5.7. Transfinite induction, comprehension,
indiscernibles, infinity, II°; correctness.

We now fix M# = (D,<,&,NAT,0,1,+,-,°,1,10g9,d:,dz,...) as
given by Lemma 5.6.18.

While working in M#, we must be cautious.

a. The linear ordering < may not be internally well
ordered. In fact, there may not even be a < minimal element
above the initial segment given by NAT.

b. We may not have extensionality.

Note that we have lost the internally second order nature
of M* as we passed from M* to the present M# in section
5.6. The goal of this section is to recover this internally
second order aspect, and gain internal well foundedness of
<.

To avoid confusion, we use the three symbols =, =, =. Here =
is the standard identity relation we have been using
throughout the book.

DEFINITION 5.7.1. We use
the form

for extensionality equality in

x=y < (Vz)(z € x <« z € y).

DEFINITION 5.7.2. We use = as a special symbol in certain
contexts.

DEFINITION 5.7.3. We write x = & if and only if x has no
elements.

We avoid using the notation {xi,...,xx} out of context, as
there may be more than one set represented in this way.

DEFINITION 5.7.4. Let k =z 1. We write x = {yi,...,vyx} if and
only if

(Vz) (z €E x <= (2 = y1 V ... V Z = Vyy)).

LEMMA 5.7.1. Let k = 1. For all vyi,...,vyx there exists x =
{vi,...,Vx}. Here x is unique up to =.

Proof: Let y = max(yi,...,Vx) . By Lemma 5.6.18 iv),



(Ax) (Vz)(z €E x < (z =V A (2 =9Y1 V ... V Z =1vy))).
The last claim is obvious. QED

DEFINITION 5.7.5. We write x = <y,z> if and only if there
exists a,b such that

i) x = {a,b};
ii) a = {y};
iii) b = {y,z}.

LEMMA 5.7.2. If x = <y,z> A w € x, then w = {y} v w = {y,z}.
If x = <y,z> A X = <u,v>, then y = u A z = v. For all vy,z,
there exists x = <y,z>.

Proof: For the first claim, let x,vy,z,w be as given. Let
a,b be such that x = {a,b}, a = {y}, b= {y,z}. Then w = a v
w = b. Hence w = {y} v w = {y,z}.

For the second claim, let x = <y,z>, x = <u,v>. Let

X = {alb}l a = {y}, b = {YIZ}
X = {Cld}l c = {u}l d = {ulv}°

Then

(a =cva=d A (b=cvb=4d A (c=avc-=Db) A (d-=

a v d=Db)

Since a = c v a =4d, we have y = u Vv (y = u = vVv). Hence y =
u.

We have b = {y,z}, d = {y,v}. If b = d then z = v. So we can
assume b # d. Hence b = ¢, d = a. Therefore u =y = 2z, y = u
= V.

For the third claim, let y,z. By Lemma 5.7.1, let a = {y}
and b = {y,z}. Let x = {a,b}. Then x = <y,z>. QED

DEFINITION 5.7.6. Let k = 2. We inductively define x =
<yi, ...,Vx> as follows. X = <yi,...,Vx+1> 1f and only if
(Az) (X = <2,VY3,++-, V1> A Z2 = <y1,y2>). In addition, we
define x = <y> if and only if x = y.

LEMMA 5.7.3. Let k= 1. If x = <yj,...,y¥x> and x =
<Z1,...,2x>, then y1 = 21 A ... A yx = Zx. For all vi, ..., Vky
there exists x such that x = <y1,...,Vx>.



Proof: The first claim is by external induction on k = 2,
the case k = 1 being trivial. The basis case k = 2 is by
Lemma 5.7.2. Suppose this is true for a fixed k = 2. Let x =
<Y1y eeerVre1>, X = <Z1,...,Zx+1>. Let u,v be such that x =

<Uy Y37 s ¥Yx+12r X = <V, 23, «..yZxs1>, U = <Y1,¥Y2>, V = <Z1,2Z2>.
By induction hypothesis, u = v A y3 = 2Z3 A ... A Vk41 = Zk+1-
By Lemma 5.7.2, since u = v, we have yi1 = 21 A V2 = Z,.

The second claim is also by external induction on k = 2, the
case k = 1 being trivial. The basis case k = 2 is by Lemma
5.7.2. Suppose this is true for a fixed k = 2. Let
Yis++.rVYk+2. By Lemma 5.7.2, let z = <y;,y»>. By induction
hypothesis, let x = <z,V3,...,Vk2>. Then x = <yi1, ..., Vk2>.
QED
DEFINITION 5.7.7. Let k = 1. We say that R is a k-ary
relation if and only if (Vx € R) Ay, ..., vx) (x =
<yi,...,Yx>). If R is a k-ary relation then we define
R(yi,...,vyx) 1f and only if

(Ax €E R) (X = <Y1, .+, V) .

Note that if R is a k-ary relation with R(yi,...,yx), then
there may be more than one x € R with x = <yi,...,Vx>.

We use set abstraction notation with care.
DEFINITION 5.7.8. We write
x = {y: @(y)}
if and only if
(Vy) (v € x <= @(y)}.
If there is such an x, then x is unique up to =.

Let R,S be k-ary relations. The notion R = S is usually too
strong for our purposes.

DEFINITION 5.7.9. We define R =" S if and only if
(Vxll ---lxk) (R(Xll ---lxk) < S(Xll ---lxk))-

DEFINITION 5.7.10. We define R C' S if and only if



(Vxll ---lxk) (R(Xll ---lxk) g S(Xll ---lxk) .

We now prove comprehension for relations. To do this, we
need a bounding lemma.

LEMMA 5.7.4. Let n,k = 1, and xX1,...,Xx < dy. There exists y
~ {X1,...,%Xx} such that y = dy+1. There exists z = <Xi1,...,X>
such that z = dps1.
Proof: Let k,n,xi1,...,Xx be as given. By Lemmas 5.7.1 and
(HY) (y = {Xll°°°lxk}) .
(Fz) (z = <X, oo, x>) .

By Lemma 5.6.18 iii), let r > n be such that

(Jy
(3z

de) (v = {X1,...,%Xx}) .
de) (z = <X1, ..., X>) .

A IA

By Lemma 5.6.18 v),

(Jy
(3z

dn+1) (v = {X1,...,%x}) .
dnt1) (2 = <X1, ..., X>) .

A IA

QED

LEMMA 5.7.5. Let k,n =2 1 and @(vi, ...,Vkn) be a formula of
L#. Let Vi, ...,Vn,2 be given. There is a k-ary relation R
such that (Vxi,...,%xx) (R(X1,...,%Xx) < (X1, ...,%x = Z A
cP(Xll---/><}</§/1/---/§/n)))-

Proof: Let k,n,m,®,Vvi,...,¥n,2 be as given. By Lemma 5.6.18
iii), let r = 1 be such that vyi,...,¥n,z2 < dy. By Lemma
5.6.18 iv), let R be such that

1) (Vx)(x ER < (x = des1 A (Axy, ..., % = 2)
(Xz<xll°°°lxk> A CP(Xll---ka1y11---IYn))))

Obviously R is a k-ary relation. We claim that

(Vx1, oo, %) (R(X1, 00 e, Xk) < (X1, 00.,% < Z A
CP(X].I°°°IXkIyll°°°Iyn)))°

To see this, fix xX1,...,Xx. First assume R(x1,...,Xx). Let x
=~ <xX1,...,Xx>, x € R. By 1),



X < desr A (Axa*, o0 0, xXF = Z2) (X = <X1¥, .., XkK> A
cp(xl*l°°°ka*lyll°°°lyn))°
Let x1*,...,xx* be as given by this statement. By Lemma
5.7.3, x1* = X1, ..., Xx* = Xx. Hence x1,...,Xx = Z2 A
CP(X].I°°°IXkIyll°°°Iyn)°

Now assume

XiyeeerXk = Z AN Q(X1y o ooy XkyVireeorVn) -
By Lemma 5.7.4, let

X = <X1, «..,%X> A X = dgg1.

By 1), x € R. Hence R(X1,...,Xx). QED
LEMMA 5.7.6. If x = {y1,...,Vx} then each y; < x. If x =
<yi,...,Yx>, k = 2, then each y; < x. If x = <y1,...,Vyx>, k =
1, then each y; = x. If R(x1,...,Xx) then each x; < R.
Proof: The first claim is evident from Lemma 5.6.18 ii).
The second claim is by external induction on k = 2. For the

basis case k = 2, note that if x = <y,z> then y,z are both
elements of elements of x, and apply Lemma 5.6.18 ii). Now

assume true for fixed k = 2. Let x = <y1,...,Vx+1>, and let z
~ <y1,yY2>, X = <2Z,VY3,...,Yx+1>, By induction hypothesis,
Z,V3r---7Yx+1 < X, and also yi,y2 < X.

The third claim involves only the new case k = 1, which is
trivial.

For the final claim, let R(x1,...,Xx). Let X = <X1,...,Xx>, X
€ R. By the second claim and Lemma 5.6.18 iii), X1,...,Xx <

x < R. QED

DEFINITION 5.7.11. A binary relation is defined to be a 2-
ary relation. Let R be a binary relation. We "define"

R) = {x: (Ay) (R(x,
R) = {x: (Jy) (R(y,x)
{x: (Jy) (R(x,¥) VvV R(y,x)}.

dom (
rng (
fld(R) =

Note that this constitutes a definition of dom(R), rng(R),
fl1d(R) up to =.



LEMMA 5.7.7. For all binary relations R, dom(R) and rng(R)
and fld(R) exist.

Proof: Let R be a binary relation. By Lemma 5.6.18 iv), let
A,B,C be such that

(Vx) (x €E A <= (x = R A (y) (R(X,¥))) .
(Vx) (x EB <= (x = R A (y) (R(y,x))).
(Vx) (x € C < (x = R A (Ay) (R(x,y) vV R(y,x))))
By Lemma 5.7.6,
(Vx) (x € A <= (dy) (R(x,Y))
(Vx) (x € B <= (dy) (R(y,x)) .
(Vx) (x € C <= (dy) (R(x,y) VvV R(y,x)))

QED

DEFINITION 5.7.12. A pre well ordering is a binary relation
R such that

i) (Vx € f1d(R)) (R(x,x));

ii) (Vx,y,z € £1d4d(R)) ((R(x,y) A R(y,z)) — R(x,2));

iii) (Vx,y € f1d(R)) (R(x,y) VvV R(y,x));

iv) (Vx € fl1d(R)) (- (x = &) — Ay € x) (Vz € x) (R(y,2))) .

Note that R is a pre well ordering if and only if R is
reflexive, transitive, connected, and every nonempty subset
of its field (or domain) has an R least element.

Note that all pre well orderings are reflexive. Clearly for
pre well orderings R, dom(R) = rng(R) = fl1d(R).

Let R be a reflexive and transitive relation.

DEFINITION 5.7.13. It will be convenient to write R(x,y) as
X =g y, and write x =x y for x =g vy A y =z X. We also define
X 2RY =V =g X, X <RV = X =gV A Y =g X, X>2rYV <=y <5 X,
and X #r Y € X =R V.

DEFINITION 5.7.14. Let R be a pre well ordering and x €
fld(R). We "define" the binary relations R|<x by

(Vy,2z) (RI<x(y,z) < vy =z z <z X)).



Note that R|<x i1s unique up to =’. Also note that by Lemma
5.7.5, R|<x exists. Furthermore, it is easy to see that
R|<x 1is a pre well ordering.

When we write R|<x, we require that x € fld(R).

DEFINITION 5.7.15. Let R,S be pre well orderings. We say
that T is an isomorphism from R onto S if and only if

i) T is a binary relation;

ii) dom(T) = dom(R), rng(T) = dom(S);

iii) Let T(x,y), T(z,w). Then x =g z < y <5 W;
iv) Let x =g U, y =s v. Then T(x,y) < T(u,v).

LEMMA 5.7.8. Let R,S be pre well orderings, and T be an
isomorphism from R onto S. Let T(x,vy), T(z,w). Then x <gp z
< vy <gw, and X =g 2 < Yy =5 W.

Proof: Let R,S,T,x,vy,2Z,w be as given. Suppose x <g z. Then y
<ss w. If w =5 y then z =z x. Hence y <g w. Suppose y <g W.
Then x =g z. If z =g x then w =5 y. Hence x <z z. Suppose x
=g Zz. Then y =5 w and w <5 y. Hence y =5 w. Suppose y =5 W.
Then x = z and z =g X. Hence x = z. QED

LEMMA 5.7.9. Let R,S be pre well orderings. Let a,b €
dom(S). Let T be an isomorphism from R onto S|<a, and T* be
an isomorphism from R onto S|<b. Then a =5 b and T =" T*.

Proof: Let R,S,a,b,T,T* be as given. Suppose there exists x
€ dom(R) such that for some y, - (T(x,y) < T*(x,y)). By
Lemma 5.6.18 iv), let x be R least with this property.

case 1. (Ay) (T(x,y) A =-T*(x,y)). Let T(x,y), -T*(x,y). Also
let T*(x,y*). If yv =5 y* then by clause iv) in the
definition of isomorphism, T*(x,y). Hence -y =g y*.

case la. y <s y*. Then y <g b. Let T* (x*,vy).
Suppose x* <z x. If =T (x*,y), then we have contradicted the
choice of x. Hence T(x*,y). But this contradicts T(x,y) by

Lemma 5.7.8.

Suppose x =g X*. By T*(x,y*), T*(x*,y) and Lemma 5.7.8, y*
<s y. This is a contradiction.

case 1lb. y* <s y. Then y* <5 a. Let T(x*,y*). By T(x,y) and
Lemma 5.7.8, x* <z x. By the choice of x, since T (x*,y*), we



have T* (x*,y*). By Lemma 5.7.8, since T*(x,y*), we have x =g
x*. Since T(x,y), by Lemma 5.7.8 we have y =g y*. This is a
contradiction.

case 2. (Ay) (-T(x,y) A T*(x,y)). Let =T(x,y), T*(x,y). This
is the same as case 1, interchanging a,b, and T,T*.

We have now established that T =" T*. If a <s b then a &€
rng (T*) but a & rng(T). This contradicts T =’ T*. If b <; a
then b € rng(T) but b & rng(T*). This also contradicts T =’
T*. Therefore a =5 b. QED

DEFINITION 5.7.16. Let R,S be pre well orderings. Let T be
an isomorphism from R onto S. Let x € dom(R). We write T|<x
for "the" restriction of T to first arguments u <z x. We
write T|=x for "the" restriction of T to first arguments u
<z X. Note that T|<x, T|=x are each unique up to ='.

LEMMA 5.7.10. Let R,S be pre well orderings. Let T be an
isomorphism from R onto S, and T(x,y). Then T|<x is an
isomorphism from R|<x onto S|<y.

Proof: Let R,S,T,x,y be as given. It suffices to show that
rng (T|<x) = {b: b <5 y}. Let b <5 y. Let T(a,b). By Lemma
5.7.8, a <g X. Hence b € rng(T|<x). QED

LEMMA 5.7.11. Let R,S be pre well orderings, T be an
isomorphism from R onto S, and T* be an isomorphism from
R|<x onto S|<y. Then T* =' T|<x and T(x,V).

Proof: Let R,S,T,T*,x,y be as given. Let T(x,y*). By Lemma
5.7.10, T|<x is an isomorphism from R|<x onto S|<y*. By
Lemma 5.7.9, yv =5 y* and T|<x ="' T*. Hence T(x,y). QED

DEFINITION 5.7.17. Let T be a binary relation. We write T'
for the binary relation given by T '(x,y) < T(y,x). By
Lemma 5.7.5, T ' exists. Obviously T ' is unique up to =’.

LEMMA 5.7.12. Let R,S be pre well orderings, and T be an
isomorphism from R onto S. Then T ' is an isomorphism from S
onto R.

Proof: Let R,S,T be as given. Obviously dom (T™*) = dom(S)
and rng(T') = dom(R). Let T '(x,y), T '(z,w). Then T(y,x),
T(w,z). Hence y sg W < X =5 Z.



Finally, let Tﬂ(x,y), X =g U, y =s v. Then T(y,x), T(v,u),
T (u,v). QED

DEFINITION 5.7.18. Let R be a pre well ordering. We can
append a new point ® on top and form the extended pre well
ordering R'. The canonical way to do this is to use R itself
as the new point. This defines R’ uniquely up to ='.

Clearly R'|<®w =' R.

LEMMA 5.7.13. Let R,S be pre well orderings. Exactly one of
the following holds.

1. R,S are isomorphic.

2. R 1is isomorphic to some S|<y, y € dom(S).

3. Some R|<x, x € dom(R), is isomorphic to S.

In case 2, the y is unique up to =s. In case 3, the x is
unigque up to =g. In all three cases, the isomorphism is
unique up to =’.

Proof: We first prove the uniqueness claims. For case 1,
let T,T* be isomorphisms from R onto S. Then T,T* are
isomorphisms from R onto St <o, By Lemma 5.7.9, T =" T*.

For case 2, Let T be an isomorphism from R onto S|<y, and
T* be an isomorphism from R onto S|<y*. Apply Lemma 5.7.9.

For case 3, Let T be an isomorphism from R|<x onto S, and
T* be an isomorphism from R|<x* onto S. By Lemma 5.7.12, T '
is an isomorphism from S onto R|[<x, and T* ' is an
isomorphism from S onto R|<x*. Apply Lemma 5.7.9.

For uniqueness, it remains to show that at most one case
applies. Suppose cases 1,2 apply. Let T be an isomorphism
from R onto S, and T* be an isomorphism from R onto S|<y.
Then T is an isomorphism from R onto S*|<w, and T* is an
isomorphism from R onto S'|<y. By Lemma 5.7.9, y is o, which
is a contradiction.

Suppose cases 1,3 hold. Let T be an isomorphism from R onto
S, and T* be an isomorphism from R|<x onto S. Then T' is an
isomorphism from S onto R'|<®, and T* ' is an isomorphism
from S onto R'|<x. By Lemma 5.7.9, x is o, which is a
contradiction.

Suppose cases 2,3 hold. Let T be an isomorphism from R onto
S|<y and T* be an isomorphism from R|<x onto S. By Lemma
5.7.10, T|<x is an isomorphism from R|<x onto S|<z, where



10

T(x,z). Hence T|<x is an isomorphism from R|<x onto st|<z.
Also T* is an isomorphism from R|<x onto S'|<w. Hence by
Lemma 5.7.9, z is o. This is a contradiction.

We now show that at least one of 1-3 holds. Consider all
isomorphisms from some R'|<x onto some S'|<y, x € dom(R"), vy
€ dom(S"). We call these the local isomorphisms.

We claim the following, concerning these local

isomorphisms. Let T be an isomorphism from R'|<x onto S'|<y,
and T* be an isomorphism from R'|<x* onto S'|<y*. If x =g, x*
then v =¢+ v*¥ and T ="' T*. If x <gy x* then y <g+ y* and T ='

T*|<x. If x* <gy+ x then y* <g+ y and T* =' T|<x*.

To see this, let T,T*,x,y be as given.
case 1. x =gy X*. Apply Lemma 5.7.9.

case 2. xX* <gy X. Suppose y =g+ y*. Let T(x*,z), z <g+ Y. By
Lemma 5.7.10, T|<x* is an isomorphism from RY|<x* onto
S'|<z. By Lemma 5.7.9, T* =' T|<x* and z =s y*. This is a
contradiction. Hence y* <g y. By Lemma 5.7.10, T|<x* is an
isomorphism from R'|<x* onto S'|<w, where T(x*,w), w <si V.
By Lemma 5.7.9, T* =' T|<x*.

case 3. x <gy X*. Symmetric to case 2.

By Lemma 5.7.5, we can form the union T of all of the local
isomorphisms, since the underlying arguments are all in
dom (R") or dom(S"), both of which are bounded.

By the pairwise compatibility of the local isomorphisms, T
obeys conditions iii),iv) in the definition of isomorphism.
It is also clear that the domain of T is closed downward in
R", and the range of T is closed downward in S'. Hence
dom(T) = {u: u <g+ x}, rng(T) = {v: v <g+ y}, for some x &
dom(R"), y € dom(S*). Hence T is an isomorphism from R'|<x
onto S'|<y.

We now argue by cases.
case 1. x,y are ©, Then T is an isomorphism from R onto S.

case 2. x is o, y € dom(S). Then T is an isomorphism from R
onto S|<y*, y” defined below.
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case 3. x € dom(R), y i1s ®. Then T is an isomorphism from
R|<x* onto S, x” defined below.

case 4. x € dom(R), y € dom(S). Then T is an isomorphism
from R|<x onto S|<y. Using Lemma 5.7.5, let T* be defined
by

T* (u,v) <
T(u,v) v (U =R X AV =5 Vy).

Then T* is an isomorphism from R|<x” onto S|<y”, where
x",y" are respective immediate successors of x,y in R',S".
This contradicts the definition of T. QED

LEMMA 5.7.14. Let R,S,S* be pre well orderings. Let T be an
isomorphism from R onto S, and T* be an isomorphism from S
onto S*. Define T**(x,y) < (dz) (T(x,z) A T*(z,y)), by Lemma
5.7.5. Then T** is an isomorphism from R onto S*.

Proof: Let R,S,S*,T,T*,T** be as given. Note that T** is
defined up to =’. Obviously dom(T**) = dom(R), rng(T**) =
dom (S*) .

Suppose T** (x,y), T**(x*,y*). Let T(x,2z),
T*(w,y*). Then x =g x* < zZ =5 W, Z <gp W <
X sg xX* < y =5 y*.

T*(z,y), T(x*,w),
y <s v*. Therefore

Suppose T** (x,y), X =R U, y =5 v. Let T(x,2z), T*(z,y). Then
T(u,z), T*(z,v). Hence T**(u,v). QED

We introduce the following notation in light of Lemma
5.7.13.

DEFINITION 5.7.19. Let R,S be pre well orderings. We define

R =** S <«
R,S are pre well orderings and R,S are isomorphic.

R <** S <«
R,S are pre well orderings and there exists y € fl1d(S) such
that R and S|<y are isomorphic.

R =** S <«

R <** S v R =** 5,

LEMMA 5.7.15. In <**, the y is unique up to =5. <** is
irreflexive and transitive on pre well orderings. =** is an
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equivalence relation on pre well orderings. =** is reflexive
and transitive and connected on pre well orderings. Let
R,S,S* be pre well orderings. (R =** S A S <** S*) — R <**
S*. (R <** S A S =** 3*) — R <** g%, R <** § v S <** RvVv R
=** 5, with exclusive v. R =s** S v 3§ =** R, (R =** 3 A § <*¥*
R) — R =** S,

Proof: We apply Lemmas 5.7.13 and 5.7.14. For the first
claim, if R <** 5 then we are in case 2 of Lemma 5.7.13,
and the y is unique up to =s.

For the second claim, <** is irreflexive since R <** R
implies that cases 1,2 both hold in Lemma 5.7.13 for R,R.
Also, suppose R <** S5, S <** S*_ TLet T be an isomorphism
from R onto S|<y, and T* be an isomorphism from S onto
S*|<z. By Lemma 5.7.10, Let T** be an isomorphism from S|<y
onto S*|<w. By Lemma 5.7.14, there is an isomorphism from R
onto S*|<w. Hence R <** S*,

For the third claim, note that R =** R because there is an
isomorphism from R onto R by defining T(x,y) < x =g y. Now
suppose R =** S, and let T be an isomorphism from R onto S.
By Lemma 5.7.12, T' is an isomorphism from S onto R. Hence
S =** R. Finally, suppose R =** S, S =** 5*, 6 and let T be
an isomorphism from R onto S, T* be an isomorphism from S
onto S*. By Lemma 5.7.14, R =** S*,

For the fourth claim, since R =** R, we have R =** R. For
transitivity, let R =** S, S <** S*, If R <** S, S <** g§~*,
then by the second claim, R <** S*, and so R =** S*, If R
=** S5, S =** S*, then by Lemma 5.7.14, R =** S*, and so R
<** S*. The remaining two cases for transitivity follow from
the fifth and sixth claims. Connectivity of =** is by Lemma
5.7.13.

For the fifth claim, let R =** S and S <** S*. By the second
claim, we have only to consider the case R =** S. Let S be
isomorphic to S*|<y. Since R is isomorphic to S, by the
third claim, R is isomorphic to S*|<y. Hence R <** S*,

For the sixth claim, let R <** S and S =<** S*. By the second
claim, we have only to consider the case S =** S*. Let R be
isomorphic to S|<y. By Lemma 5.7.10, S|<y is isomorphic to
S*|<z, for some z € dom(S*). By the third claim, R is
isomorphic to S*|<z. Hence R <** S*,
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The seventh and eighth claims are immediate from Lemmas
5.7.12 and 5.7.13.

For the ninth claim, let R =** S and S =** R. Assume R <**
S. By the sixth claim R <** R, which is a contradiction.
Assume S <** R. By the sixth claim, S <** S, which is also
a contradiction. By the eighth claim, R =** S v S <=** R.
Under either disjunct, R =** S. QED

LEMMA 5.7.16. Every nonempty set of pre well orderings has
a =** least element.

Proof: Let A be a nonempty set of pre well orderings, and
fix S € A. We can assume that there exists R € A such that
R <** S, for otherwise, S is a =** minimal element of A.

By Lemma 5.7.5, define
B = {y € dom(S): (AR € A) (T =** S|<y)}.

Let vy be an S least element of B. Let R € A be isomorphic
to S|<y.

We claim that R is a =** least element of A. To see this, by
trichotomy, let R* <** R, R* € A. Then R* <** S|<y, since R
is isomorphic to S|<y.

Let R* be isomorphic to (S|<y)|<z, z <5 y. Then R* is
isomorphic to S|<z, z <5 y. This contradicts the choice of
y. QED

DEFINITION 5.7.20. For x,y € D, we define x <# y 1if and
only

there exists a pre well ordering S = y such that
for every pre well ordering R = x, R <** S,

We caution the reader that the = in the above definition is
not to be confused with =**., It is from the < of D in the
structure M#. In particular, x,y generally will not be pre
well orderings. Thus here we are treating R,S as points.

DEFINITION 5.7.21. We define x <s# y if and only if

for all pre well orderings R = x there exists a
pre well ordering S = y such that R s** 5.
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LEMMA 5.7.17. <# is an irreflexive and transitive relation
on D. =# is a reflexive and transitive relation on D. Let
X,y ED. x st yVy<# x. x<¥fy—=x=<#fvy. (x=s#ty ANy <¥F
z) > x <# z. X <#F vy Ay =sH#z)—=>x<#z.x=y —x=#vy. x
<HF vy = x<y. Xty < oy <# x. x<#fy < oy =sf x.

Proof: For the first claim, <# is irreflexive since <** is
irreflexive. Suppose x <# y and y <# z. Let S = y be a pre
well ordering such that for all pre well orderings R = x, R
<** 5. Let S* = z be a pre well ordering such that for all
pre well orderings R = y, R <** S*_ Then S <** S*. Hence for
all pre well orderings R = x, R <** 5 <** S*_ Hence for all
pre well orderings R = x, R <** S*, by the transitivity of
<**_  Since S* = z, we have x =<# =z.

X since =** on pre well orderings
y and y <s# z. Let R = x. Let S =
** S*, By the transitivity of

For the second claim, x
is reflexive. Suppose x
y, R s** S. Let S* = z, S =

<*¥*, R s¥* S*,

For the third claim, let -(x =s# y). Let R = X be a pre well
ordering such that for all pre well orderings S = y, we have
-R =** S, We claim that y <# x. To see this, let S = y be a
pre well ordering. Then —-R =** S. By Lemma 5.7.15, S <** R.

For the fourth claim, let x <# y. Let S = vy be a pre well
ordering such that for all pre well orderings R = x, R <**
S. Let R = x be a pre well ordering. Then R =** S. Hence x
<# v.

For the fifth claim, let x =s#f y and y <# z. Let S = z be a
pre well ordering such that for all pre well orderings R =
y, R <** S. Let R = x be a pre well ordering. Let S* = y be
a pre well ordering such that R =** S*. Then S* <** S. By
Lemma 5.7.15, R <** S, We have verified that x <# =z.

For the sixth claim, let x <# y and y <s# z. Let S = y be a
pre well ordering such that for all pre well orderings R =
X, R <** S, Let S* = z be a pre well ordering such that S
<** S*. By Lemma 5.7.15, for all pre well orderings R = x, R
<** S*_ Hence x <# z.

The seventh claim is obvious.

For the eight claim, let x <# y. Let S = y be a pre well
ordering, where for all pre well orderings R = x, we have R
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<** 5. If vy = x then S = x, and so S <** S. This is a
contradiction. Hence x < y.

For the ninth claim, the converse is the first claim.
Suppose x =s# y A yv <# x. By the third claim, x <# x, which
is impossible.

For the tenth claim, the converse is the first claim.
Suppose x <# y A y =# x. By the third claim, y <# y, which
is impossible. QED

We now define x =# y if and only if x <s# vy A y <# x.

LEMMA 5.7.18. =# is an equivalence relation on D. Let x,y €
D. x sy < (x<#yvxx=Hy.x<#tyvy<#xvzxx-=H#y,
with exclusive v.

Proof: For the first claim, reflexivity and symmetry are
obvious, by Lemma 5.7.17. Let x =# y and y =# z. Then x =# vy
and y =# z. Hence x =s# z. Also z =s# y and y =# x. Hence z =#
x. Therefore x =% z.

For the second claim, let x,y € D. By Lemma 5.7.17, x <# vy
v v <# x. By the first claim, x <#y v yv <# x or x =# vy.

To see that the v is exclusive, suppose x <# vy, y <# x. By
Lemma 5.7.17, x <# x, which is a contradiction. Suppose x
<# v, x =# y. By Lemma 5.7.17, x <# x, which is a
contradiction. Suppose yv <# X, x =# y. By Lemma 5.7.17, vy
<# y, which is a contradiction. QED

DEFINITION 5.7.22. We say that S is x-critical if and only
if

i) S is a pre well ordering;

ii) for all pre well orderings R = x, R <** 5;

iii) for all y € dom(S), S|<y is =** some pre well ordering
R = x.

LEMMA 5.7.19. Assume (Vy € x) (y is a pre well ordering).
Then there exists a pre well ordering S such that (VR &
x) (R =** 3) A (Vu € dom(S)) (AR € x) (S|<u <** R).

Proof: Let x be as given. Let x < dy, r = 1. By Lemma 5.7.20
iv), define

E = {y = dy:
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(AR, z) (R € x A y is an R|<z)}.
By Lemma 5.7.5, we define

S(u,v) <=
u,v € E A u s** v.

Then S is uniquely defined up to =’. By Lemmas 5.7.15,
5.7.16, S is a pre well ordering.

Let R € x and z € dom(R). By Lemma 5.6.18 iv),
(dy) (y is an R|<z).
By Lemma 5.6.18 iii), let p = r+l1 be such that
(y < dp) (v is an R[<z).
By Lemma 5.7.20 v),
(Iy < dvs1) (v 1is an R|<z).
Hence every R|<z, R € x, is isomorphic to an element of E.

We claim that we can define an isomorphism Tgx from any given
R € x, onto S or a proper initial segment of S, as follows.
Tr relates each z € dom(R) to the elements of E that are
isomorphic to R|<z. Note that each z € dom(R) gets related
by Tz to something; i.e., all of the R|<z lying in E.

To verify the claim, we first show that rng(Tg) is closed
downward under =** in E. Fix Tg(z,w). Let w* be an S least
element of E, w* <** w, which is not in rng(Tr) . Then Tg
must act as an isomorphism from some proper initial segment
J of R|<z onto S|<w*. We can assume J € E (by taking an
isomorphic copy). Hence Tx(J,w*), contradicting that w* &
rng (Tgr) .

Since rng(Tr) is closed downward under =<** in E, we see that
rng (Tr) = E, or rng(Tg) = S|<v, for some v € E. From the
definition of Tz, Tr is an isomorphism from R onto S or a
proper initial segment of S. Hence R =** S.

Now let u € dom(S). Then u is some R|<z, R € x. Therefore u
<** R, for some R € x. QED
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LEMMA 5.7.20. Assume (Vy € x) (y is a pre well ordering).
Then there exists a pre well ordering S such that (VR €
x) (R <** 3) A (VR <** 3) (dy € x) (R =** vy).

Proof: Let x be as given.
case 1. x has a =** greatest element R. Set S = R'.

case 2. Otherwise. Set S to be as provided by Lemma 5.7.19
applied to x.

QED

LEMMA 5.7.21. For all x, there exists an x-critical S. If S
is x-critical then x < S.

Proof: Let x be given. By Lemma 5.6.18 iv), define
x* = {R: R = x A R is a pre well ordering}.
Let S be as provided by Lemma 5.7.20. Then S is x-critical.

Now let S be x-critical. If S = x then S <* 3, which is
impossible by ii) in the definition of x-critical. QED

LEMMA 5.7.22. For all x, all x-critical S are isomorphic.
For all x,y, x <# y if and only if (3dR,S) (R is x-critical A
S is y-critical A R <** 3).

Proof: Let R,S be x-critical. Suppose R <** S, and let R
=** S|<y. By clause iii) in the definition of x-critical,
let S|<y =** R* = x, R* a pre well ordering. By clause ii)
in the definition of R is x-critical, R* <** R. Hence R =**
R* <** R. This is a contradiction. Hence = (R <** S). By
symmetry, we also obtain - (S <** R). Hence R,S are
isomorphic.

For the second claim, let x,y € D. First assume x <# y. Let
R be x-critical and S be y-critical. Let S* = y be a pre
well ordering such that for all pre well orderings R* = x,
we have R* <** S*,

We claim that R =** S*. To see this, suppose S* <** R, and
let S* be isomorphic to R|<z. Since R is x-critical, let
R|<z =** R* =< x, where R* is a pre well ordering. Then S*
s** R*, Since R* = x, we have R* <** S*, which is a
contradiction. Thus R =** S*,.
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Note that S* <** S since S* =y and S is y-critical. Hence R
<k * S.

For the converse, assume R is x-critical, S is y-critical,
and R <** S, Let R be isomorphic to S|<z. Since S is y-
critical, let S|<z =** R* = y, where R* is a pre well
ordering. Then R =** R* = vy.

We claim that for all pre well orderings S* = x, S* <** R*,
To see this, let S* = x be a pre well ordering. Since R is
x-critical, S* <** R <** R* =< y.

We have shown that x <# y using R* = vy, as required. QED

LEMMA 5.7.23. Let n = 1. For all x = d, there exists x-
critical S < dp+1. dp <# dn+1 -

A

Proof: Let n =z 1 and x = d,. By Lemmas 5.7.21 and 5.6.18
ii), there exists m > n such that the following holds.

(IS < dp) (S is x-critical).
By Lemma 5.6.18 v),

(IS < dps1) (S is x-critical).
For the second claim, by the first claim let R < dy:1, where
R is dy—-critical. Let S be dpsi—critical. Then R <** S. By
Lemma 5.7.22, d, <# dps1. QED
LEMMA 5.7.24. If y € x then x has a <# least element. Every
first order property with parameters that holds of some x,
holds of a <# least x. 0 is a <# least element.
Proof: Let y € x. By Lemma 5.6.18 ii), let n = 1 be such
that x = d,. By Lemma 5.7.23, for each y € x there exists a
y-critical S < dp+1. By Lemma 5.6.18 iv), we can define

B = {S < dy1 : (Ay € x) (S is y-critical)}

uniquely up to =.
By Lemma 5.7.16, let S be a <** least element of B. Let S
be y-critical, y € x. We claim that y is a <# minimal

element of x. Suppose z <# y, z € x. By Lemma 5.7.23, let R
be z-critical, R € B. By the choice of S, S =** R. By Lemma
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5.7.22, let R*,S5* be such that R* is z-critical, S* is y-
critical, and R* <** S*, By the first claim of Lemma
5.7.22, R <** 3., This is a contradiction.

For the second claim, let @(y). By Lemma 5.6.18 ii), let y

< dp. By Lemma 5.6.18 iv), let x = {y < dps1: @(y)}. By the
first claim, let y be a <# minimal element of x. Suppose
@(z), z <# y. Since z & x, we have z = dy1. Since z <# vy,

we have z < y (Lemma 5.7.17). This contradicts y < dpy1 A 2 =
dn+1 .

The third claim follows immediately from the last claim of
Lemma 5.7.17. QED

LEMMA 5.7.25. If x =y then x s# y. If x =y = z and x =% z,
then x =% y =# z.

Proof: The first claim is trivial.

For the second claim, let x = y = z, x =# z. Using the first
claim and Lemmas 5.7.17, 5.7.18, x s# y =# z =# x. Hence x
=# y =# z. QED

From Lemma 5.7.25, we obtain a picture of what <# looks
like.

LEMMA 5.7.26. =# is an equivalence relation on D whose
equivalence classes are nonempty intervals in D (not
necessarily with endpoints). These are called the intervals
of =#. x <# y if and only if the interval of =# in which x
lies is entirely below the interval of =# in which y lies.
There is no highest interval for =#. The d’s lie in
different intervals of =#, each entirely higher than the
previous.

Proof: For the first claim, =# is an equivalence relation
by Lemma 5.7.18. Suppose x < y, x =# y. By Lemma 5.7.25,
any x < z < y has x =# z =# y. So the equivalence classes
under =# are intervals in <.

For the second claim, let x <# y. Let z lie in the same
interval of =# as x. Let w lie in the same interval of =#
as y. Then x =* z, y =* w. By Lemma 5.7.18, z <# w. By
Lemma 5.7.17, z < w.

Conversely, assume the interval of =# in which x lies is
entirely below the interval of =# in which y lies. Then - (x
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=# y). By Lemma 5.7.18, x <# y v y <# x. The later implies
y < x, which is impossible. Hence x <# vy.

For the final claim, by Lemma 5.7.23, each dy <# dy+1. By the
second claim, the intervals of =# in which d, lies 1is
entirely below the interval of =# in which du+1 lies. QED

Recall the component NAT in the structure Mi#.

LEMMA 5.7.27. There is a binary relation RNAT (recursively
defined natural numbers) such that

i) dom(RNAT) = {x: NAT(x)};

ii) (Vy) (RNAT(0,y) < y is a <# least element);

iii) (Vx) (NAT (x) — (Vw) (RNAT (x+1,w) < (3z) (RNAT(x,2) A W
is an immediate successor of z in <#)));

iv) RNAT < d,.

Any two RNAT’s (even without iv)) are ='. If NAT(x) then {y:
RNAT (x,vy)} forms an equivalence class under =#.

Proof: We will use the following facts. The set of all <#
minimal elements exists and is nonempty. For all y, the set
of all immediate successors of y in <# exists and is
nonempty. These follow from Lemmas 5.7.24, 5.7.26, and
5.6.18 iv).

DEFINITION 5.7.23. We say that a binary relation R is x-
special if and only if

i) NAT (x);

ii) dom(R) = {y: vy = x};

iii) (Vy) (R(0,y) <> vy is a <# minimal element);

iv) (Vy = x) (Vw) (R(y+1,w) < (dz) (R(y,z) A w is an immediate
successor of z in <#)).

We claim that for all x with NAT(x), there exists an x-
special R. This is proved by induction, which is supported
by Lemma 5.6.18 iv), vi), wvii), and Lemma 5.7.5. The basis
case x = 0 is immediate.

For the induction case, let R be x-special. By Lemma 5.7.5,
define

S(y,w) < R(y,w) Vv (y = x+1 A
(dz) (R(x,z) A w 1is an immediate successor of z in <#)).

uniquely up to ='. We claim that S is xt+l-special. It is
clear that dom(S) = {y: y = x+1} since dom(R) = {y: y = x}
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and we can find immediate successors in <#. Also the
conditions

(Vy) (S(0,y) <= vy is a <# minimal element).
(Vy = x) (Vw) (S(y+1,w) <
(z) (R(y,z) A w is an immediate successor of z in <#)).

are inherited from R. To see that

(Vw) (S (x+1,w) <
(dz) (S(x,z) A w is an immediate successor of z in <#))

we need to know that {z: R(x,z)} forms an equivalence class
under =#. This is proved by induction on x from 0 through
X.

We have thus shown that there exists an x-special R for all
x with NAT(x). Another induction on NAT shows that

1) NAT (x) A NAT(y) A X =y A R is x-special A
S is y-special A z = x —
R(z,w) <> S(z,w).
We also claim that
NAT (x) —

there exists an x-special R < d;.

To see this, let NAT(x). By Lemma 5.6.18 iii), let n > 1 be
so large that

(dy < dn) (y is x-special).
By Lemma 5.6.18 vi), x < d;. Hence by Lemma 5.6.18 v),

(dy < dy) (y is x-special).
Because of this d, bound, we an apply Lemma 5.7.5 to form a
union RNAT of the x-special relations with NAT(x), uniquely
up to ='. Claims 1)-1iii) are easily verified using 1). Thus
we have

(dR) (R is an RNAT A R obeys clauses 1i)-iii)).

Hence by Lemma 5.6.18 v),

(AR < d;) (R is an RNAT A R obeys clauses 1i)-iii)).
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(dR) (R obeys clauses 1i)-iv)).

The remaining claims can be proved from properties i)-1iii)
by induction. QED

DEFINITION 5.7.24. We fix the RNAT of Lemma 5.7.27, which
is unique up to ='.

The limit point provided by the next Lemma will be used to
interpret o.

LEMMA 5.7.28. There is a <# least limit point of <#. I.e.,
there exists x such that

i) Qy) (v <# x);

ii) (Vy <# x) (dz <# x) (y <# z);

iii) for all x* with properties 1i),1ii), x =# x*.

All <# least limit points of <# are =#, and < d,.

Proof: We say that z is an w if and only if z is a <# least
limit point of <#; i.e., z obeys i)-iii).

By an obvious induction, if NAT(x) then {z: (dy =

x) (RNAT (y,z))} forms an initial segment of <#. Therefore
rng (RNAT) forms an initial segment of <#. Since RNAT < d,
rng (RNAT) C [0,d;)) . According to Lemma 5.7.24, let z be <#
least such that (Vx € rng(RNAT)) (x <# z).

It is clear that z obeys claims i),ii). Suppose x* has
properties 1i),ii). By an obvious induction, we see that (Vy
€ rng (RNAT)) (y <# x*). Hence z =# x*. Thus we have verified

claim iii) for z. I.e., z is an w.

Suppose z,z* are w's. By 1ii), z =# z*, z* =# z. Hence z =#
z*.

By Lemma 5.6.18 iii), let n > 1 be such that
“there exists an o < d,”.
Hence By Lemma 5.6.18 v),
“there exists an o < dy”.
Finally, we establish that every w is < d,. Suppose

"there exists an o > dy".
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By Lemma 5.6.18 v),
"there exists an o > di3".

Hence the w's form an interval, with an element < d, and an
element > dz. Hence d, =# ds. This contradicts Lemma 5.7.26.
QED

We are now prepared to define the system M*.

DEFINITION 5.7.25. M~ = (C,<,0,1,+,-
,*,1,log,w,c1,Cc2,...,Y1,Y2,...), where the following
components are defined below.

i) (C,<) 1is a linear ordering;

ii) c1,¢c, ... are elements of C;

iii) for k = 1, Yx is a set of k-ary relations on C;
iv) 0,1,w are elements of C;

v) +,-,¢ are binary functions from C into C;

vi) ?1,log are unary functions from C into C.

DEFINITION 5.7.26. For x € D, we write [x] for the
equivalence class of x under =#. Recall from Lemma 5.7.26
that each [x] is a nonempty interval in (D,<).

DEFINITION 5.7.27. We define C = {[x]; x € D}. We define
[x] < [y] <= x <# y. For all n = 1, we define c, = [dn+1].

DEFINITION 5.7.28. Let k =z 1. We define Yy to be the set of
all k-ary relations R on C, where there exists a k-ary
relation S on D, internal to M#, (i.e., given by a point in
D), such that for all xi,...,Xx € C,

R(Xll---lxk) <>
(Ayr, oo, yx ED) (V1 € X1 A oo A Yk € Xk A S(Y1yen-rYK)) -

Since k-ary relations S on D are required to be bounded in
D, by Lemma 5.7.26 every R € Yy is bounded in C.

DEFINITION 5.7.29. By Lemma 5.7.28, we define the w of M"
to be [z], where z is an o of M#, as defined in the first
line of the proof of Lemma 5.7.28.

DEFINITION 5.7.30. Define the following function f
externally. For each x € D such that NAT(x), let f(x) = {y:
RNAT (x,y) } . Note that by Lemma 5.7.27, f(x) &€ C. Note that
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the relation y € f(x) is internal to M#. Also by Lemma
5.7.28 and an internal induction argument, f is one-one.

DEFINITION 5.7.31. We define 0 to be £(0) = [0], and 1 to
be £(1).

DEFINITION 5.7.32. For x,y such that NAT(x),NAT(y), we
define

f(x)+£(y) f(xt+y)
f(x)-f(y) = £(x-y)
f(x)f(y) = £(xy)
f(x)1 = £(x.
log(f(x)) = f(log(x)).

Here the operations on the left side are in M”, and the
operations on the right side are in M#. Note that the above
definitions of +,-,¢,1log on rng(f) are internal to M#.

DEFINITION 5.7.33. Let u,v € C, where - (u,v € rng(f)). We
define

u+v = u-v = uev = ul = log(u) = [0].

We now define the language L” suitable for M”", without the
c’s.

DEFINITION 5.7.34. L” is based on the following primitives.

i) The binary relation symbol <;

ii) The constant symbols 0,1,w;

iii) The unary function symbols 1, log;

iv) The binary function symbols +,-,¢;

v) The first order variables v,, n = 1;

vi) The second order variables B%, n,m = 1;

In addition, we use V,3,-,A,v,—,<,=. Commas and
parentheses are also used. “B” indicates “bounded set”.

DEFINITION 5.7.35. The first order terms of L” are
inductively defined as follows.

i) The first order variables v,, n = 1 are first order terms
of L*;

ii) The constant symbols 0,1,w are first order terms of L"*;
iii) If s,t are first order terms of L” then s+t, s-t, s-t,
t?, log(t) are first order terms of L".
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DEFINITION 5.7.36. The atomic formulas of L” are of the
form

S =
s <
Bnm(tll LI /tn)

t
t

where s,t,t1,...,ty, are first order terms and n = 1. The
formulas of L” are built up from the atomic formulas of L"
in the usual way using the connectives and quantifiers.

Note that there is no epsilon relation in L".

The first order quantifiers range over C. The second order
quantifiers B", range over Y,.

LEMMA 5.7.29. Let k = 1 and R C c*¥ be M* definable (with

first and second order parameters allowed). Then

{(x1,...,%): R([x1],...,[xx])} 1s M# definable (with
parameters allowed). If R is M" definable without
parameters, then {(xi,...,Xx): R([x1],...,[xx])} 1is M#

definable without parameters.

Proof: The construction of M" takes place in M#, where
equality in M" is given by the equivalence relation =# in
M#. Note that =# is defined in M# without parameters. The
<,0,1,m of M* are also defined without parameters.

Let k = 1. The relations in Yy are each coded by arbitrary
internal k ary relations R in M#, where the application
relation “the relation coded by R holds at points xi,...,Xx
is defined in M# without parameters.

Using these considerations, it is straightforward to
convert M” definitions to M# definitions. QED

LEMMA 5.7.30. There exists a structure M" = (C,<,0,1,+,-
,*,1,1log,w,c1,Cc2,...,Y1,Y2,...) such that the following
holds.

i) (C,<) 1is a linear ordering;

ii) w is the least limit point of (C,<);

iii) ({x: x < w},<,0,1,+,-,+,1,1log) satisfies TR(II%,L);

iv) For all x,y € C, = (x <0 A Yy < ®) — xty = X°y = xX-y =
x? = log(x) = 0;

v) The c,, n = 1, form a strictly increasing sequence of
elements of C, all > w, with no upper bound in C;
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vi) For all k = 1, Yx is a set of k-ary relations on C whose
field is bounded above;

vii) Let k = 1, and ¢ be a formula of L” in which the k-ary
second order variable BY, is not free, and the variables B".
range over Y,. Then (IB*, € Yy) (Vx1, ..., xx) (B (X1, ..., %x) <>
(X17 e/ Xxk S Y A Q))7;

viii) Every nonempty M” definable subset of C has a < least
element;

ix) Let r = 1 and @(vi,...,Vy) be a formula of L". Let 1 =
i, ...,12r, where (i.,...,1r) and (iy4+1,...,1i2r) have the same
order type and the same min. Let vi,...,vr € C, Vi, ...,Yr <
min(ci 1,...,Ci ). Then @(Ci 1,...,Ci vy Yise.-r¥r) <

CP(Ci_rJrl/ «+-7Ci 2r7Y1s - - -1 Yr) -

Proof: We show that the M” we have constructed obeys these
properties. Claim i) is by construction, since <# is
irreflexive, transitive, and has trichotomy. Claim ii) is
by the definition of w (see Definition 5.7.29).

For claim 1ii), note that the f used in the construction of
M~ defines an isomorphism from the ({x: NAT(x)},0,1,+,-
,*,1,1log) of M# onto the ({x: x < w},<,0,1,+,-,+,1,1log) of
M”~. Now apply Lemma 5.6.18 viii).

Claim iv) is by construction.

For claim v), for all n =1, ¢, = [duy+1]. By Lemma 5.7.26,
the cp's are strictly increasing. Let [x] &€ C. By Lemma
5.6.18 1ii), let x < dy+1, in M#. By Lemma 5.7.17, = (dg+1 <#
X) . Therefore x =# dy+1. Hence [x] = [dn+1] = cm. Hence the
cn's have no upper bound in C. By Lemma 5.7.27, any ® of M#
is <# d2 in M#. Hence < c; in M".

Claim vi) is by construction. This uses that there is no <#
greatest point in M# (Lemma 5.7.26).

For claim vii), it suffices to show that every M” definable
relation R on C whose field is bounded above (= on C) lies
in Yx. By Lemma 5.7.29, the k-ary relation S on D given by

S(Yireeeryx) == R(O[y1l, ..., [yx])

is M# definable. Since the field of R is bounded above (= on
C), the field of S is bounded above (< on D). This uses

that < on C has no greatest element (Lemma 5.7.26). Hence

we can take S to be internal to M#; i.e., given by a point
in D. Therefore R € Yk.
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For claim viii), let R be a nonempty M" definable subset of
C. By Lemma 5.7.29, S = {y: [y] € R} is nonempty and M#
definable. By Lemma 5.7.24, let y be a <# least element of
S.

We claim that in M", [y] is the < least element of R. To
see this, let [z] € R, [z] < [y]. Then z <# y and z € S,
which contradicts the choice of vy.

For claim ix), let @(x1,...,%X2r),1i1,.--,1i2c/vV1,.--,yYr be as
given. Let 1 = min(ii,...,1ir). Since vi,...,yr = C; = [dis«],
every element of the equivalence classes vyi,...,yr is =<#
di+1. Hence we can write yi1 = [21]l,...,Vr = [2:], where
Z1ly e eoyZr = di41.

By Lemma 5.7.29, the 2r-ary relation S on D given by

S(Wll . . -IW2r) <>
@([wi]l, ..., [wer]) holds in M~"

is definable in M# without parameters.

Note that min(ii+1,...,1i2,+1) = i+1l. Hence by Lemma 5.6.18
v), we have

S (di_1+1/ LIRS ldi_r+1l Zly oo oy Zr) <>
S (di_r+1+1/ ... ldi_2r+1l Z1ly ey Zr) .
Hence in M7%,
CP(Ci_lr . . -lci_rl [Zl] 7oe ey [Zr]) <>
CP(Ci_rJrl/ <+ -7 Ci 21y (21, ..., [2c])
Q(Ci17eeerCirxrYis.eer¥Ye) <
CP(Ci_rJrl/ -7 Ci 2r7 Y1y .- /Yr) .

QED



