to the elements of E that are isomorphic to R|<z. Note that each $z \in \text{dom}(R)$ gets related by T_R to something; i.e., all of the R|<z lying in E.

To verify the claim, we first show that rng(T_R) is closed downward under \leq^{**} in E. Fix T_R(z,w). Let w* be an S least element of E, w* <** w, which is not in rng(T_R). Then T_R must act as an isomorphism from some proper initial segment J of R|<z onto S|<w*. We can assume J \in E (by taking an isomorphic copy). Hence T_R(J,w*), contradicting that w* \notin rng(T_R).

Since rng(T_R) is closed downward under \leq^{**} in E, we see that rng(T_R) = E, or rng(T_R) = S|<v, for some $v \in E$. From the definition of T_R, T_R is an isomorphism from R onto S or a proper initial segment of S. Hence R \leq^{**} S.

Now let $u\in dom(S)$. Then u is some $R|{<}z$, $R\in x.$ Therefore $u<{**}$ R, for some $R\in x.$ QED

LEMMA 5.7.20. Assume $(\forall y \in x)$ (y is a pre well ordering). Then there exists a pre well ordering S such that ($orall R \in$ x) (R <** S) \land (\forall R <** S) (\exists y \in x) (R <** y). Proof: Let x be as given. case 1. x has a \leq^{**} greatest element R. Set S = R⁺. case 2. Otherwise. Set S to be as provided by Lemma 5.7.19 applied to x. QED LEMMA 5.7.21. For all x, there exists an x-critical S. If S is x-critical then x < S. Proof: Let x be given. By Lemma 5.6.18 iv), define $x^* \approx \{R: R \leq x \land R \text{ is a pre well ordering}\}.$ Let S be as provided by Lemma 5.7.20. Then S is x-critical. Now let S be x-critical. If $S \leq x$ then $S <^* S$, which is impossible by ii) in the definition of x-critical. QED LEMMA 5.7.22. For all x, all x-critical S are isomorphic. For all x,y, x <# y if and only if $(\exists R,S)$ (R is x-critical \land S is y-critical \wedge R <** S). Proof: Let R,S be x-critical. Suppose R <** S, and let R =** S|<y. By clause iii) in the definition of x-critical, let $S | < y \leq ** R^* \leq x$, R^* a pre well ordering. By clause ii) in the definition of R is x-critical, R* <** R. Hence R ≤** $R^* < ** R$. This is a contradiction. Hence $\neg (R < ** S)$. By symmetry, we also obtain \neg (S <** R). Hence R,S are isomorphic. For the second claim, let $x, y \in D$. First assume x < # y. Let R be x-critical and S be y-critical. Let $S^* \leq y$ be a pre well ordering such that for all pre well orderings $R^* \leq x$, we have R* <** S*. We claim that $R \leq ** S^*$. To see this, suppose $S^* < ** R$, and let S^* be isomorphic to R|<z. Since R is x-critical, let $R| \le \le * R^* \le x$, where R^* is a pre well ordering. Then S^* \leq^{**} R*. Since R* \leq x, we have R* <** S*, which is a contradiction. Thus R ≤** S*.

17

Note that $S^* < ** S$ since $S^* \leq y$ and S is y-critical. Hence R <** S. For the converse, assume R is x-critical, S is y-critical, and R <** S. Let R be isomorphic to S | < z. Since S is ycritical, let $S | < z \le R^* \le y$, where R^* is a pre well ordering. Then $R \leq * R^* \leq y$. We claim that for all pre well orderings $S^* \leq x$, $S^* < ** R^*$. To see this, let $S^* \leq x$ be a pre well ordering. Since R is x-critical, $S^* <^{**} R \leq^{**} R^* \leq y$. We have shown that x < # y using $R^* \leq y$, as required. QED LEMMA 5.7.23. Let $n \ge 1$. For all $x \le d_n$ there exists xcritical S < d_{n+1} . $d_n < \# d_{n+1}$. Proof: Let $n \ge 1$ and $x \le d_n$. By Lemmas 5.7.21 and 5.6.18 ii), there exists m > n such that the following holds. $(\exists S < d_m)$ (S is x-critical). By Lemma 5.6.18 v), $(\exists S < d_{n+1})$ (S is x-critical). For the second claim, by the first claim let $R < d_{n+1}$, where R is d_n -critical. Let S be d_{n+1} -critical. Then R <** S. By Lemma 5.7.22, $d_n < \# d_{n+1}$. QED LEMMA 5.7.24. If $y \in x$ then x has a <# least element. Every first order property with parameters that holds of some x, holds of a <# least x. 0 is a <# least element. Proof: Let $y \in x$. By Lemma 5.6.18 ii), let $n \ge 1$ be such that $x \leq d_n$. By Lemma 5.7.23, for each $y \in x$ there exists a y-critical S < d_{n+1} . By Lemma 5.6.18 iv), we can define $B \approx \{S < d_{n+1} : (\exists y \in x) (S \text{ is } y - critical)\}$ uniquely up to \equiv . By Lemma 5.7.16, let S be a <** least element of B. Let S be y-critical, $y \in x$. We claim that y is a <# minimal element of x. Suppose z < # y, $z \in x$. By Lemma 5.7.23, let R be z-critical, $R \in B$. By the choice of S, S \leq^{**} R. By Lemma

5.7.22, let R*,S* be such that R* is z-critical, S* is ycritical, and R* <** S*. By the first claim of Lemma 5.7.22, R <** S. This is a contradiction. For the second claim, let $\varphi(y)$. By Lemma 5.6.18 ii), let y $< d_n$. By Lemma 5.6.18 iv), let $x \approx \{y < d_{n+1}: \varphi(y)\}$. By the first claim, let y be a <# minimal element of x. Suppose $\varphi(z)$, z < # y. Since $z \notin x$, we have $z \ge d_{n+1}$. Since z < # y, we have z < y (Lemma 5.7.17). This contradicts $y < d_{n+1} \land z \ge$ d_{n+1} . The third claim follows immediately from the last claim of Lemma 5.7.17. QED LEMMA 5.7.25. If $x \le y$ then $x \le \# y$. If $x \le y \le z$ and x = # z, then x = # y = # z. Proof: The first claim is trivial. For the second claim, let $x \le y \le z$, x = # z. Using the first claim and Lemmas 5.7.17, 5.7.18, $x \le \# y \le \# z \le \# x$. Hence x =# y =# z. QED From Lemma 5.7.25, we obtain a picture of what <# looks like. LEMMA 5.7.26. =# is an equivalence relation on D whose equivalence classes are nonempty intervals in D (not necessarily with endpoints). These are called the intervals of =#. x < # y if and only if the interval of =# in which x lies is entirely below the interval of =# in which y lies. There is no highest interval for =#. The d's lie in different intervals of =#, each entirely higher than the previous. Proof: For the first claim, =# is an equivalence relation by Lemma 5.7.18. Suppose x < y, x = # y. By Lemma 5.7.25, any x < z < y has x = # z = # y. So the equivalence classes under =# are intervals in <. For the second claim, let x < # y. Let z lie in the same interval of =# as x. Let w lie in the same interval of =# as y. Then x =* z, y =* w. By Lemma 5.7.18, z <# w. By Lemma 5.7.17, z < w.

Conversely, assume the interval of =# in which x lies is entirely below the interval of =# in which y lies. Then \neg (x

=# y). By Lemma 5.7.18, x < # y v y < # x. The later implies y < x, which is impossible. Hence x < # y. For the final claim, by Lemma 5.7.23, each $d_n < \# d_{n+1}$. By the second claim, the intervals of =# in which d_n lies is entirely below the interval of =# in which d_{n+1} lies. QED Recall the component NAT in the structure M#. LEMMA 5.7.27. There is a binary relation RNAT (recursively defined natural numbers) such that i) dom(RNAT) \approx {x: NAT(x)}; ii) $(\forall y)$ (RNAT(0,y) \Leftrightarrow y is a <# least element); iii) $(\forall x)$ (NAT(x) \rightarrow $(\forall w)$ (RNAT(x+1,w) \Leftrightarrow $(\exists z)$ (RNAT(x,z) \land w is an immediate successor of z in <#))); iv) RNAT $< d_2$. Any two RNAT's (even without iv)) are \equiv' . If NAT(x) then {y: RNAT(x,y) } forms an equivalence class under =#. Proof: We will use the following facts. The set of all <# minimal elements exists and is nonempty. For all y, the set of all immediate successors of y in <# exists and is nonempty. These follow from Lemmas 5.7.24, 5.7.26, and 5.6.18 iv). DEFINITION 5.7.23. We say that a binary relation R is xspecial if and only if i) NAT(x); ii) dom(R) \approx {y: y \leq x}; iii) $(\forall y) (R(0, y) \leftrightarrow y \text{ is a } < \# \text{ minimal element});$ iv) $(\forall y \le x) (\forall w) (R(y+1,w) \leftrightarrow (\exists z) (R(y,z) \land w \text{ is an immediate})$ successor of z in < #)). We claim that for all x with NAT(x), there exists an xspecial R. This is proved by induction, which is supported by Lemma 5.6.18 iv), vi), vii), and Lemma 5.7.5. The basis case x = 0 is immediate. For the induction case, let R be x-special. By Lemma 5.7.5, define $S(y,w) \iff R(y,w) \vee (y = x+1 \wedge$ $(\exists z)$ (R(x,z) \land w is an immediate successor of z in <#)). uniquely up to \equiv '. We claim that S is x+1-special. It is clear that dom(S) \approx {y: y \leq x+1} since dom(R) \approx {y: y \leq x}

and we can find immediate successors in <#. Also the conditions $(\forall y)$ (S(0,y) \Leftrightarrow y is a <# minimal element). $(\forall y \leq x) (\forall w) (S(y+1, w) \Leftrightarrow$ $(\exists z)$ (R(y, z) \land w is an immediate successor of z in <#)). are inherited from R. To see that $(\forall w) (S(x+1, w) \iff$ $(\exists z)$ (S(x,z) \land w is an immediate successor of z in <#)) we need to know that $\{z: R(x, z)\}$ forms an equivalence class under =#. This is proved by induction on x from 0 through x. We have thus shown that there exists an x-special R for all x with NAT(x). Another induction on NAT shows that 1) NAT(x) \wedge NAT(y) \wedge x \leq y \wedge R is x-special \wedge S is y-special $\land z \leq x \rightarrow$ $R(z,w) \Leftrightarrow S(z,w)$. We also claim that NAT(x) \rightarrow there exists an x-special $R < d_2$. To see this, let NAT(x). By Lemma 5.6.18 iii), let n > 1 be so large that $(\exists y < d_n)$ (y is x-special). By Lemma 5.6.18 vi), $x < d_1$. Hence by Lemma 5.6.18 v), $(\exists y < d_2)$ (y is x-special). Because of this d_2 bound, we an apply Lemma 5.7.5 to form a union RNAT of the x-special relations with NAT(x), uniquely up to ='. Claims i)-iii) are easily verified using 1). Thus we have (∃R)(R is an RNAT ∧ R obeys clauses i)-iii)). Hence by Lemma 5.6.18 v),

 $(\exists R < d_2)$ (R is an RNAT \land R obeys clauses i)-iii)).

 $(\exists R)$ (R obeys clauses i)-iv)). The remaining claims can be proved from properties i)-iii) by induction. QED DEFINITION 5.7.24. We fix the RNAT of Lemma 5.7.27, which is unique up to \equiv' . The limit point provided by the next Lemma will be used to interpret ω . LEMMA 5.7.28. There is a <# least limit point of <#. I.e., there exists x such that i) (**J**_V)(_V <# x); ii) (\forall y <# x)(\exists z <# x)(y <# z); iii) for all x^* with properties i), ii), $x \leq \# x^*$. All <# least limit points of <# are =#, and < d_2 . Proof: We say that z is an ω if and only if z is a <# least limit point of <#; i.e., z obeys i)-iii).</pre> By an obvious induction, if NAT(x) then {z: $(\exists y \leq z)$ x) (RNAT(y,z)) } forms an initial segment of <#. Therefore rng(RNAT) forms an initial segment of <#. Since RNAT $< d_2$, rng(RNAT) \subseteq [0,d₂)). According to Lemma 5.7.24, let z be <# least such that $(\forall x \in rng(RNAT))(x < \# z)$. It is clear that z obeys claims i), ii). Suppose x* has properties i),ii). By an obvious induction, we see that $(\forall$ y \in rng(RNAT))(y <# x*). Hence z <# x*. Thus we have verified claim iii) for z. I.e., z is an ω . Suppose z, z* are ω 's. By iii), z $\leq \#$ z*, z* $\leq \#$ z. Hence z =# z*. By Lemma 5.6.18 iii), let n > 1 be such that "there exists an $\omega < d_n''$. Hence By Lemma 5.6.18 v), "there exists an $\omega < d_2$ ". Finally, we establish that every ω is < d₂. Suppose "there exists an $\omega > d_2$ ".

By Lemma 5.6.18 v), "there exists an $\omega > d_3$ ". Hence the ω 's form an interval, with an element < d₂ and an element > d_3 . Hence $d_2 = # d_3$. This contradicts Lemma 5.7.26. QED We are now prepared to define the system M^. DEFINITION 5.7.25. $M^{*} = (C, <, 0, 1, +, -$,•, \uparrow , log, ω , c_1 , c_2 , ..., Y_1 , Y_2 , ...), where the following components are defined below. i) (C,<) is a linear ordering; ii) c_1, c_2, \ldots are elements of C; iii) for $k \ge 1$, Y_k is a set of k-ary relations on C; iv) 0,1, ω are elements of C; v) +,-,• are binary functions from C into C; vi) 1, log are unary functions from C into C. DEFINITION 5.7.26. For $x \in D$, we write [x] for the equivalence class of x under =#. Recall from Lemma 5.7.26 that each [x] is a nonempty interval in (D, <). DEFINITION 5.7.27. We define $C = \{ [x]; x \in D \}$. We define $[x] < [y] \leftrightarrow x < \# y$. For all $n \ge 1$, we define $c_n = [d_{n+1}]$. DEFINITION 5.7.28. Let $k \ge 1$. We define Y_k to be the set of all k-ary relations R on C, where there exists a k-ary relation S on D, internal to M#, (i.e., given by a point in D), such that for all $x_1, \ldots, x_k \in C$, $R(x_1,\ldots,x_k) \Leftrightarrow$ $(\exists y_1, \ldots, y_k \in D) (y_1 \in x_1 \land \ldots \land y_k \in x_k \land S(y_1, \ldots, y_k)).$ Since k-ary relations S on D are required to be bounded in D, by Lemma 5.7.26 every $R \in Y_k$ is bounded in C. DEFINITION 5.7.29. By Lemma 5.7.28, we define the ω of M^ to be [z], where z is an ω of M#, as defined in the first line of the proof of Lemma 5.7.28. DEFINITION 5.7.30. Define the following function f externally. For each $x \in D$ such that NAT(x), let $f(x) = \{y:$ RNAT(x,y). Note that by Lemma 5.7.27, $f(x) \in C$. Note that

the relation $y \in f(x)$ is internal to M#. Also by Lemma 5.7.28 and an internal induction argument, f is one-one. DEFINITION 5.7.31. We define 0 to be f(0) = [0], and 1 to be f(1). DEFINITION 5.7.32. For x, y such that NAT(x), NAT(y), we define f(x) + f(y) = f(x+y). f(x) - f(y) = f(x - y). $f(x) \bullet f(y) = f(x \bullet y).$ $f(x) \uparrow = f(x\uparrow)$. log(f(x)) = f(log(x)).Here the operations on the left side are in M° , and the operations on the right side are in M#. Note that the above definitions of +, -, -, +, log on rng(f) are internal to M#. DEFINITION 5.7.33. Let $u, v \in C$, where $\neg (u, v \in rnq(f))$. We define $u+v = u-v = u \cdot v = u^{\uparrow} = log(u) = [0].$ We now define the language L^ suitable for M^, without the c's. DEFINITION 5.7.34. L[^] is based on the following primitives. i) The binary relation symbol <; ii) The constant symbols $0, 1, \omega$; iii) The unary function symbols 1, log; iv) The binary function symbols $+, -, \cdot;$ v) The first order variables v_n , $n \ge 1$; vi) The second order variables B^{n}_{m} , $n,m \geq 1$; In addition, we use $\forall, \exists, \neg, \land, \lor, \rightarrow, \leftrightarrow, =$. Commas and parentheses are also used. "B" indicates "bounded set". DEFINITION 5.7.35. The first order terms of L[^] are inductively defined as follows. i) The first order variables v_n , $n \ge 1$ are first order terms of L^; ii) The constant symbols $0, 1, \omega$ are first order terms of L[^]; iii) If s,t are first order terms of L^{+} then s+t, s-t, s•t, $t\uparrow$, log(t) are first order terms of L[^].

DEFINITION 5.7.36. The atomic formulas of ${\rm L^{\wedge}}$ are of the form

$$s = t$$

$$s < t$$

$$B^{n}_{m}(t_{1}, \ldots, t_{n})$$

where s, t, t_1, \ldots, t_n are first order terms and $n \ge 1$. The formulas of L[^] are built up from the atomic formulas of L[^] in the usual way using the connectives and quantifiers.

Note that there is no epsilon relation in L^.

The first order quantifiers range over C. The second order quantifiers B^n_k range over Y_n .

LEMMA 5.7.29. Let $k \ge 1$ and $R \subseteq C^k$ be M^ definable (with first and second order parameters allowed). Then $\{(x_1, \ldots, x_k): R([x_1], \ldots, [x_k])\}$ is M# definable (with parameters allowed). If R is M^ definable without parameters, then $\{(x_1, \ldots, x_k): R([x_1], \ldots, [x_k])\}$ is M# definable without parameters.

Proof: The construction of M^ takes place in M#, where equality in M^ is given by the equivalence relation =# in M#. Note that =# is defined in M# without parameters. The <,0,1, ω of M^ are also defined without parameters.

Let $k \ge 1$. The relations in Y_k are each coded by arbitrary internal k ary relations R in M#, where the application relation "the relation coded by R holds at points x_1, \ldots, x_k " is defined in M# without parameters.

Using these considerations, it is straightforward to convert M^ definitions to M# definitions. QED

LEMMA 5.7.30. There exists a structure $M^{\wedge} = (C, \langle 0, 1, +, -$, $\cdot, \uparrow, \log, \omega, c_1, c_2, \ldots, Y_1, Y_2, \ldots)$ such that the following holds. i) (C, \langle) is a linear ordering; ii) ω is the least limit point of (C, \langle); iii) ({x: x < ω }, $\langle, 0, 1, +, -, \cdot, \uparrow, \log$) satisfies TR(Π^{0}_{1}, L); iv) For all x, y \in C, \neg (x < $\omega \land y < \omega$) \rightarrow x+y = x•y = x-y = x \uparrow = log(x) = 0; v) The c_n, n \geq 1, form a strictly increasing sequence of elements of C, all > ω , with no upper bound in C; vi) For all $k \ge 1$, Y_k is a set of k-ary relations on C whose field is bounded above; vii) Let $k \ge 1$, and φ be a formula of L^ in which the k-ary second order variable B_n^k is not free, and the variables B_r^m range over Y_r . Then $(\exists B_n^k \in Y_k) (\forall x_1, \ldots, x_k) (B_n^k(x_1, \ldots, x_k) \Leftrightarrow$ $(x_1, \ldots, x_k \le y \land \varphi));$ viii) Every nonempty M^ definable subset of C has a < least element; ix) Let $r \ge 1$ and $\varphi(v_1, \ldots, v_{2r})$ be a formula of L^. Let $1 \le i_1, \ldots, i_{2r}$, where (i_1, \ldots, i_r) and $(i_{r+1}, \ldots, i_{2r})$ have the same order type and the same min. Let $y_1, \ldots, y_r \in C$, $y_1, \ldots, y_r \le$ $\varphi(c_{i r+1}, \ldots, c_{i 2r}, y_1, \ldots, y_r).$

Proof: We show that the M[^] we have constructed obeys these properties. Claim i) is by construction, since <# is irreflexive, transitive, and has trichotomy. Claim ii) is by the definition of ω (see Definition 5.7.29).

For claim iii), note that the f used in the construction of M^ defines an isomorphism from the $({x: NAT(x)}, 0, 1, +, -, \cdot, \uparrow, log)$ of M# onto the $({x: x < \omega}, <, 0, 1, +, -, \cdot, \uparrow, log)$ of M^. Now apply Lemma 5.6.18 viii).

Claim iv) is by construction.

For claim v), for all $n \ge 1$, $c_n = [d_{n+1}]$. By Lemma 5.7.26, the c_n 's are strictly increasing. Let $[x] \in C$. By Lemma 5.6.18 iii), let $x < d_{m+1}$, in M#. By Lemma 5.7.17, $\neg (d_{m+1} < \# x)$. Therefore $x \le \# d_{m+1}$. Hence $[x] \le [d_{m+1}] = c_m$. Hence the c_n 's have no upper bound in C. By Lemma 5.7.27, any ω of M# is < # d2 in M#. Hence $\omega < c_1$ in M^.

Claim vi) is by construction. This uses that there is no <# greatest point in M# (Lemma 5.7.26).

For claim vii), it suffices to show that every M^ definable relation R on C whose field is bounded above (\leq on C) lies in Y_k. By Lemma 5.7.29, the k-ary relation S on D given by

 $S(y_1, \ldots, y_k) \Leftrightarrow R([y_1], \ldots, [y_k])$

is M# definable. Since the field of R is bounded above (< on C), the field of S is bounded above (< on D). This uses that < on C has no greatest element (Lemma 5.7.26). Hence we can take S to be internal to M#; i.e., given by a point in D. Therefore $R \in Y_k$.

For claim viii), let R be a nonempty M^ definable subset of C. By Lemma 5.7.29, S \approx {y: [y] \in R} is nonempty and M# definable. By Lemma 5.7.24, let y be a <# least element of s. We claim that in M^{\prime} , [y] is the < least element of R. To see this, let $[z] \in R$, [z] < [y]. Then z < # y and $z \in S$, which contradicts the choice of y. For claim ix), let $\varphi(x_1, \ldots, x_{2r})$, $i_1, \ldots, i_{2r}, y_1, \ldots, y_r$ be as given. Let $i = min(i_1, ..., i_r)$. Since $y_1, ..., y_r \le c_i = [d_{i+1}]$, every element of the equivalence classes y_1, \ldots, y_r is $\leq \#$ d_{i+1} . Hence we can write $y_1 = [z_1], \ldots, y_r = [z_r]$, where $z_1, \ldots, z_r \leq d_{i+1}$. By Lemma 5.7.29, the 2r-ary relation S on D given by $S(w_1, \ldots, w_{2r}) \Leftrightarrow$ $\phi([w_1], \ldots, [w_{2r}])$ holds in M[^] is definable in M# without parameters. Note that $\min(i_1+1, \ldots, i_{2r}+1) = i+1$. Hence by Lemma 5.6.18 v), we have $S(d_{i 1+1}, \ldots, d_{i r+1}, z_1, \ldots, z_r) \Leftrightarrow$ $S(d_{i r+1+1}, \ldots, d_{i 2r+1}, z_1, \ldots, z_r)$. Hence in M^, $\varphi(C_{i 1}, \ldots, C_{i r}, [z_1], \ldots, [z_r]) \Leftrightarrow$ $\varphi(c_{i r+1}, \ldots, c_{i 2r}, [z_1], \ldots, [z_r]).$ $\varphi(c_{i 1}, \ldots, c_{i r}, y_1, \ldots, y_r) \Leftrightarrow$ $\phi(c_{i_r+1}, \ldots, c_{i_2r}, y_1, \ldots, y_r)$. QED