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5.7. Transfinite induction, comprehension, 
indiscernibles, infinity, Π0

1 correctness.  
 
We now fix M# = (D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2,...) as 
given by Lemma 5.6.18.  
 
While working in M#, we must be cautious. 
 
a. The linear ordering < may not be internally well 
ordered. In fact, there may not even be a < minimal element 
above the initial segment given by NAT.  
b. We may not have extensionality.  
 
Note that we have lost the internally second order nature 
of M* as we passed from M* to the present M# in section 
5.6. The goal of this section is to recover this internally 
second order aspect, and gain internal well foundedness of 
<.  
 
To avoid confusion, we use the three symbols =, ≡, ≈. Here = 
is the standard identity relation we have been using 
throughout the book.  
 
DEFINITION 5.7.1. We use ≡ for extensionality equality in 
the form  
 

x ≡ y ↔ (∀z)(z ∈ x ↔ z ∈ y). 
 
DEFINITION 5.7.2. We use ≈ as a special symbol in certain 
contexts.  
 
DEFINITION 5.7.3. We write x ≈ ∅ if and only if x has no 
elements.  
 
We avoid using the notation {x1,...,xk} out of context, as 
there may be more than one set represented in this way.  
 
DEFINITION 5.7.4. Let k ≥ 1. We write x ≈ {y1,...,yk} if and 
only if  
 

(∀z)(z ∈ x ↔ (z = y1 ∨ ... ∨ z = yk)). 
 
LEMMA 5.7.1. Let k ≥ 1. For all y1,...,yk there exists x ≈ 
{y1,...,yk}. Here x is unique up to ≡. 
 
Proof: Let y = max(y1,...,yk). By Lemma 5.6.18 iv),  
 



 2 

(∃x)(∀z)(z ∈ x ↔ (z ≤ y ∧ (z = y1 ∨ ... ∨ z = yk))). 
 
The last claim is obvious. QED 
 
DEFINITION 5.7.5. We write x ≈ <y,z> if and only if there 
exists a,b such that  
 
i) x ≈ {a,b}; 
ii) a ≈ {y}; 
iii) b ≈ {y,z}. 
 
LEMMA 5.7.2. If x ≈ <y,z> ∧ w ∈ x, then w ≈ {y} ∨ w ≈ {y,z}. 
If x ≈ <y,z> ∧ x ≈ <u,v>, then y = u ∧ z = v. For all y,z, 
there exists x ≈ <y,z>. 
 
Proof: For the first claim, let x,y,z,w be as given. Let 
a,b be such that x ≈ {a,b}, a ≈ {y}, b ≈ {y,z}. Then w = a ∨ 
w = b. Hence w ≈ {y} ∨ w ≈ {y,z}. 
 
For the second claim, let x ≈ <y,z>, x ≈ <u,v>. Let  
 
x ≈ {a,b}, a ≈ {y}, b ≈ {y,z} 
x ≈ {c,d}, c ≈ {u}, d ≈ {u,v}. 
 
Then  
 
(a = c ∨ a = d) ∧ (b = c ∨ b = d) ∧ (c = a ∨ c = b) ∧ (d = 
a ∨ d = b). 
 
Since a = c ∨ a = d, we have y = u ∨ (y = u = v). Hence y = 
u.  
 
We have b ≈ {y,z}, d ≈ {y,v}. If b = d then z = v. So we can 
assume b ≠ d. Hence b = c, d = a. Therefore u = y = z, y = u 
= v.   
 
For the third claim, let y,z. By Lemma 5.7.1, let a ≈ {y} 
and b ≈ {y,z}. Let x ≈ {a,b}. Then x ≈ <y,z>. QED  
 
DEFINITION 5.7.6. Let k ≥ 2. We inductively define x ≈ 
<y1,...,yk> as follows. x ≈ <y1,...,yk+1> if and only if 
(∃z)(x ≈ <z,y3,...,yk+1> ∧ z ≈ <y1,y2>). In addition, we 
define x ≈ <y> if and only if x = y. 
 
LEMMA 5.7.3. Let k ≥ 1. If x ≈ <y1,...,yk> and x ≈ 
<z1,...,zk>, then y1 = z1 ∧ ... ∧ yk = zk. For all y1,...,yk, 
there exists x such that x ≈ <y1,...,yk>. 
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Proof: The first claim is by external induction on k ≥ 2, 
the case k = 1 being trivial. The basis case k = 2 is by 
Lemma 5.7.2. Suppose this is true for a fixed k ≥ 2. Let x ≈ 
<y1,...,yk+1>, x ≈ <z1,...,zk+1>. Let u,v be such that x ≈ 
<u,y3,...,yk+1>, x ≈ <v,z3,...,zk+1>, u ≈ <y1,y2>, v ≈ <z1,z2>. 
By induction hypothesis, u = v ∧ y3 = z3 ∧ ... ∧ yk+1 = zk+1. 
By Lemma 5.7.2, since u = v, we have y1 = z1 ∧ y2 = z2.  
 
The second claim is also by external induction on k ≥ 2, the 
case k = 1 being trivial. The basis case k = 2 is by Lemma 
5.7.2. Suppose this is true for a fixed k ≥ 2. Let 
y1,...,yk+2. By Lemma 5.7.2, let z ≈ <y1,y2>. By induction 
hypothesis, let x ≈ <z,y3,...,yk+2>. Then x ≈ <y1,...,yk+2>. 
QED 
 
DEFINITION 5.7.7. Let k ≥ 1. We say that R is a k-ary 
relation if and only if (∀x ∈ R)(∃y1,...,yk)(x ≈ 
<y1,...,yk>). If R is a k-ary relation then we define 
R(y1,...,yk) if and only if  
 

(∃x ∈ R)(x ≈ <y1,...,yk>). 
 
Note that if R is a k-ary relation with R(y1,...,yk), then 
there may be more than one x ∈ R with x ≈ <y1,...,yk>.  
 
We use set abstraction notation with care.  
 
DEFINITION 5.7.8. We write  
 

x ≈ {y: ϕ(y)} 
 
if and only if  
 

(∀y)(y ∈ x ↔ ϕ(y)}. 
 
If there is such an x, then x is unique up to ≡. 
 
Let R,S be k-ary relations. The notion R ≡ S is usually too 
strong for our purposes.  
 
DEFINITION 5.7.9. We define R ≡’ S if and only if  
 

(∀x1,...,xk)(R(x1,...,xk) ↔ S(x1,...,xk)). 
 
DEFINITION 5.7.10. We define R ⊆' S if and only if  
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(∀x1,...,xk)(R(x1,...,xk) → S(x1,...,xk). 
 
We now prove comprehension for relations. To do this, we 
need a bounding lemma. 
 
LEMMA 5.7.4. Let n,k ≥ 1, and x1,...,xk ≤ dn. There exists y 
≈ {x1,...,xk} such that y ≤ dn+1. There exists z ≈ <x1,...,xk> 
such that z ≤ dn+1. 
 
Proof: Let k,n,x1,...,xk be as given. By Lemmas 5.7.1 and 
5.7.3,  
 

(∃y)(y ≈ {x1,...,xk}). 
(∃z)(z ≈ <x1,...,xk>). 

 
By Lemma 5.6.18 iii), let r > n be such that  
 

(∃y ≤ dr)(y ≈ {x1,...,xk}). 
(∃z ≤ dr)(z ≈ <x1,...,xk>). 

 
By Lemma 5.6.18 v),  
 

(∃y ≤ dn+1)(y ≈ {x1,...,xk}). 
(∃z ≤ dn+1)(z ≈ <x1,...,xk>). 

 
QED 
 
LEMMA 5.7.5. Let k,n ≥ 1 and ϕ(v1,...,vk+n) be a formula of 
L#. Let y1,...,yn,z be given. There is a k-ary relation R 
such that (∀x1,...,xk)(R(x1,...,xk) ↔ (x1,...,xk ≤ z ∧ 
ϕ(x1,...,xk,y1,...,yn))).  
 
Proof: Let k,n,m,ϕ,y1,...,yn,z be as given. By Lemma 5.6.18 
iii), let r ≥ 1 be such that y1,...,yn,z ≤ dr. By Lemma 
5.6.18 iv), let R be such that  
 

1) (∀x)(x ∈ R ↔ (x ≤ dr+1 ∧ (∃x1,...,xk ≤ z) 
(x ≈ <x1,...,xk> ∧ ϕ(x1,...,xk,y1,...,yn)))). 

 
Obviously R is a k-ary relation. We claim that   
 

(∀x1,...,xk)(R(x1,...,xk) ↔ (x1,...,xk ≤ z ∧  
ϕ(x1,...,xk,y1,...,yn))). 

 
To see this, fix x1,...,xk. First assume R(x1,...,xk). Let x 
≈ <x1,...,xk>, x ∈ R. By 1),  
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x ≤ dr+1 ∧ (∃x1*,...,xk* ≤ z)(x = <x1*,...,xk*> ∧ 
ϕ(x1*,...,xk*,y1,...,yn)). 

 
Let x1*,...,xk* be as given by this statement. By Lemma 
5.7.3, x1* = x1, ..., xk* = xk. Hence x1,...,xk ≤ z ∧ 
ϕ(x1,...,xk,y1,...,yn).  
 
Now assume  
 

x1,...,xk ≤ z ∧ ϕ(x1,...,xk,y1,...,yn). 
 
By Lemma 5.7.4, let  
 

x ≈ <x1,...,xk> ∧ x ≤ dr+1. 
 
By 1), x ∈ R. Hence R(x1,...,xk). QED 
 
LEMMA 5.7.6. If x ≈ {y1,...,yk} then each yi < x. If x ≈ 
<y1,...,yk>, k ≥ 2, then each yi < x. If x ≈ <y1,...,yk>, k ≥ 
1, then each yi ≤ x. If R(x1,...,xk) then each xi < R. 
 
Proof: The first claim is evident from Lemma 5.6.18 ii). 
The second claim is by external induction on k ≥ 2. For the 
basis case k = 2, note that if x ≈ <y,z> then y,z are both 
elements of elements of x, and apply Lemma 5.6.18 ii). Now 
assume true for fixed k ≥ 2. Let x ≈ <y1,...,yk+1>, and let z 
≈ <y1,y2>, x ≈ <z,y3,...,yk+1>, By induction hypothesis, 
z,y3,...,yk+1 < x, and also y1,y2 < x. 
 
The third claim involves only the new case k = 1, which is 
trivial.  
 
For the final claim, let R(x1,...,xk). Let x ≈ <x1,...,xk>, x 
∈ R. By the second claim and Lemma 5.6.18 iii), x1,...,xk ≤ 
x < R. QED 
 
DEFINITION 5.7.11. A binary relation is defined to be a 2-
ary relation. Let R be a binary relation. We "define"  
 

dom(R) ≈ {x: (∃y)(R(x,y))}. 
rng(R) ≈ {x: (∃y)(R(y,x))}. 

fld(R) ≈ {x: (∃y)(R(x,y) ∨ R(y,x)}. 
 
Note that this constitutes a definition of dom(R), rng(R), 
fld(R) up to ≡.  
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LEMMA 5.7.7. For all binary relations R, dom(R) and rng(R) 
and fld(R) exist. 
 
Proof: Let R be a binary relation. By Lemma 5.6.18 iv), let 
A,B,C be such that  
 

(∀x)(x ∈ A ↔ (x ≤ R ∧ (∃y)(R(x,y))). 
(∀x)(x ∈ B ↔ (x ≤ R ∧ (∃y)(R(y,x))). 

(∀x)(x ∈ C ↔ (x ≤ R ∧ (∃y)(R(x,y) ∨ R(y,x)))). 
 
By Lemma 5.7.6,  
 

(∀x)(x ∈ A ↔ (∃y)(R(x,y)). 
(∀x)(x ∈ B ↔ (∃y)(R(y,x)). 

(∀x)(x ∈ C ↔ (∃y)(R(x,y) ∨ R(y,x))). 
 
QED 
 
DEFINITION 5.7.12. A pre well ordering is a binary relation 
R such that  
 
i) (∀x ∈ fld(R))(R(x,x)); 
ii) (∀x,y,z ∈ fld(R))((R(x,y) ∧ R(y,z)) → R(x,z)); 
iii) (∀x,y ∈ fld(R))(R(x,y) ∨ R(y,x)); 
iv) (∀x ⊆ fld(R))(¬(x ≈ ∅) → (∃y ∈ x)(∀z ∈ x)(R(y,z))). 
 
Note that R is a pre well ordering if and only if R is 
reflexive, transitive, connected, and every nonempty subset 
of its field (or domain) has an R least element. 
 
Note that all pre well orderings are reflexive. Clearly for 
pre well orderings R, dom(R) ≡ rng(R) ≡ fld(R). 
 
Let R be a reflexive and transitive relation.  
 
DEFINITION 5.7.13. It will be convenient to write R(x,y) as 
x ≤R y, and write x =R y for x ≤R y ∧ y ≤R x. We also define 
x ≥R y ↔ y ≤R x, x <R y ↔ x ≤R y ∧ ¬y ≤R x, x >R y ↔ y <R x, 
and x ≠R y ↔ ¬x =R y.   
 
DEFINITION 5.7.14. Let R be a pre well ordering and x ∈ 
fld(R). We "define" the binary relations R|<x by  
 

(∀y,z)(R|<x(y,z) ↔ y ≤R z <R x)). 
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Note that R|<x is unique up to ≡’. Also note that by Lemma 
5.7.5, R|<x exists. Furthermore, it is easy to see that 
R|<x is a pre well ordering. 
 
When we write R|<x, we require that x ∈ fld(R). 
 
DEFINITION 5.7.15. Let R,S be pre well orderings. We say 
that T is an isomorphism from R onto S if and only if  
 
i) T is a binary relation; 
ii) dom(T) ≡ dom(R), rng(T) ≡ dom(S); 
iii) Let T(x,y), T(z,w). Then x ≤R z ↔ y ≤S w; 
iv) Let x =R u, y =S v. Then T(x,y) ↔ T(u,v). 
 
LEMMA 5.7.8. Let R,S be pre well orderings, and T be an 
isomorphism from R onto S. Let T(x,y), T(z,w). Then x <R z 
↔ y <S w, and x =R z ↔ y =S w. 
 
Proof: Let R,S,T,x,y,z,w be as given. Suppose x <R z. Then y 
≤S w. If w ≤S y then z ≤R x. Hence y <R w. Suppose y <S w. 
Then x ≤R z. If z ≤R x then w ≤S y. Hence x <R z. Suppose x 
=R z. Then y ≤S w and w ≤S y. Hence y =S w. Suppose y =S w. 
Then x ≤R z and z ≤R x. Hence x =R z. QED 
 
LEMMA 5.7.9. Let R,S be pre well orderings. Let a,b ∈ 
dom(S). Let T be an isomorphism from R onto S|<a, and T* be 
an isomorphism from R onto S|<b. Then a =S b and T ≡’ T*.  
 
Proof: Let R,S,a,b,T,T* be as given. Suppose there exists x 
∈ dom(R) such that for some y, ¬(T(x,y) ↔ T*(x,y)). By 
Lemma 5.6.18 iv), let x be R least with this property.  
 
case 1. (∃y)(T(x,y) ∧ ¬T*(x,y)). Let T(x,y), ¬T*(x,y). Also 
let T*(x,y*). If y =S y* then by clause iv) in the 
definition of isomorphism, T*(x,y). Hence ¬y =S y*.  
 
case 1a. y <S y*. Then y <S b. Let T*(x*,y).  
 
Suppose x* <R x. If ¬T(x*,y), then we have contradicted the 
choice of x. Hence T(x*,y). But this contradicts T(x,y) by 
Lemma 5.7.8.  
 
Suppose x ≤R x*. By T*(x,y*), T*(x*,y) and Lemma 5.7.8, y* 
≤S y. This is a contradiction.  
 
case 1b. y* <S y. Then y* <S a. Let T(x*,y*). By T(x,y) and 
Lemma 5.7.8, x* <R x. By the choice of x, since T(x*,y*), we 
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have T*(x*,y*). By Lemma 5.7.8, since T*(x,y*), we have x =R 
x*. Since T(x,y), by Lemma 5.7.8 we have y =S y*. This is a 
contradiction.  
 
case 2. (∃y)(¬T(x,y) ∧ T*(x,y)). Let ¬T(x,y), T*(x,y). This 
is the same as case 1, interchanging a,b, and T,T*.  
 
We have now established that T ≡’ T*. If a <S b then a ∈ 
rng(T*) but a ∉ rng(T). This contradicts T ≡’ T*. If b <S a 
then b ∈ rng(T) but b ∉ rng(T*). This also contradicts T ≡’ 
T*. Therefore a =S b. QED  
 
DEFINITION 5.7.16. Let R,S be pre well orderings. Let T be 
an isomorphism from R onto S. Let x ∈ dom(R). We write T|<x 
for "the" restriction of T to first arguments u <R x. We 
write T|≤x for "the" restriction of T to first arguments u 
≤R x. Note that T|<x, T|≤x are each unique up to ≡'.   
 
LEMMA 5.7.10. Let R,S be pre well orderings. Let T be an 
isomorphism from R onto S, and T(x,y). Then T|<x is an 
isomorphism from R|<x onto S|<y.  
 
Proof: Let R,S,T,x,y be as given. It suffices to show that 
rng(T|<x) ≡ {b: b <S y}. Let b <S y. Let T(a,b). By Lemma 
5.7.8, a <R x. Hence b ∈ rng(T|<x). QED 
 
LEMMA 5.7.11. Let R,S be pre well orderings, T be an 
isomorphism from R onto S, and T* be an isomorphism from 
R|<x onto S|<y. Then T* ≡' T|<x and T(x,y).  
 
Proof: Let R,S,T,T*,x,y be as given. Let T(x,y*). By Lemma 
5.7.10, T|<x is an isomorphism from R|<x onto S|<y*. By 
Lemma 5.7.9, y =S y* and T|<x ≡' T*. Hence T(x,y). QED 
 
DEFINITION 5.7.17. Let T be a binary relation. We write T-1 
for the binary relation given by T-1(x,y) ↔ T(y,x). By 
Lemma 5.7.5, T-1 exists. Obviously T-1 is unique up to ≡’. 
 
LEMMA 5.7.12. Let R,S be pre well orderings, and T be an 
isomorphism from R onto S. Then T-1 is an isomorphism from S 
onto R. 
 
Proof: Let R,S,T be as given. Obviously dom(T-1) ≡ dom(S) 
and rng(T-1) ≡ dom(R). Let T-1(x,y), T-1(z,w). Then T(y,x), 
T(w,z). Hence y ≤R w ↔ x ≤S z.  
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Finally, let T-1(x,y), x =R u, y =S v. Then T(y,x), T(v,u), 
T-1(u,v). QED 
 
DEFINITION 5.7.18. Let R be a pre well ordering. We can 
append a new point ∞ on top and form the extended pre well 
ordering R+. The canonical way to do this is to use R itself 
as the new point. This defines R+ uniquely up to ≡'.  
 
Clearly R+|<∞ ≡' R. 
 
LEMMA 5.7.13. Let R,S be pre well orderings. Exactly one of 
the following holds. 
1. R,S are isomorphic. 
2. R is isomorphic to some S|<y, y ∈ dom(S). 
3. Some R|<x, x ∈ dom(R), is isomorphic to S. 
In case 2, the y is unique up to =S. In case 3, the x is 
unique up to =R. In all three cases, the isomorphism is 
unique up to ≡’. 
 
Proof: We first prove the uniqueness claims. For case 1, 
let T,T* be isomorphisms from R onto S. Then T,T* are 
isomorphisms from R onto S+|<∞. By Lemma 5.7.9, T ≡’ T*.  
 
For case 2, Let T be an isomorphism from R onto S|<y, and 
T* be an isomorphism from R onto S|<y*. Apply Lemma 5.7.9.  
 
For case 3, Let T be an isomorphism from R|<x onto S, and 
T* be an isomorphism from R|<x* onto S. By Lemma 5.7.12, T-1 
is an isomorphism from S onto R|<x, and T*-1 is an 
isomorphism from S onto R|<x*. Apply Lemma 5.7.9.  
 
For uniqueness, it remains to show that at most one case 
applies. Suppose cases 1,2 apply. Let T be an isomorphism 
from R onto S, and T* be an isomorphism from R onto S|<y. 
Then T is an isomorphism from R onto S+|<∞, and T* is an 
isomorphism from R onto S+|<y. By Lemma 5.7.9, y is ∞, which 
is a contradiction.  
 
Suppose cases 1,3 hold. Let T be an isomorphism from R onto 
S, and T* be an isomorphism from R|<x onto S. Then T-1 is an 
isomorphism from S onto R+|<∞, and T*-1 is an isomorphism 
from S onto R+|<x. By Lemma 5.7.9, x is ∞, which is a 
contradiction.  
 
Suppose cases 2,3 hold. Let T be an isomorphism from R onto 
S|<y and T* be an isomorphism from R|<x onto S. By Lemma 
5.7.10, T|<x is an isomorphism from R|<x onto S|<z, where 
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T(x,z). Hence T|<x is an isomorphism from R|<x onto S+|<z. 
Also T* is an isomorphism from R|<x onto S+|<∞. Hence by 
Lemma 5.7.9, z is ∞. This is a contradiction.   
 
We now show that at least one of 1-3 holds. Consider all 
isomorphisms from some R+|<x onto some S+|<y, x ∈ dom(R+), y 
∈ dom(S+). We call these the local isomorphisms. 
 
We claim the following, concerning these local 
isomorphisms. Let T be an isomorphism from R+|<x onto S+|<y, 
and T* be an isomorphism from R+|<x* onto S+|<y*. If x =R+ x* 
then y =S+ y* and T ≡' T*. If x <R+ x* then y <S+ y* and T ≡' 
T*|<x. If x* <R+ x then y* <S+ y and T* ≡' T|<x*. 
 
To see this, let T,T*,x,y be as given.  
 
case 1. x =R+ x*. Apply Lemma 5.7.9.  
 
case 2. x* <R+ x. Suppose y ≤S+ y*. Let T(x*,z), z <S+ y. By 
Lemma 5.7.10, T|<x* is an isomorphism from R+|<x* onto 
S+|<z. By Lemma 5.7.9, T* ≡' T|<x* and z =S+ y*. This is a 
contradiction. Hence y* <S+ y. By Lemma 5.7.10, T|<x* is an 
isomorphism from R+|<x* onto S+|<w, where T(x*,w), w <S+ y. 
By Lemma 5.7.9, T* ≡' T|<x*.  
 
case 3. x <R+ x*. Symmetric to case 2.  
 
By Lemma 5.7.5, we can form the union T of all of the local 
isomorphisms, since the underlying arguments are all in 
dom(R+) or dom(S+), both of which are bounded.  
 
By the pairwise compatibility of the local isomorphisms, T 
obeys conditions iii),iv) in the definition of isomorphism. 
It is also clear that the domain of T is closed downward in 
R+, and the range of T is closed downward in S+. Hence 
dom(T) ≈ {u: u <R+ x}, rng(T) ≈ {v: v <S+ y}, for some x ∈ 
dom(R+), y ∈ dom(S+). Hence T is an isomorphism from R+|<x 
onto S+|<y.  
 
We now argue by cases.   
 
case 1. x,y are ∞. Then T is an isomorphism from R onto S. 
 
case 2. x is ∞, y ∈ dom(S). Then T is an isomorphism from R 
onto S|<y*, y^ defined below.  
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case 3. x ∈ dom(R), y is ∞. Then T is an isomorphism from 
R|<x* onto S,  x^ defined below.  
 
case 4. x ∈ dom(R), y ∈ dom(S). Then T is an isomorphism 
from R|<x onto S|<y. Using Lemma 5.7.5, let T* be defined 
by  
 

T*(u,v) ↔  
T(u,v) ∨ (u =R x ∧ v =S y). 

 
Then T* is an isomorphism from R|<x^ onto S|<y^, where 
x^,y^ are respective immediate successors of x,y in R+,S+. 
This contradicts the definition of T. QED 
 
LEMMA 5.7.14. Let R,S,S* be pre well orderings. Let T be an 
isomorphism from R onto S, and T* be an isomorphism from S 
onto S*. Define T**(x,y) ↔ (∃z)(T(x,z) ∧ T*(z,y)), by Lemma 
5.7.5. Then T** is an isomorphism from R onto S*.  
 
Proof: Let R,S,S*,T,T*,T** be as given. Note that T** is 
defined up to ≡’. Obviously dom(T**) ≡ dom(R), rng(T**) ≡ 
dom(S*).  
 
Suppose T**(x,y), T**(x*,y*). Let T(x,z), T*(z,y), T(x*,w), 
T*(w,y*). Then x ≤R x* ↔ z ≤S w, z ≤R w ↔ y ≤S y*. Therefore 
x ≤R x* ↔ y ≤S y*.  
 
Suppose T**(x,y), x =R u, y =S’ v. Let T(x,z), T*(z,y). Then 
T(u,z), T*(z,v). Hence T**(u,v). QED 
 
We introduce the following notation in light of Lemma 
5.7.13.  
 
DEFINITION 5.7.19. Let R,S be pre well orderings. We define 
 

R =** S ↔  
R,S are pre well orderings and R,S are isomorphic. 

 
R <** S ↔  

R,S are pre well orderings and there exists y ∈ fld(S) such 
that R and S|<y are isomorphic. 

 
R ≤** S ↔  

R <** S ∨ R =** S. 
 
LEMMA 5.7.15. In <**, the y is unique up to =S. <** is 
irreflexive and transitive on pre well orderings. =** is an 
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equivalence relation on pre well orderings. ≤** is reflexive 
and transitive and connected on pre well orderings. Let 
R,S,S* be pre well orderings. (R ≤** S ∧ S <** S*) → R <** 
S*. (R <** S ∧ S ≤** S*) → R <** S*. R <** S ∨ S <** R ∨ R 
=** S, with exclusive ∨. R ≤** S ∨ S ≤** R. (R ≤** S ∧ S ≤** 
R) → R =** S. 
 
Proof: We apply Lemmas 5.7.13 and 5.7.14. For the first 
claim, if R <** S then we are in case 2 of Lemma 5.7.13, 
and the y is unique up to =S.  
 
For the second claim, <** is irreflexive since R <** R 
implies that cases 1,2 both hold in Lemma 5.7.13 for R,R. 
Also, suppose R <** S, S <** S*. Let T be an isomorphism 
from R onto S|<y, and T* be an isomorphism from S onto 
S*|<z. By Lemma 5.7.10, Let T** be an isomorphism from S|<y 
onto S*|<w. By Lemma 5.7.14, there is an isomorphism from R 
onto S*|<w. Hence R <** S*.  
 
For the third claim, note that R =** R because there is an 
isomorphism from R onto R by defining T(x,y) ↔ x =R y. Now 
suppose R =** S, and let T be an isomorphism from R onto S. 
By Lemma 5.7.12, T-1 is an isomorphism from S onto R. Hence 
S =** R. Finally, suppose R =** S, S =** S*, and let T be 
an isomorphism from R onto S, T* be an isomorphism from S 
onto S*. By Lemma 5.7.14, R =** S*.  
 
For the fourth claim, since R =** R, we have R ≤** R. For 
transitivity, let R ≤** S, S ≤** S*. If R <** S, S <** S*, 
then by the second claim, R <** S*, and so R ≤** S*. If R 
=** S, S =** S*, then by Lemma 5.7.14, R =** S*, and so R 
≤** S*. The remaining two cases for transitivity follow from 
the fifth and sixth claims. Connectivity of ≤** is by Lemma 
5.7.13.  
 
For the fifth claim, let R ≤** S and S <** S*. By the second 
claim, we have only to consider the case R =** S. Let S be 
isomorphic to S*|<y. Since R is isomorphic to S, by the 
third claim, R is isomorphic to S*|<y. Hence R <** S*. 
 
For the sixth claim, let R <** S and S ≤** S*. By the second 
claim, we have only to consider the case S =** S*. Let R be 
isomorphic to S|<y. By Lemma 5.7.10, S|<y is isomorphic to 
S*|<z, for some z ∈ dom(S*). By the third claim, R is 
isomorphic to S*|<z. Hence R <** S*.   
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The seventh and eighth claims are immediate from Lemmas 
5.7.12 and 5.7.13.  
 
For the ninth claim, let R ≤** S and S ≤** R. Assume R <** 
S. By the sixth claim R <** R, which is a contradiction. 
Assume S <** R. By the sixth claim, S <** S, which is also 
a contradiction. By the eighth claim, R ≤** S ∨ S ≤** R. 
Under either disjunct, R =** S. QED 
 
LEMMA 5.7.16. Every nonempty set of pre well orderings has 
a ≤** least element. 
 
Proof: Let A be a nonempty set of pre well orderings, and 
fix S ∈ A. We can assume that there exists R ∈ A such that 
R <** S, for otherwise, S is a ≤** minimal element of A.  
 
By Lemma 5.7.5, define  
 

B ≈ {y ∈ dom(S): (∃R ∈ A)(T =** S|<y)}. 
 
Let y be an S least element of B. Let R ∈ A be isomorphic 
to S|<y.  
 
We claim that R is a ≤** least element of A. To see this, by 
trichotomy, let R* <** R, R* ∈ A. Then R* <** S|<y, since R 
is isomorphic to S|<y.  
 
Let R* be isomorphic to (S|<y)|<z, z <S y. Then R* is 
isomorphic to S|<z, z <S y. This contradicts the choice of 
y. QED 
 
DEFINITION 5.7.20. For x,y ∈ D, we define x <# y if and 
only  
 

there exists a pre well ordering S ≤ y such that  
for every pre well ordering R ≤ x, R <** S. 

 
We caution the reader that the ≤ in the above definition is 
not to be confused with ≤**. It is from the < of D in the 
structure M#. In particular, x,y generally will not be pre 
well orderings. Thus here we are treating R,S as points. 
 
DEFINITION 5.7.21. We define x ≤# y if and only if  
 

for all pre well orderings R ≤ x there exists a  
pre well ordering S ≤ y such that R ≤** S. 
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LEMMA 5.7.17. <# is an irreflexive and transitive relation 
on D. ≤# is a reflexive and transitive relation on D. Let 
x,y ∈ D. x ≤# y ∨ y <# x. x <# y → x ≤# y. (x ≤# y ∧ y <# 
z) → x <# z. (x <# y ∧ y ≤# z) → x <# z. x ≤ y → x ≤# y. x 
<# y → x < y. x ≤# y ↔ ¬y <# x. x <# y ↔ ¬y ≤# x. 
 
Proof: For the first claim, <# is irreflexive since <** is 
irreflexive. Suppose x <# y and y <# z. Let S ≤ y be a pre 
well ordering such that for all pre well orderings R ≤ x, R 
<** S. Let S* ≤ z be a pre well ordering such that for all 
pre well orderings R ≤ y, R <** S*. Then S <** S*. Hence for 
all pre well orderings R ≤ x, R <** S <** S*. Hence for all 
pre well orderings R ≤ x, R <** S*, by the transitivity of 
<**. Since S* ≤ z, we have x ≤# z.  
 
For the second claim, x ≤# x since ≤** on pre well orderings 
is reflexive. Suppose x ≤# y and y ≤# z. Let R ≤ x. Let S ≤ 
y, R ≤** S. Let S* ≤ z, S ≤** S*. By the transitivity of 
≤**, R ≤** S*.  
 
For the third claim, let ¬(x ≤# y). Let R ≤ x be a pre well 
ordering such that for all pre well orderings S ≤ y, we have 
¬R ≤** S. We claim that y <# x. To see this, let S ≤ y be a 
pre well ordering. Then ¬R ≤** S. By Lemma 5.7.15, S <** R. 
 
For the fourth claim, let x <# y. Let S ≤ y be a pre well 
ordering such that for all pre well orderings R ≤ x, R <** 
S. Let R ≤ x be a pre well ordering. Then R ≤** S. Hence x 
≤# y. 
 
For the fifth claim, let x ≤# y and y <# z. Let S ≤ z be a 
pre well ordering such that for all pre well orderings R ≤ 
y, R <** S. Let R ≤ x be a pre well ordering. Let S* ≤ y be 
a pre well ordering such that R ≤** S*. Then S* <** S. By 
Lemma 5.7.15, R <** S. We have verified that x <# z.  
 
For the sixth claim, let x <# y and y ≤# z. Let S ≤ y be a 
pre well ordering such that for all pre well orderings R ≤ 
x, R <** S. Let S* ≤ z be a pre well ordering such that S 
≤** S*. By Lemma 5.7.15, for all pre well orderings R ≤ x, R 
<** S*. Hence x <# z. 
 
The seventh claim is obvious.  
 
For the eight claim, let x <# y. Let S ≤ y be a pre well 
ordering, where for all pre well orderings R ≤ x, we have R 
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<** S. If y ≤ x then S ≤ x, and so S <** S. This is a 
contradiction. Hence x < y.  
 
For the ninth claim, the converse is the first claim. 
Suppose x ≤# y ∧ y <# x. By the third claim, x <# x, which 
is impossible.  
 
For the tenth claim, the converse is the first claim. 
Suppose x <# y ∧ y ≤# x. By the third claim, y <# y, which 
is impossible.  QED 
 
We now define x =# y if and only if x ≤# y ∧ y ≤# x.  
 
LEMMA 5.7.18. =# is an equivalence relation on D. Let x,y ∈ 
D. x ≤# y ↔ (x <# y ∨ x =# y). x <# y ∨ y <# x ∨ x =# y, 
with exclusive ∨. 
 
Proof: For the first claim, reflexivity and symmetry are 
obvious, by Lemma 5.7.17. Let x =# y and y =# z. Then x ≤# y 
and y ≤# z. Hence x ≤# z. Also z ≤# y and y ≤# x. Hence z ≤# 
x. Therefore x =# z. 
 
For the second claim, let x,y ∈ D. By Lemma 5.7.17, x ≤# y 
∨ y <# x. By the first claim, x <#y ∨ y <# x or x =# y.  
 
To see that the ∨ is exclusive, suppose x <# y, y <# x. By 
Lemma 5.7.17, x <# x, which is a contradiction. Suppose x 
<# y, x =# y. By Lemma 5.7.17, x <# x, which is a 
contradiction. Suppose y <# x, x =# y. By Lemma 5.7.17, y 
<# y, which is a contradiction. QED 
 
DEFINITION 5.7.22. We say that S is x-critical if and only 
if  
 
i) S is a pre well ordering; 
ii) for all pre well orderings R ≤ x, R <** S; 
iii) for all y ∈ dom(S), S|<y is ≤** some pre well ordering 
R ≤ x.  
 
LEMMA 5.7.19. Assume (∀y ∈ x)(y is a pre well ordering). 
Then there exists a pre well ordering S such that (∀R ∈ 
x)(R ≤** S) ∧ (∀u ∈ dom(S))(∃R ∈ x)(S|<u <** R). 
 
Proof: Let x be as given. Let x < dr, r ≥ 1. By Lemma 5.7.20 
iv), define  
 

E ≈ {y ≤ dr+1:  
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(∃R,z)(R ∈ x ∧ y is an R|<z)}. 
 
By Lemma 5.7.5, we define  
 

S(u,v) ↔ 
u,v ∈ E ∧ u ≤** v. 

 
Then S is uniquely defined up to ≡’. By Lemmas 5.7.15, 
5.7.16, S is a pre well ordering.  
 
Let R ∈ x and z ∈ dom(R). By Lemma 5.6.18 iv),  
 

(∃y)(y is an R|<z). 
 
By Lemma 5.6.18 iii), let p ≥ r+1 be such that  
 

(∃y < dp)(y is an R|<z). 
 
By Lemma 5.7.20 v),  
 

(∃y < dr+1)(y is an R|<z). 
 
Hence every R|<z, R ∈ x, is isomorphic to an element of E. 
 
We claim that we can define an isomorphism TR from any given 
R ∈ x, onto S or a proper initial segment of S, as follows. 
TR relates each z ∈ dom(R) to the elements of E that are 
isomorphic to R|<z. Note that each z ∈ dom(R) gets related 
by TR to something; i.e., all of the R|<z lying in E.  
 
To verify the claim, we first show that rng(TR) is closed 
downward under ≤** in E. Fix TR(z,w). Let w* be an S least 
element of E, w* <** w, which is not in rng(TR). Then TR 
must act as an isomorphism from some proper initial segment 
J of R|<z onto S|<w*. We can assume J ∈ E (by taking an 
isomorphic copy). Hence TR(J,w*), contradicting that w* ∉ 
rng(TR).  
 
Since rng(TR) is closed downward under ≤** in E, we see that 
rng(TR) ≡ E, or rng(TR) ≡ S|<v, for some v ∈ E. From the 
definition of TR, TR is an isomorphism from R onto S or a 
proper initial segment of S. Hence R ≤** S.  
 
Now let u ∈ dom(S). Then u is some R|<z, R ∈ x. Therefore u 
<** R, for some R ∈ x. QED   
 



 17 

LEMMA 5.7.20. Assume (∀y ∈ x)(y is a pre well ordering). 
Then there exists a pre well ordering S such that (∀R ∈ 
x)(R <** S) ∧ (∀R <** S)(∃y ∈ x)(R ≤** y). 
 
Proof: Let x be as given.  
 
case 1. x has a ≤** greatest element R. Set S ≡ R+. 
 
case 2. Otherwise. Set S to be as provided by Lemma 5.7.19 
applied to x.  
 
QED  
 
LEMMA 5.7.21. For all x, there exists an x-critical S. If S 
is x-critical then x < S. 
 
Proof: Let x be given. By Lemma 5.6.18 iv), define  
 

x* ≈ {R: R ≤ x ∧ R is a pre well ordering}. 
 
Let S be as provided by Lemma 5.7.20. Then S is x-critical.  
 
Now let S be x-critical. If S ≤ x then S <* S, which is 
impossible by ii) in the definition of x-critical. QED   
 
LEMMA 5.7.22. For all x, all x-critical S are isomorphic. 
For all x,y, x <# y if and only if (∃R,S)(R is x-critical ∧ 
S is y-critical ∧ R <** S). 
 
Proof: Let R,S be x-critical. Suppose R <** S, and let R 
=** S|<y. By clause iii) in the definition of x-critical, 
let S|<y ≤** R* ≤ x, R* a pre well ordering. By clause ii) 
in the definition of R is x-critical, R* <** R. Hence R ≤** 
R* <** R. This is a contradiction. Hence ¬(R <** S). By 
symmetry, we also obtain ¬(S <** R). Hence R,S are 
isomorphic.  
 
For the second claim, let x,y ∈ D. First assume x <# y. Let 
R be x-critical and S be y-critical. Let S* ≤ y be a pre 
well ordering such that for all pre well orderings R* ≤ x, 
we have R* <** S*.  
 
We claim that R ≤** S*. To see this, suppose S* <** R, and 
let S* be isomorphic to R|<z. Since R is x-critical, let 
R|<z ≤** R* ≤ x, where R* is a pre well ordering. Then S* 
≤** R*. Since R* ≤ x, we have R* <** S*, which is a 
contradiction. Thus R ≤** S*.  
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Note that S* <** S since S* ≤ y and S is y-critical. Hence R 
<** S.  
 
For the converse, assume R is x-critical, S is y-critical, 
and R <** S. Let R be isomorphic to S|<z. Since S is y-
critical, let S|<z ≤** R* ≤ y, where R* is a pre well 
ordering. Then R ≤** R* ≤ y.  
 
We claim that for all pre well orderings S* ≤ x, S* <** R*. 
To see this, let S* ≤ x be a pre well ordering. Since R is 
x-critical, S* <** R ≤** R* ≤ y.  
 
We have shown that x <# y using R* ≤ y, as required. QED   
 
LEMMA 5.7.23. Let n ≥ 1. For all x ≤ dn there exists x-
critical S < dn+1. dn <# dn+1.  
 
Proof: Let n ≥ 1 and x ≤ dn. By Lemmas 5.7.21 and 5.6.18 
ii), there exists m > n such that the following holds. 
 

(∃S < dm)(S is x-critical). 
 
By Lemma 5.6.18 v),  
 

(∃S < dn+1)(S is x-critical). 
 
For the second claim, by the first claim let R < dn+1, where 
R is dn-critical. Let S be dn+1-critical. Then R <** S. By 
Lemma 5.7.22, dn <# dn+1. QED 
 
LEMMA 5.7.24. If y ∈ x then x has a <# least element. Every 
first order property with parameters that holds of some x, 
holds of a <# least x. 0 is a <# least element.  
 
Proof: Let y ∈ x. By Lemma 5.6.18 ii), let n ≥ 1 be such 
that x ≤ dn. By Lemma 5.7.23, for each y ∈ x there exists a 
y-critical S < dn+1. By Lemma 5.6.18 iv), we can define  
 

B ≈ {S < dn+1 : (∃y ∈ x)(S is y-critical)} 
 
uniquely up to ≡.  
 
By Lemma 5.7.16, let S be a <** least element of B. Let S 
be y-critical, y ∈ x. We claim that y is a <# minimal 
element of x. Suppose z <# y, z ∈ x. By Lemma 5.7.23, let R 
be z-critical, R ∈ B. By the choice of S, S ≤** R. By Lemma 
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5.7.22, let R*,S* be such that R* is z-critical, S* is y-
critical, and R* <** S*. By the first claim of Lemma 
5.7.22, R <** S. This is a contradiction. 
 
For the second claim, let ϕ(y). By Lemma 5.6.18 ii), let y 
< dn. By Lemma 5.6.18 iv), let x ≈ {y < dn+1: ϕ(y)}. By the 
first claim, let y be a <# minimal element of x. Suppose 
ϕ(z), z <# y. Since z ∉ x, we have z ≥ dn+1. Since z <# y, 
we have z < y (Lemma 5.7.17). This contradicts y < dn+1 ∧ z ≥ 
dn+1.  
 
The third claim follows immediately from the last claim of 
Lemma 5.7.17. QED  
 
LEMMA 5.7.25. If x ≤ y then x ≤# y. If x ≤ y ≤ z and x =# z, 
then x =# y =# z.  
 
Proof: The first claim is trivial. 
 
For the second claim, let x ≤ y ≤ z, x =# z. Using the first 
claim and Lemmas 5.7.17, 5.7.18, x ≤# y ≤# z ≤# x. Hence x 
=# y =# z. QED 
 
From Lemma 5.7.25, we obtain a picture of what <# looks 
like.  
 
LEMMA 5.7.26. =# is an equivalence relation on D whose 
equivalence classes are nonempty intervals in D (not 
necessarily with endpoints). These are called the intervals 
of =#. x <# y if and only if the interval of =# in which x 
lies is entirely below the interval of =# in which y lies. 
There is no highest interval for =#. The d’s lie in 
different intervals of =#, each entirely higher than the 
previous. 
 
Proof: For the first claim, =# is an equivalence relation 
by Lemma 5.7.18. Suppose x < y, x =# y. By Lemma 5.7.25, 
any x < z < y has x =# z =# y. So the equivalence classes 
under =# are intervals in <.  
 
For the second claim, let x <# y. Let z lie in the same 
interval of =# as x. Let w lie in the same interval of =# 
as y. Then x =* z, y =* w. By Lemma 5.7.18, z <# w. By 
Lemma 5.7.17, z < w.  
 
Conversely, assume the interval of =# in which x lies is 
entirely below the interval of =# in which y lies. Then ¬(x 



 20 

=# y). By Lemma 5.7.18, x <# y ∨ y <# x. The later implies 
y < x, which is impossible. Hence x <# y.  
 
For the final claim, by Lemma 5.7.23, each dn <# dn+1. By the 
second claim, the intervals of =# in which dn lies is 
entirely below the interval of =# in which dn+1 lies. QED 
 
Recall the component NAT in the structure M#. 
 
LEMMA 5.7.27. There is a binary relation RNAT (recursively 
defined natural numbers) such that  
i) dom(RNAT) ≈ {x: NAT(x)}; 
ii) (∀y)(RNAT(0,y) ↔ y is a <# least element); 
iii) (∀x)(NAT(x) → (∀w)(RNAT(x+1,w) ↔ (∃z)(RNAT(x,z) ∧ w 
is an immediate successor of z in <#))); 
iv) RNAT < d2. 
Any two RNAT’s (even without iv)) are ≡’. If NAT(x) then {y: 
RNAT(x,y)} forms an equivalence class under =#.  
 
Proof: We will use the following facts. The set of all <# 
minimal elements exists and is nonempty. For all y, the set 
of all immediate successors of y in <# exists and is 
nonempty. These follow from Lemmas 5.7.24, 5.7.26, and 
5.6.18 iv).  
 
DEFINITION 5.7.23. We say that a binary relation R is x-
special if and only if  
 
i) NAT(x); 
ii) dom(R) ≈ {y: y ≤ x}; 
iii) (∀y)(R(0,y) ↔ y is a <# minimal element); 
iv) (∀y ≤ x)(∀w)(R(y+1,w) ↔ (∃z)(R(y,z) ∧ w is an immediate 
successor of z in <#)). 
 
We claim that for all x with NAT(x), there exists an x-
special R. This is proved by induction, which is supported 
by Lemma 5.6.18 iv), vi), vii), and Lemma 5.7.5. The basis 
case x = 0 is immediate. 
 
For the induction case, let R be x-special. By Lemma 5.7.5, 
define  
 

S(y,w) ↔ R(y,w) ∨ (y = x+1 ∧ 
(∃z)(R(x,z) ∧ w is an immediate successor of z in <#)). 

 
uniquely up to ≡'. We claim that S is x+1-special. It is 
clear that dom(S) ≈ {y: y ≤ x+1} since dom(R) ≈ {y: y ≤ x} 
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and we can find immediate successors in <#. Also the 
conditions  
 

(∀y)(S(0,y) ↔ y is a <# minimal element). 
(∀y ≤ x)(∀w)(S(y+1,w) ↔  

(∃z)(R(y,z) ∧ w is an immediate successor of z in <#)). 
 
are inherited from R. To see that  
 

(∀w)(S(x+1,w) ↔ 
(∃z)(S(x,z) ∧ w is an immediate successor of z in <#)) 

 
we need to know that {z: R(x,z)} forms an equivalence class 
under =#. This is proved by induction on x from 0 through 
x.  
 
We have thus shown that there exists an x-special R for all 
x with NAT(x). Another induction on NAT shows that  
 

1) NAT(x) ∧ NAT(y) ∧ x ≤ y ∧ R is x-special ∧ 
S is y-special ∧ z ≤ x → 

R(z,w) ↔ S(z,w). 
 

We also claim that  
 

NAT(x) → 
there exists an x-special R < d2. 

 
To see this, let NAT(x). By Lemma 5.6.18 iii), let n > 1 be 
so large that  
 

(∃y < dn)(y is x-special). 
 
By Lemma 5.6.18 vi), x < d1. Hence by Lemma 5.6.18 v),  
 

(∃y < d2)(y is x-special). 
 
Because of this d2 bound, we an apply Lemma 5.7.5 to form a 
union RNAT of the x-special relations with NAT(x), uniquely 
up to ≡'. Claims i)-iii) are easily verified using 1). Thus 
we have  
 

(∃R)(R is an RNAT ∧ R obeys clauses i)-iii)). 
 
Hence by Lemma 5.6.18 v),  
 

(∃R < d2)(R is an RNAT ∧ R obeys clauses i)-iii)). 
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(∃R)(R obeys clauses i)-iv)). 
 
The remaining claims can be proved from properties i)-iii) 
by induction. QED 
 
DEFINITION 5.7.24. We fix the RNAT of Lemma 5.7.27, which 
is unique up to ≡’. 
 
The limit point provided by the next Lemma will be used to 
interpret ω. 
 
LEMMA 5.7.28. There is a <# least limit point of <#. I.e., 
there exists x such that  
i) (∃y)(y <# x); 
ii) (∀y <# x)(∃z <# x)(y <# z); 
iii) for all x* with properties i),ii), x ≤# x*. 
All <# least limit points of <# are =#, and < d2.  
 
Proof: We say that z is an ω if and only if z is a <# least 
limit point of <#; i.e., z obeys i)-iii).  
 
By an obvious induction, if NAT(x) then {z: (∃y ≤ 
x)(RNAT(y,z))} forms an initial segment of <#. Therefore 
rng(RNAT) forms an initial segment of <#. Since RNAT < d2, 
rng(RNAT) ⊆ [0,d2)). According to Lemma 5.7.24, let z be <# 
least such that (∀x ∈ rng(RNAT))(x <# z).  
 
It is clear that z obeys claims i),ii). Suppose x* has 
properties i),ii). By an obvious induction, we see that (∀y 
∈ rng(RNAT))(y <# x*). Hence z ≤# x*. Thus we have verified 
claim iii) for z. I.e., z is an ω. 
 
Suppose z,z* are ω's. By iii), z ≤# z*, z* ≤# z. Hence z =# 
z*.  
 
By Lemma 5.6.18 iii), let n > 1 be such that   
 

“there exists an ω < dn”. 
 
Hence By Lemma 5.6.18 v),  
 

“there exists an ω < d2”. 
 
Finally, we establish that every ω is < d2. Suppose  
 

"there exists an ω > d2". 
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By Lemma 5.6.18 v),  
 

"there exists an ω > d3". 
 
Hence the ω's form an interval, with an element < d2 and an 
element > d3. Hence d2 =# d3. This contradicts Lemma 5.7.26. 
QED 
 
We are now prepared to define the system M^. 
 
DEFINITION 5.7.25. M^ = (C,<,0,1,+,-
,•,↑,log,ω,c1,c2,...,Y1,Y2,...), where the following 
components are defined below. 
 
i) (C,<) is a linear ordering; 
ii) c1,c2,... are elements of C; 
iii) for k ≥ 1, Yk is a set of k-ary relations on C; 
iv) 0,1,ω are elements of C; 
v) +,-,• are binary functions from C into C; 
vi) ↑,log are unary functions from C into C. 
 
DEFINITION 5.7.26. For x ∈ D, we write [x] for the 
equivalence class of x under =#. Recall from Lemma 5.7.26 
that each [x] is a nonempty interval in (D,<).  
 
DEFINITION 5.7.27. We define C = {[x]; x ∈ D}. We define 
[x] < [y] ↔ x <# y. For all n ≥ 1, we define cn = [dn+1].  
 
DEFINITION 5.7.28. Let k ≥ 1. We define Yk to be the set of 
all k-ary relations R on C, where there exists a k-ary 
relation S on D, internal to M#, (i.e., given by a point in 
D), such that for all x1,...,xk ∈ C, 
 

R(x1,...,xk) ↔ 
(∃y1,...,yk ∈ D)(y1 ∈ x1 ∧ ... ∧ yk ∈ xk ∧ S(y1,...,yk)). 

 
Since k-ary relations S on D are required to be bounded in 
D, by Lemma 5.7.26 every R ∈ Yk is bounded in C. 
 
DEFINITION 5.7.29. By Lemma 5.7.28, we define the ω of M^ 
to be [z], where z is an ω of M#, as defined in the first 
line of the proof of Lemma 5.7.28.   
 
DEFINITION 5.7.30. Define the following function f 
externally. For each x ∈ D such that NAT(x), let f(x) = {y: 
RNAT(x,y)}. Note that by Lemma 5.7.27, f(x) ∈ C. Note that 
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the relation y ∈ f(x) is internal to M#. Also by Lemma 
5.7.28 and an internal induction argument, f is one-one.  
 
DEFINITION 5.7.31. We define 0 to be f(0) = [0], and 1 to 
be f(1). 
 
DEFINITION 5.7.32. For x,y such that NAT(x),NAT(y), we 
define  
 

f(x)+f(y) = f(x+y). 
f(x)-f(y) = f(x-y). 
f(x)•f(y) = f(x•y). 

f(x)↑ = f(x↑). 
log(f(x)) = f(log(x)). 

 
Here the operations on the left side are in M^, and the 
operations on the right side are in M#. Note that the above 
definitions of +,-,•,log on rng(f) are internal to M#. 
 
DEFINITION 5.7.33. Let u,v ∈ C, where ¬(u,v ∈ rng(f)). We 
define  
 

u+v = u-v = u•v = u↑ = log(u) = [0]. 
 
We now define the language L^ suitable for M^, without the 
c’s.  
 
DEFINITION 5.7.34. L^ is based on the following primitives.  
 
i) The binary relation symbol <; 
ii) The constant symbols 0,1,ω; 
iii) The unary function symbols ↑,log; 
iv) The binary function symbols +,-,•; 
v) The first order variables vn, n ≥ 1; 
vi) The second order variables Bnm, n,m ≥ 1; 
 
In addition, we use ∀,∃,¬,∧,∨,→,↔,=. Commas and 
parentheses are also used. “B” indicates “bounded set”. 
 
DEFINITION 5.7.35. The first order terms of L^ are 
inductively defined as follows. 
 
i) The first order variables vn, n ≥ 1 are first order terms 
of L^; 
ii) The constant symbols 0,1,ω are first order terms of L^; 
iii) If s,t are first order terms of L^ then s+t, s-t, s•t, 
t↑, log(t) are first order terms of L^.  
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DEFINITION 5.7.36. The atomic formulas of L^ are of the 
form  
 

s = t 
s < t 

Bnm(t1,...,tn) 
 

where s,t,t1,...,tn are first order terms and n ≥ 1. The 
formulas of L^ are built up from the atomic formulas of L^ 
in the usual way using the connectives and quantifiers.  
 
Note that there is no epsilon relation in L^.  
 
The first order quantifiers range over C. The second order 
quantifiers Bnk range over Yn. 
 
LEMMA 5.7.29. Let k ≥ 1 and R ⊆ Ck be M^ definable (with 
first and second order parameters allowed). Then 
{(x1,...,xk): R([x1],...,[xk])} is M# definable (with 
parameters allowed). If R is M^ definable without 
parameters, then {(x1,...,xk): R([x1],...,[xk])} is M# 
definable without parameters. 
 
Proof: The construction of M^ takes place in M#, where 
equality in M^ is given by the equivalence relation =# in 
M#. Note that =# is defined in M# without parameters. The 
<,0,1,ω of M^ are also defined without parameters.  
 
Let k ≥ 1. The relations in Yk are each coded by arbitrary 
internal k ary relations R in M#, where the application 
relation “the relation coded by R holds at points x1,...,xk” 
is defined in M# without parameters.  
 
Using these considerations, it is straightforward to 
convert M^ definitions to M# definitions. QED  
 
LEMMA 5.7.30. There exists a structure M^ = (C,<,0,1,+,-
,•,↑,log,ω,c1,c2,...,Y1,Y2,...) such that the following 
holds. 
i) (C,<) is a linear ordering;  
ii) ω is the least limit point of (C,<);  
iii) ({x: x < ω},<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
iv) For all x,y ∈ C, ¬(x < ω ∧ y < ω) → x+y = x•y = x-y = 
x↑ = log(x) = 0; 
v) The cn, n ≥ 1, form a strictly increasing sequence of 
elements of C, all > ω, with no upper bound in C; 
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vi) For all k ≥ 1, Yk is a set of k-ary relations on C whose 
field is bounded above; 
vii) Let k ≥ 1, and ϕ be a formula of L^ in which the k-ary 
second order variable Bkn is not free, and the variables Bmr 
range over Yr. Then (∃Bkn ∈ Yk)(∀x1,...,xk)(Bkn(x1,...,xk) ↔ 
(x1,...,xk ≤ y ∧ ϕ));  
viii) Every nonempty M^ definable subset of C has a < least 
element; 
ix) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L^. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and the same min. Let y1,...,yr ∈ C, y1,...,yr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,y1,...,yr) ↔ 
ϕ(ci_r+1,...,ci_2r,y1,...,yr). 
 
Proof: We show that the M^ we have constructed obeys these 
properties. Claim i) is by construction, since <# is 
irreflexive, transitive, and has trichotomy. Claim ii) is 
by the definition of ω (see Definition 5.7.29). 
 
For claim iii), note that the f used in the construction of 
M^ defines an isomorphism from the ({x: NAT(x)},0,1,+,-
,•,↑,log) of M# onto the ({x: x < ω},<,0,1,+,-,•,↑,log) of 
M^. Now apply Lemma 5.6.18 viii).  
 
Claim iv) is by construction.  
 
For claim v), for all n ≥ 1, cn = [dn+1]. By Lemma 5.7.26, 
the cn's are strictly increasing. Let [x] ∈ C. By Lemma 
5.6.18 iii), let x < dm+1, in M#. By Lemma 5.7.17, ¬(dm+1 <# 
x). Therefore x ≤# dm+1. Hence [x] ≤ [dm+1] = cm. Hence the 
cn's have no upper bound in C. By Lemma 5.7.27, any ω of M# 
is <# d2 in M#. Hence ω < c1 in M^. 
 
Claim vi) is by construction. This uses that there is no <# 
greatest point in M# (Lemma 5.7.26). 
 
For claim vii), it suffices to show that every M^ definable 
relation R on C whose field is bounded above (≤ on C) lies 
in Yk. By Lemma 5.7.29, the k-ary relation S on D given by  
 

S(y1,...,yk) ↔ R([y1],...,[yk]) 
 
is M# definable. Since the field of R is bounded above (≤ on 
C), the field of S is bounded above (< on D). This uses 
that < on C has no greatest element (Lemma 5.7.26). Hence 
we can take S to be internal to M#; i.e., given by a point 
in D. Therefore R ∈ Yk. 
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For claim viii), let R be a nonempty M^ definable subset of 
C. By Lemma 5.7.29, S ≈ {y: [y] ∈ R} is nonempty and M# 
definable. By Lemma 5.7.24, let y be a <# least element of 
S.  
 
We claim that in M^, [y] is the < least element of R. To 
see this, let [z] ∈ R, [z] < [y]. Then z <# y and z ∈ S, 
which contradicts the choice of y.  
 
For claim ix), let ϕ(x1,...,x2r),i1,...,i2r,y1,...,yr be as 
given. Let i = min(i1,...,ir). Since y1,...,yr ≤ ci = [di+1], 
every element of the equivalence classes y1,...,yr is ≤# 
di+1. Hence we can write y1 = [z1],...,yr = [zr], where 
z1,...,zr ≤ di+1. 
 
By Lemma 5.7.29, the 2r-ary relation S on D given by  
 

S(w1,...,w2r) ↔  
ϕ([w1],...,[w2r]) holds in M^ 

 
is definable in M# without parameters.  
 
Note that min(i1+1,...,i2r+1) = i+1. Hence by Lemma 5.6.18 
v), we have  
 

S(di_1+1,...,di_r+1,z1,...,zr) ↔  
S(di_r+1+1,...,di_2r+1,z1,...,zr). 

 
Hence in M^, 
 

ϕ(ci_1,...,ci_r,[z1],...,[zr]) ↔ 
ϕ(ci_r+1,...,ci_2r,[z1],...,[zr]). 

 
ϕ(ci_1,...,ci_r,y1,...,yr) ↔ 
ϕ(ci_r+1,...,ci_2r,y1,...,yr). 

 
QED 


