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5.6. Π0
1 correct internal arithmetic, 

simplification. 
 
We fix M* = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...) from 
Lemma 5.5.8. Let M = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...). We 
can view the main point of this section as the derivation 
of a suitable form of the axiom of infinity. 
 
Note that we have yet to use that the c’s lie outside 
α(E;2,<∞), from Lemma 5.5.8 iii). In this section, we use 
this in an essential way. This condition is needed in order 
to obtain any useable form of the axiom of infinity.  
 
The one and only use of the fact that the c’s lie outside 
α(E;2,<∞), in this Chapter, is in the proof of Lemma 5.6.6. 
There we use that c5 ∉ α(E;2,<∞).  
 
We first prove the existence of a least internal set I 
containing 1, and closed under + 2c1 (see Lemma 5.6.7 and 
Definition 5.6.3). We then define natural arithmetic 
operations on I (see Lemma 5.6.10), resulting in the 
structure M(I) which satisfies PA(L) (see Lemma 5.6.11). 
Then we define a natural external isomorphism h from M(I) 
into M. We then show that M(I) satisfies PA(L) + TR(Π0

1,L) 
using the solution to Hilbert's 10th Problem (see Lemma 
5.6.14).  
 
At this point, we only care that M(I) satisfies TR(Π0

1,L), 
and that I is internally well ordered. The external h is 
used only to take advantage of the fact that M satisfies 
TR(Π0

1,L). We think of h as external because its range is 
not a subset of E.  
 
M(I) will provide us with the arithmetic part of the 
structure M# in Lemma 5.6.18.   
 
We remind the reader that for x,y ∈ A, x-y always means  
 

x-y if x ≥ y; 0 if x < y. 
 
Recall that α(E) is the set of all values of terms in L at 
arguments from E (Definition 5.3.3). 
 
LEMMA 5.6.1. α(E) = E-E. 
 
Proof: According to Lemma 5.4.12, α(E) = E-E holds in the 
structure M given by Lemma 5.3.18, which is the same as the 
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structure M given by Lemma 5.4.17. Therefore α(E) = E-E 
also holds in the structure M* given by Lemma 5.5.8, which 
is an expansion of M. QED  
 
DEFINITION 5.6.1. We say that x is critical if and only if 
x ∈ E-E ∧ 2xc1+1 ∈ E. 
 
LEMMA 5.6.2. Let p,x > 0, where p ∈ N and x is critical. 
Then p,2x+p are critical.  
 
Proof: Let p,x be as given. By Lemma 5.6.1, p,2x+p ∈ E-E. 
Note that pc1 ∈ α(E;1,<∞). Hence by Lemma 5.5.8 v), 2pc1+1 ∈ 
2α(E;1,<∞)+1 ⊆ E. Hence p is critical.  
 
By 2xc1+1 ∈ E and Lemma 5.5.8 v),  
 

|2xc1+1,c1| ≤ (2xc1+1)+(pc1-1) ≤ 4p|2xc1,c1|. 
(2xc1+1)+(pc1-1) = 2xc1+pc1 = (2x+p)c1 ∈ α(E;1,<∞). 

2(2x+p)c1+1 ∈ 2α(E;1,<∞)+1 ⊆ E. 
 
Hence 2x+p is critical. QED 
 
LEMMA 5.6.3. Let x ≥ 1 be critical. Suppose that for all 
critical y ∈ [2,x], there is a critical z such that y ∈ 
{2z,2z+1}. Then x+1 is critical and there is a critical z 
such that x+1 ∈ {2z,2z+1}. 
 
Proof: Let x ≥ 1, and assume the hypothesis. If x = 1 then 
by Lemma 5.6.2, x+1 = 2 is critical and z = 1 is critical 
and x+1 ∈ {2z,2z+1}. So we can assume x ≥ 2. Hence x ∈ 
[2,x]. By hypothesis, let z be critical and x ∈ {2z,2z+1}. 
Then z ≥ 1 and z < x.  
 
Suppose z = 1. Then x ∈ {2,3}, and so x+1 is critical by 
Lemma 5.6.2. If x = 2 then x+1 ∈ {2(1),2(1)+1} and 1 is 
critical. If x = 3 then x+1 ∈ {2(2),2(2)+1} and 2 is 
critical.  
 
We may suppose z ≥ 2. By hypothesis, let w be critical, 
where z ∈ {2w,2w+1}. Then w ≥ 1, and  
 

x ∈ {4w,4w+1,4w+2,4w+3}. 
(x+1)c1 ∈ {4wc1+c1,4wc1+2c1,4wc1+3c1,4wc1+4c1}. 

 
(x+1)c1 ∈ {2(2wc1+1)+c1-2,2(2wc1+1)+2c1-2, 

2(2wc1+1)+3c1-2,2(2wc1+1)+4c1-2} 
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Now each of these four terms lies in [2wc1+1,4(2wc1+1)], and 
2wc1+1 ∈ E (since w is critical). Therefore all four terms 
lie in α(E;1,<∞). Hence (x+1)c1 ∈ α(E;1,<∞). So by Lemma 
5.5.8 v), 2(x+1)c1+1 ∈ 2α(E;1,<∞)+1 ⊆ E.   
 
Since x is critical, x ∈ E-E. By Lemma 5.6.1, x+1 ∈ E-E. 
Hence x+1 is critical. 
 
Note that z+1 ∈ {2w+1,2w+2}. Since w is critical, by Lemma 
5.6.2, z+1 is critical.  
 
Using z ∈ {2w,2w+1}, x ∈ {4w,4w+1,4w+2,4w+3}, we see that 
x+1 ∈ {2z+1,2(z+1)} = {4w+1,4w+2,4w+3,4w+4}. We have that 
z,z+1 are critical.  
 
case 1. x+1 = 2z+1. Then there is a critical u such that 
x+1 ∈ {2u,2u+1}, by taking u = z. 
 
case 2. x+1 = 2(z+1). Then there is a critical u such that 
x+1 ∈ {2u,2u+1}, by taking u = z+1.  
 
QED 
 
DEFINITION 5.6.2. Let C be the set of all 2xc1+1 such that  
 
i) x is critical ∧ x ≥ 1; 
ii) for all critical y ∈ [2,x], there exists critical z 
such that y ∈ {2z,2z+1}.  
 
LEMMA 5.6.4. min(C) = 2c1+1. C ⊆ E ∩ α(E;2,<∞). (∀u ∈ 
C)(u+2c1 ∈ C). C is M,E definable, with only the parameter 
c1.  
 
Proof: 1 is critical by Lemma 5.6.2. Hence 2c1+1 ∈ C, and 
2c1+1 is the least element of C.  
 
For the second claim, let y ∈ C, and write y = 2xc1+1, x 
critical, x ≥ 1. Hence y = 2xc1+1 ∈ E. Therefore, it 
suffices to verify that y ∈ α(E;2,<∞). 
 
If x = 1 then y ∈ α(E;2,<∞). Assume x ≥ 2. Therefore x ∈ 
[2,x]. Let x ∈ {2z,2z+1}, where z is critical. If z = 1 
then again y ∈ α(E;2,<∞).  
 
Assume z ≥ 2. Then z ∈ [2,x]. Let z ∈ {2w,2w+1}, where w is 
critical. Then x ∈ {4w,4w+2,4w+1,4w+3}. Also 2wc1+1 ∈ E. 
Clearly w ≥ 1. We have 



 4 

 
y = 2xc1+1 ∈ {8wc1+1,8wc1+4c1+1, 

8wc1+2c1+1,8wc1+6c1+1}. 
y ∈ {4(2wc1+1)-3,4(2wc1+1)+4c1-3, 
4(2wc1+1)+2c1-3,4(2wc1+1)+6c1-3}. 

 
Therefore y ∈ α(E;2,<∞), using 2wc1+1 ∈ E and c1 as the 
parameters, and noting that w ≥ 1. This establishes the 
second claim. 
 
For the third claim, let u ∈ C. Write u = 2xc1+1. Then x ≥ 1 
is critical. Also, for all critical y ∈ [2,x], there exists 
critical z such that y ∈ {2z,2z+1}. Hence by Lemma 5.6.3, 
x+1 is critical and there exists critical z such that x+1 ∈ 
{2z,2z+1}.  
 
We must verify that u+2c1 = 2xc1+1+2c1 = 2(x+1)c1+1 ∈ C. We 
have only to verify clause ii) in the definition of C with 
x+1 instead of x. Let y ∈ [2,x+1] be critical. If y ≤ x 
then there exists critical z such that y = {2z,2z+1}, since 
2xc1+1 ∈ C. Now suppose y = x+1. We have already established 
that x+1 is critical and there is a critical z such that 
x+1 ∈ {2z,2z+1}. This establishes the third claim.  
 
For the fourth claim, we must check that C ⊆ E can be 
defined by an E formula of L(E), using only the parameter 
c1. Note that v ∈ C if and only if v ∈ E and  
 

(∃x)(v = 2xc1+1 ∧ x is critical ∧ x ≥ 1 ∧  
(∀y ∈ [2,x])(y critical →  

(∃z)(z is critical ∧ y ∈ {2z,2z+1}))). 
 

(∃x)(v = 2xc1+1 ∧ x is critical ∧ x ≥ 1 ∧  
(∀ critical y)(y ∈ [2,x] →  

(∃z)(z is critical ∧ y ∈ {2z,2z+1}))). 
 

(∃x ∈ E-E)(v = 2xc1+1 ∧ x ≥ 1 ∧ 
(∀y ∈ E-E)(2yc1+1 ∈ E ∧ y ∈ [2,x] → 

(∃z ∈ E-E)(2zc1+1 ∈ E ∧ y ∈ {2z,2z+1}))). 
 

(∃x1,x2 ∈ E)(v = 2(x1-x2)c1+1 ∧ x1-x2 ≥ 1 ∧ 
(∀y1,y2 ∈ E)(2(y1-y2)c1+1 ∈ E ∧ y1-y2 ∈ [2,x] → 

(∃z1,z2 ∈ E)(2(z1-z2)c1+1 ∈ E ∧ y1-y2 ∈  
{2(z1-z2),2(z1-z2)+1}))). 

 
QED  
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LEMMA 5.6.5. Suppose 2(E-E)c1+1 ¬⊆ C ∪ {1}. There exists an 
internal subset of C ∪ {1}, containing 1, and closed under 
+2c1. 
 
Proof: Let x ∈ E-E, 2xc1+1 ∉ C ∪ {1}. Then x > 1. By Lemma 
5.6.4, C ∩ [0,2xc1+1] is internal, and contains 2c1+1.  
 
We claim that C ∩ [0,2xc1+1] is closed under +2c1. To see 
this, let u ∈ C ∩ [0,2xc1+1]. By Lemma 5.6.4, u+2c1 ∈ C. 
Write u = 2yc1+1.  
 
If y < x then u+2c1 = 2yc1+1+2c1 = 2(y+1)c1+1 ≤ 2xc1+1. 
 
If y = x then u = 2xc1+1. This contradicts u ∈ C, 2xc1+1 ∉ 
C.  
 
If y ≥ x+1 then u ≥ 2(x+1)c1+1 > 2xc1+1. This contradicts u 
≤ 2xc1+1. This establishes the claim. 
 
It is now clear that (C ∩ [0,2xc1+1]) ∪ {1} contains 1, and 
is closed under +2c1, and is internal. QED 
  
LEMMA 5.6.6. Suppose 2(E-E)c1+1 ⊆ C ∪ {1}. There exists an 
internal subset of C ∪ {1}, containing 1, and closed under 
+2c1.  
 
Proof: Assume 2(E-E)c1+1 ⊆ C ∪ {1}.  
 
Suppose C ∩ [0,c5] has no greatest element. Note that by 
Lemma 5.6.4, (C ∩ [0,c5]) ∪ {1} is an internal subset of E, 
containing 1.  
 
We claim that (C ∩ [0,c5]) ∪ {1} is closed under +2c1. To 
see this, let u ∈ (C ∩ [0,c5]) ∪ {1}. Let u = 2zc1+1. Since 
u is not the greatest element of (C ∩ [0,c5]), let 2zc1+1 < 
2wc1+1 ∈ (C ∩ [0,c5]) ∪ {1}. By Lemma 5.6.4, 2zc1+1+2c1 = 
2(z+1)c1+1 ∈ C. Since w ≥ z+1, we see that 2zc1+1+2c1 ≤ 
2wc1+1. Hence 2zc1+1+2c1 ∈ (C ∩[0,c5]) ∪ {1}. This 
establishes the claim. 
 
By the claim, it suffices to assume that C ∩ [0,c5] has a 
greatest element. Let u be the greatest element of C ∩ 
[0,c5]. We will derive a contradiction.   
 
Since C is closed under +2c1, u+2c1 ∈ C, u+2c1 > c5, c5-u < 
2c1. Since c5-u ∈ E-E, we have v = 2(c5-u)c1+1 ∈ 2(E-E)c1+1 ⊆ 
C ∪ {1}. 
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Note that v < 2(2c1)c1+1 < c2, by Lemma 5.5.8 iv).    
 
Consider the following true statement about v,c1.  
 

(∃x,y ∈ E)(y ≤ x ∧ v = 2(x-y)c1+1). 
 
By Lemma 5.5.8 iii), let n ≥ 3 be so large that  
 

(∃x,y ∈ E)(y ≤ x < cn ∧ v = 2(x-y)c1+1). 
 
By Lemma 5.5.8 viii),  
 

(∃x,y ∈ E)(y ≤ x < c3 ∧ v = 2(x-y)c1+1). 
 
Fix x,y ∈ E, y ≤ x < c3, v = 2(x-y)c1+1. Then 2(x-y)c1+1 = 
2(c5-u)c1+1, x-y = c5-u. Hence  
 

c5 = u+(x-y). 
 
By Lemma 5.6.4, u ∈ α(E;2,<∞). Since x-y = c5-u < 2c1, we 
have u > c5-2c1 > c4, using Lemma 5.5.8 iv).   
 
We claim that c5 ∈ α(E;2,<∞). To see this, write  
 

u = t(w1,...,wk), w1,...,wk ∈ E, k ≥ 1. 
2|w1,...,wk| ≤ u ≤ p|w1,...,wk|, p ∈ N. 

 
By Lemma 5.5.8 iv), since u > c4, we have  
 

x,y < c3 < |w1,...,wk| 
|w1,...,wk,x,y| = |w1,...,wk|  

2|w1,...,wk,x,y| ≤ u ≤ u+(x-y) = t(w1,...,wk)+(x-y)  
≤ 2p|w1,...,wk,x,y|. 

c5 ∈ α(E;2,<∞). 
 
using the representation c5 = t(w1,...,wk)+(x-y) in the 
parameters w1,...,wk,x,y ∈ E. But this contradicts Lemma 
5.5.8 iii). QED    
 
LEMMA 5.6.7. There exists an internal subset of C ∪ {1}, 
containing 1, and closed under +2c1. C ⊆ E ∩ (2(E-E)c1+1). 
 
Proof: The first claim is by Lemmas 5.6.5 and 5.6.6. For 
the second claim, C ⊆ E by Lemma 5.6.4. Let u ∈ C. Write u 
= 2xc1+1, x critical. Then x ∈ E-E. Hence u ∈ 2(E-E)c1+1. 
QED 
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DEFINITION 5.6.3. Let I be the intersection of all internal 
sets containing 1, and closed under +2c1.  
 
By Lemma 5.6.7, I exists.  
 
LEMMA 5.6.8. The following hold. 
i. I is the least internal set which is closed under +2c1 
and contains 1.  
ii. I ⊆ C ∪ {1}.  
iii. The immediate successor in I of any x ∈ I is x+2c1.  
iv. Every internal nonempty subset of I has a least 
element.  
v. I is defined by an E formula of L*(E) with only the 
parameter c1.  
vi. I ⊆ [0,c2). 
 
Proof: By Lemma 5.5.8 vii), I is an internal set. By 
definition, it is closed under +2c1 and contains 1. Hence i) 
follows from the definition of I.  
 
ii) follows from Lemma 5.6.7.  
 
For iii), it follows from ii) that every element of I is of 
the form 2xc1+1. Let u ∈ I. Write u = 2xc1+1. Now 2xc1+1+2c1 
= 2(x+1)c1+1 ∈ I. There is no room for any element of I 
strictly between 2xc1+1 and 2(x+1)c1+1 = u+2c1.   
 
For iv), let S ⊆ I be nonempty and internal. If S has no 
least element then let S* = {x ∈ I: x is below every 
element of S}. Obviously S* ⊆ I is a nonempty internal set 
containing 1 with no greatest element. Let u ∈ S*. Let u < 
v ∈ S*. Then u+2c1 ∈ I and u+2c1 ≤ v. Therefore u+2c1 ∈ S. 
Thus we have shown that S* is closed under +2c1, and 
contains 1. Therefore S* = I. This contradicts the 
definition of S*.  
 
For v), the natural formalization of the definition of I 
results in an E formula of L*(E) with only the parameter c1. 
 
For vi), by Lemma 5.5.8 iii), since the c's are unbounded 
in A, and I is bounded in A, let n ≥ 2 be such that I ⊆ 
[0,cn]. We view this inclusion as a statement about c1,cn. 
By Lemma 5.5.8 viii), the corresponding statement about 
c1,c2 holds. I.e., I ⊆ [0,c2]. QED  
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LEMMA 5.6.9. Every element of I is of the form 2xc1+1, with 
x ∈ E-E. x ∈ I ∧ x > 1 → x-2c1 ∈ I.  
 
Proof: For the first claim, let u ∈ I. By Lemma 5.6.8, u ∈ 
C ∪ {1}. If u = 1 then set x = 0. If u ∈ C, apply the 
second claim of Lemma 5.6.7.  
 
For the second claim, let x ∈ I, x > 1, x-2c1 ∉ I. Then I ∩ 
[0,x) is an internal set which contains 1.  
 
We claim that I ∩ [0,x) is closed under +2c1. To see this, 
write x = 2c1z+1. Let u = 2c1w+1 ∈ I ∩ [0,x). Then w < z and 
2c1(w+1)+1 ∈ I.  
 
It remains to show that 2c1(w+1)+1 < x. I.e., w+1 < z. From 
w < z, we have w+1 ≤ z. So we merely have to eliminate the 
case w+1 = z.  
 
Suppose w+1 = z. Then w = z-1, u = 2c1(z-1)+1 = x-2c1 ∈ I. 
This contradicts x-2c1 ∉ I.  
 
We now see that I ∩ [0,x) is an internal set closed under 
+2c1, containing 1. By Lemma 5.6.8, I ∩ [0,x) = I, 
contradicting x ∈ I. QED 
 
LEMMA 5.6.10. The following hold. 
i. If 2xc1+1,2yc1+1 ∈ I then 2(x+y)c1+1 ∈ I.  
ii. If 2xc1+1,2yc1+1 ∈ I then 2xyc1+1 ∈ I.  
iii. If 2xc1+1,2yc1+1 ∈ I then 2(x-y)c1+1 ∈ I.  
iv. If 2xc1+1 ∈ I then 2x↑c1+1 ∈ I.  
v. If 2xc1+1 ∈ I then 2log(x)c1+1 ∈ I.   
 
Proof: For i), fix u = 2xc1+1 ∈ I. We can assume that x > 0. 
Let  
 

S = {v ∈ I: (∃y)(v = 2yc1+1 ∧ 2(x+y)c1+1 ∉ I)} =  
{v ∈ I: (∃y ∈ E-E)(v = 2yc1+1 ∧ 2(x+y)c1+1 ∉ I)}.  

 
This equality holds by Lemma 5.6.9.  
 
By Lemma 5.6.8, S is internal. Assume S is nonempty. By 
Lemma 5.6.8, let v = 2yc1+1 be the least element of S. 
Clearly v > 1, y > 0, and so by Lemma 5.6.9, v-2c1 = 2(y-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S. Hence 2(x+y-
1)c1+1 ∈ I. By Lemma 5.6.8, 2(x+y-1)c1+1+2c1 = 2c1(x+y)+1 ∈ 
I. This contradicts v ∈ S.   
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For ii), fix u = 2xc1+1 ∈ I. We can assume that x > 0. Let  
 

S’ = {v ∈ I: (∃y)(v = 2yc1+1 ∧ 2(xy)c1+1 ∉ I)} =  
{v ∈ I: (∃y ∈ E-E)(v = 2yc1+1 ∧ 2(xy)c1+1 ∉ I)}. 

 
This equality holds by Lemma 5.6.9.  
 
By Lemma 5.6.8, S’ is internal. Assume S’ is nonempty. By 
Lemma 5.6.8, let v = 2yc1+1 be the least element of S’. 
Clearly v > 1, y > 0, and so by Lemma 5.6.9, v-2c1 = 2(y-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S’. Hence 2x(y-
1)c1+1 ∈ I. By the first claim, since 2xc1+1 ∈ I, we have 
2(x+x(y-1))c1+1 = 2c1(xy)+1 ∈ I. This contradicts v ∈ S'. 
 
For iii), fix u = 2yc1+1 ∈ I, and let  
 

S’’ = {v ∈ I: (∃x)(v = 2xc1+1 ∧ 2(x-y)c1+1 ∉ I)} =  
{v ∈ I: (∃x ∈ E-E)(v = 2xc1+1 ∧ 2(x-y)c1+1 ∉ I)} 

 
This equality holds by Lemma 5.6.9.  
 
By Lemma 5.6.8, S’’ is internal. Assume S’’ is nonempty. By 
Lemma 5.6.8, let v = 2xc1+1 be the least element of S’’. 
Clearly v > 1, x > y, and so by Lemma 5.6.9, v-2c1 = 2(x-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S’’. Hence 2((x-1)-
y)c1+1 ∈ I. Now (x-1)-y = (x-y)-1 < x-y. Hence 2((x-y)-
1)c1+1 ∈ I. By Lemma 5.6.8, 2(x-y)c1+1 ∈ I. This contradicts 
v ∈ S''.   
 
For iv), let  
 

S* = {v ∈ I: (∃x)(v = 2xc1+1 ∧ 2x↑c1+1 ∉ I)} =  
{v ∈ I: (∃x ∈ E-E)(v = 2xc1+1 ∧ 2x↑c1+1 ∉ I)} 

 
This equality holds by Lemma 5.6.9.  
 
By Lemma 5.6.8, S* is internal. Assume S* is nonempty. By 
Lemma 5.6.8, let v = 2xc1+1 be the least element of S*. 
Clearly v > 1, x > 0, and so by Lemma 5.6.9, v-2c1 = 2(x-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S*. Hence 2(x-
1)↑c1+1 ∈ I. By the first claim, 2((x-1)↑+(x-1)↑)c1+1 = 
2x↑c1+1 ∈ I. This contradicts v ∈ S*.   
 
For v), let  
 

S** = {v ∈ I: (∃x)(v = 2xc1+1 ∧ 2log(x)c1+1 ∉ I)} =  
{v ∈ I: (∃x ∈ E-E)(v = 2xc1+1 ∧ 2log(x)c1+1 ∉ I)} 
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This equality holds by Lemma 5.6.9.  
 
By Lemma 5.6.8, S** is internal. Assume S** is nonempty, By 
Lemma 5.6.8, let v = 2xc1+1 be the least element of S**. 
Clearly v > 1, x > 0, and so by Lemma 5.6.19, v-2c1 = 2(x-
1)c1+1 ∈ I. By the choice of v, v-2c1 ∉ S**. Hence 2log(x-
1)c1+1 ∈ I. Clearly log(x-1) ∈ {log(x)-1,log(x)}. Since 
2log(x)c1+1 ∉ I, we have log(x-1) = log(x)-1. Hence 
2(log(x)-1)c1+1 ∈ I. by Lemma 5.6.8, 2log(x)c1+1 ∈ I. This 
contradicts v ∈ S**. QED  
 
We use Lemmas 5.6.9, 5.6.10 to impose an arithmetic 
structure on I. We define 0’ = 1, 1’ = 2c1+1. Let x,y ∈ I, x 
= 2zc1+1, y = 2wc1+1. We define x +’ y = 2(z+w)c1+1, x-’y = 
2(z-w)c1+1, x •’ y = 2zwc1+1, x↑’ = 2z↑c1+1, log’(x) = 
2log(z)c1+1.   
 
DEFINITION 5.6.4. We introduce the relational structure  
 

M(I) = (I,<,0’,1’,+’,-’,•’,↑’,log’). 
 
It is essential to note that by Lemma 5.6.8, M(I) is 
internal. I.e., the domain and component relations of M(I) 
are internal as relations. 
 
DEFINITION 5.6.5. Let h:I → E-E be the one-one function 
defined by  
 

h(2c1x+1) = x. 
 
Note that h may not be internal, because, for example, its 
values may not all lie in E. But h is a perfectly good 
external isomorphism from M(I) onto the structure  
 

M|rng(h) = (rng(h),<,0,1,+,-,•,↑,log) 
 
which is a substructure of (a reduct of) M*. Note also that 
M|rng(h) may not be internal, because rng(h) ⊆ E-E may not 
be a subset of E.   
 
Recall from section 5.1 that TR(Π0

1,L) is defined to be the 
set of all true Π0

1 sentences in the language based on 
<,0,1,+,-,•,↑,log. Here bounded quantifiers are allowed.  
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It is immediate that M|rng(h) satisfies the true Π0
1 

sentences of L with no bounded quantifiers allowed. We have 
to bridge this gap.   
 
DEFINITION 5.6.6. Let PA(L) be the usual system of Peano 
arithmetic for the language L. Its nonlogical axioms are as 
follows.  
 
1. x+1 ≠ 0. 
2. x+1 = y+1 → x = y. 
3. 0+1 = 1. 
4. x+0 = x. 
5. x+(y+1) = (x+y)+1. 
6. x•0 = 0. 
7. x•(y+1) = x•y + x. 
8. ¬x < 0. 
9. x < y+1 ↔ (x < y ∨ x = y). 
10. x ≤ y → x < y ∨ x = y.  
11. 0↑ = 1. 
12. (x+1)↑ = x↑+x↑. 
13. log(0) = 0. 
14. y↑ ≤ x ∧ x < (y+1)↑ → log(x) = y. 
15. ϕ[x/0] ∧ (∀x)(ϕ → ϕ[x/x+1]) → ϕ, where ϕ is a formula 
in L.  
 
DEFINITION 5.6.7. A strict Π0

1 sentence is a Π0
1 sentence 

without bounded quantifiers. 
 
LEMMA 5.6.11. TR(Π0

1,L) logically implies PA(L) without 15. 
M|rng(h) satisfies PA(L). M(I) satisfies PA(L).  
 
Proof: The axioms of PA(L) without 15 are clearly true 
strict Π0

1 sentences, and so by Lemma 5.5.8 i), they hold in 
M. Hence they also hold in the substructure M|rng(h) of M. 
By the external isomorphism h, they hold in M(I). 
 
For 15, first note that by Lemma 5.6.10, M(I) satisfies 
that every element > 0 has an immediate predecessor. 
Suppose that in M(I), ϕ defines a subset S of I containing 
0’ and closed under the +1 of M(I). Suppose S ≠ I.  
 
Since M(I) is internal, S is internal. Hence by Lemma 
5.6.8, I\S has a least element x ∈ I. Since x > 0’, x has 
an immediate predecessor y ∈ I, with y ∈ S. Hence x ∈ S, 
which is a contradiction. This establishes the second 
claim.  
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The third claim follows by the isomorphism h. QED 
 
LEMMA 5.6.12. For every Π0

1(L) sentence ϕ there is a strict 
Π0

1(L) sentence ψ such that PA(L) proves ϕ ↔ ψ.  
 
Proof: By a well known normal form theorem, we fix a Π0

1(L) 
formula ρ(x,y) in L with the distinct free variables x,y 
only, such that the following holds. For all Π0

1(L) 
sentences ϕ, there exists n ∈ N such that PA(L) proves 
 

1) (∀x)(ρ(x,n*)) ↔ ϕ 
 
where n* is 1+1...+1, with n 1’s. See, e.g., [Si99], 
section II.2.  
 
From the work on Hilbert’s 10th problem, there exists k ≥ 1 
and two polynomials Q1(x1,...,xk,y), Q2(x1,...,xk,y), with 
nonnegative integer coefficients, such that   
 

2) (∀x)(ρ(x,y)) ↔  
(∀x1,...,xk)(Q1(x1,...,xk,y) ≠ Q2(x1,...,xk,y))) 

 
is true for all y ∈ N. Here all variables range over 
nonnegative integers. This follows immediately from the 
sharp form of the negative solution to Hilbert’s 10th 
problem that asserts that every recursively enumerable 
subset of N is Diophantine. This is due to Y. Matiyasevich, 
J. Robinson, M. Davis, and H. Putnam. See, e.g., [Da73], 
[Mat93].  
 
Moreover, it is well known that for a given ρ(x,y), 
polynomials Q1,Q2 can be found such that PA proves: for all 
y, 2) holds. This is because the entire treatment of 
Hilbert’s 10th problem can be carried out straightforwardly 
within PA(L). We fix such polynomials Q1,Q2. 
 
(In fact, this treatment can be carried out in the very 
weak fragment of PA called EFA = exponential function 
arithmetic, which is IΣ0(exp). See [HP93], p. 37, and 
[GD82].)  
 
Now let ϕ be a Π0

1(L) sentence. Fix n such that 1) is 
provable in PA(L). Set y = n* in 2). Then PA(L) proves 
 

3) ϕ ↔ (∀x)(ρ(x,n*)) ↔ 
(∀x1,...,xk)(Q1(x1,...,xk,n*) ≠ Q2(x1,...,xk,n*)) 
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and so we set  
 

ψ = (∀x1,...,xk)(Q1(x1,...,xk,n*) ≠ Q2(x1,...,xk,n*)). 
 
QED 
 
LEMMA 5.6.13. PA(L) + strict TR(Π0

1,L) logically implies 
TR(Π0

1,L). M|rng(h) and M(I) satisfy PA(L) + TR(Π0
1,L).  

 
Proof: For the first claim, let ϕ ∈ TR(Π0

1,L). By Lemma 
5.6.12, let ψ be strict TR(Π0

1,L), where PA(L) proves ψ → 
ϕ. Then PA(L) + strict TR(Π0

1,L) proves ϕ. Hence PA(L) + 
strict TR(Π0

1,L) proves TR(Π0
1,L).  

 
For the second claim, by Lemma 5.6.11, M|rng(h) and M(I) 
satisfy PA(L). Now obviously M|rng(h) satisfies strict 
TR(Π0

1,L)) since M does (Lemma 5.5.8 i)), and M|rng(h) is a 
substructure of M. Hence M(I) also satisfies strict 
TR(Π0

1,L). Hence by the first claim, M|rng(h) and M(I) 
satisfy TR(Π0

1,L).  QED 
 
Note that the definitions of CODE and INCODE from section 
5.3, apply without modification to the present context.  
 
LEMMA 5.6.14. Let k,n,m ≥ 1, and x1,...,xk ≤ cn < cm, where 
x1,...,xk ∈ E. Then CODE(cm;x1,...,xk) ∈ E, and 
INCODE(CODE(cm;x1,...,xk)) = P(x1,...,xk).  
 
Proof: We essentially repeat the proof of Lemma 5.3.11, 
slightly adapted to the present context.  
 
Let k,n,m,x1,...,xk be as given. Note that  
 

(cm÷2)+1 ≤ (log(cm))↑ ≤ cm. 
2cm ≤ 4(log(cm))↑+P(x1,...xk)) ≤ 5cm. 

 
4((log(cm))↑+P(x1,...xk)) ∈ α(E;2,<∞). 
CODE(cm;x1,...,xk) ∈ 2α(E;2,<∞)+1. 

 
Hence CODE(cm;x1,...,xk) ∈ E by Lemma 5.5.8 v).  
 
We claim that  
 

1) log(CODE(cm;x1,...,xk)) = log(cm)+3. 
 
To see this, note that  
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log(CODE(cm;x1,...,xk)) =  
log(8((log(cm))↑ + P(x1,...,xk))+1) =  
log(8(log(cm))↑ + 8P(x1,...,xk) + 1) =  
log((log(cm)+3)↑ + 8P(x1,...,xk) + 1) ≤  
log((log(cm)+3)↑ + log(cm)) = log(cm)+3 ≤  
log((log(cm)+3)↑ + 8P(x1,...,xk) + 1).  

 
Using 1),  
 

INCODE(CODE(cm;x1,...,xk)) = z ↔ 
8z ≤ CODE(cm;x1,...,xk)-(log(CODE(cm;x1,...,xk)))↑-1 < 8z+8 ↔ 

8z ≤ CODE(cm;x1,...,xk)-(log(cm)+3)↑-1 < 8z+8 ↔ 
8z ≤ CODE(cm;x1,...,xk)-8((log(cm))↑)-1 < 8z+8 ↔ 

8z ≤ 8P(x1,...,xk) < 8z+8. 
 
Hence  
 

INCODE(CODE(cm;x1,...,xk)) = P(x1,...,xk). 
 

QED  
 
The following will be used to give an interpretation of the 
∈ relation in the set theory K(Π) introduced below.  
 
LEMMA 5.6.15. There is an E formula σ(x1,x2) of L(E) such 
that the following holds. Let S be an internal set. There 
exist arbitrarily large y ∈ E such that S = {x ∈ E: 
σ(x,y)}. 
 
Proof: Let S ⊆ E be internal. Let n ≥ 1 be such that S is 
cn-definable (see Lemma 5.5.4). By Lemma 5.5.8 vi), write  
 

1) S = {x ∈ E ∩ [0,cn]: t1(x,y1,...,y8) ∈ E} 
 
where y1,...,y8 ∈ E. This definition of S has the parameters 
cn,y1,...,y8. Here t1 is among the terms t1,t2,... given at 
the beginning of Lemma 5.5.8. Here t1 is defined 
independently of S. 
 
We now show that instead of using the 9 parameters 
cn,y1,...,y8 ∈ E above, we can use a single parameter y ∈ E. 
In particular, we claim that there are arbitrarily large y 
∈ E such that  
 
2) S = {x ∈ E: (∃z0,...,z8 ∈ E)(INCODE(y) = P(z0,...,z8) ∧  

x ≤ z0 ∧ tk(x,z1,...,z8) ∈ E}.  
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To see this, first let x ∈ S. Then 1) holds with 
cn,y1,...,y8 ∈ E. Set y = CODE(cm;cn,y1,...,y8), where 
y1,...,y8,cn < cm. By Lemma 5.6.15, y ∈ E. Obviously y ≥ cm. 
We have 
 

x ∈ E ∩ [0,cn] ∧ t1(x,y1,...,y8) ∈ E. 
 
Set z0,...,z8 = cn,y1,...,y8, respectively. By Lemma 5.6.14,  
 

INCODE(y) = INCODE(CODE(cm;cn,y1,...,y8))  
= P(z0,...,z8). 

 
Also x ≤ z0, t1(x,z1,...,z8) ∈ E.  
 
On the other hand, suppose  
 

x ∈ E ∧ (∃z0,...,z8 ∈ E)(INCODE(y) = P(z0,...,z8) ∧  
x ≤ z0 ∧ t1(x,z1,...,z8) ∈ E}) 

 
where y = CODE(cm;cn,y1,...y8). 
 
Let z0,...,z8 ∈ E be such that  
 

INCODE(y) = P(z0,...,z8) ∧ x ≤ z0 ∧  
t1(x,z1,...,z8) ∈ E. 

 
By Lemma 5.6.14, INCODE(y) = P(cn,y1,...,y8). Hence cn = z0, 
y1 = z1, ..., y8 = z8, x ≤ cn, and t1(x,y1,...,y8) ∈ E. Hence 
by 1), x ∈ S.  
 
It remains to see that S has been defined by an E formula 
of L(E) in x,y. It suffices to write  
 

INCODE(y) = P(z0,...,z8) 
 
as a quantifier free formula in L. This is clear from   
 

INCODE(y) = u ↔ 
8u ≤ y-(log(y))↑-1 < 8u+8. 

 
QED   
 
We are now prepared to streamline the structure M*, 
retaining only what is needed to complete the construction 
of a model of SMAH + TR(Π0

1,L).  
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We have built quite a bit of complexity in M* in order to 
carry out the construction of arithmetic in M* via the 
internal structure M(I), and have related that arithmetic 
to the arithmetic of M on (a subset of) A in order to 
obtain Π0

1 correctness for M(I). 
 
Now that we have this machinery in place, we no longer need 
to work with any objects outside of E.  
 
Our simplification will be formulated in terms of a first 
order linearly ordered set theory. We will convert M* to a 
model of this linearly ordered set theory whose domain is a 
subset of E.  
 
We now present the language L# for linearly ordered set 
theory.  
 
DEFINITION 5.6.8. The language L# is based on the following 
primitives.  
 
i) variables vn, n ≥ 1; 
ii) the constant symbols dn, n ≥ 1;  
iii) the unary relation symbol NAT; 
iv) the binary relation symbols ∈,<; 
v) the constant symbols 0,1; 
vi) the unary function symbols ↑,log; 
vii) the binary function symbols +,-,•;  
viii) = (equality). 
 
Note that L# includes constant symbols dn, n ≥ 1, whereas L, 
L(E), and L*(E) do not include constant symbols cn, n ≥ 1. 
The constants cn appeared only as distinguished elements of 
our interpretations of the languages L, L(E), and L*(E).  
 
DEFINITION 5.6.9. The terms of L# are built from the 
variables and the constant symbols of L#, using the 
function symbols. The atomic formulas of L# are of the form 
s = t, s < t, s ∈ t, where s,t are terms of L#. Formulas of 
L# are defined in the usual way using the usual connectives 
¬,∧,∨,→,↔, and the usual quantifiers ∀,∃. 
 
We now introduce the linearly ordered set theory K(Π) in 
the language L#.  
 
DEFINITION 5.6.10. K(Π) consists of the following axioms.  
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1. < is a linear ordering (irreflexive, transitive, 
connected). 
2. x ∈ y → x < y. 
3. Let 1 ≤ n < m. Then dn < dm. 
4. Let ϕ be a formula of L# in which v1 is not free. Then 
(∃v1)(∀v2)(v2 ∈ v1 ↔ (v2 ≤ v3 ∧ ϕ)). 
5. Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L#. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and min. Let y1,...,yr ≤ min(di_1,...,di_r). Then 
ϕ(di_1,...,di_r,y1,...,yr) ↔ ϕ(di_r+1,...,di_2r,y1,...,yr). 
6. NAT defines a nonempty initial segment under <, with no 
greatest element, and no limit point, where all points are 
< d1, and whose first two elements are 0 < 1, such that +,-
,•,↑,log map NAT into NAT. 
7. (∀x)(if x has an element in NAT then x has a < least 
element).  
8. Let ϕ ∈ TR(Π0

1,L). Take the relativization of ϕ to NAT.  
9. +,-,•,↑,log have the default value 0 in case one or more 
arguments lie outside NAT. 
 
DEFINITION 5.6.11. We now define the structure M# = 
(D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2, ...) as follows. Recall 
that we have been using the structure M* = (A,<,0,1,+,-
,•,↑,log,E,c1,c2,...,X1,X2,...).  
 
By Lemma 5.6.8, I ⊆ E ∩ [0,c2). Let J be the initial 
segment of (E,<) determined by I. Take D = E\J ∪ I. I.e., D 
is the result of cutting down J to I in E. 
 
Define < in M# to be the restriction of < in M* to D. Take 
NAT(x) ↔ x ∈ I.  
 
Define 0,1,+,-,•,↑,log of M# as follows. The 0,1 of M# are 
the same as the 0,1 of the structure M(I). The +,-,•,↑,log 
of M# restricted to I are the same as the +,-,•,↑,log of 
M(I). Finally, if one or more arguments lie outside I, then 
the +,-,•,↑,log of M# return the 0 of M(I).  
 
Let x,y ∈ D. Define  
 

x ∈ y ↔ (σ(x,y) ∧ x < y) 
 
where σ is given by Lemma 5.6.15.  
 
Finally, for n ≥ 1, define dn = cn+1.  
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LEMMA 5.6.16. Let k ≥ 1, ϕ(v1,...,vk) be a formula of L# 
without any d’s. There exists an E formula ϕ’(x1,...,xk+1) of 
L*(E) such that the following holds. Let x1,...,xk ∈ D. Then 
 

ϕ(x1,...,xk) holds in M# ↔ 
ϕ’(x1,...,xk,c1) holds in M*. 

 
Proof: Let ϕ be as given. First, formally restrict the 
scope of all quantifiers to the formal property x ∈ E ∧ (x 
∈ I ∨ (∀v ∈ I)(v < x)). The extension of this property is 
D.  
 
Now replace all subformulas NAT(t) by (∃v)(v = t ∧ v ∈ I).  
 
Next unravel all subformulas s = t, s < t, by using new 
existential quantifiers relativized to I for subterms with 
0,1,+,-,•,↑,log. We can straightforwardly do this so that  
 
i. there is at most one occurrence of a function symbol in 
every remaining equation. 
ii. there are no occurrences of function symbols in every 
remaining inequality. 
 
Now replace v+w = z, v-w = z, v•w = z, v↑ = z, log(v) = z, 
respectively, by  
 
(v ∉ I ∨ w ∉ I ∧ z = 0) ∨ (v ∈ I ∧ w ∈ I ∧ v+'w = z). 
(v ∉ I ∨ w ∉ I ∧ z = 0) ∨ (v ∈ I ∧ w ∈ I ∧ v-'w = z). 
(v ∉ I ∨ w ∉ I ∧ z = 0) ∨ (v ∈ I ∧ w ∈ I ∧ v•'w = z). 
(v ∉ I ∧ z = 0) ∨ (v ∈ I ∧ v↑' = z). 
(v ∉ I ∧ z = 0) ∨ (v ∈ I ∧ log'(v) = z). 
 
Then replace v+'w = z, v-'w = z, v•'w = z, v↑' = z, log'(v) 
= z, respectively, by their definitions given right after 
the proof of Lemma 5.6.10.  
 
Now replace 0 by 1 and 1 by 2c1+1. 
 
Next replace atomic subformulas z ∈ w by σ(z,w), given by 
Definition 5.6.3.  
 
Finally, replace all v ∈ I by the definition of I in 
Definition 5.6.3.  
 
The parameter c1, only, appears in the definition of I, and 
the definitions of 1,+,-,•,↑,log. QED 
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LEMMA 5.6.17. M# = (D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2,...) 
satisfies K(Π), where d1,d2,... forms a strictly increasing 
sequence from D without an upper bound.  
 
Proof: Axioms 1,2,3,9 are evident by construction.  
 
For axiom 4, let ϕ(v2,...,vk) be as given, k ≥ 1. Let 
x2,...,xk ∈ D. Define  
 

S = {x2 ∈ D: x2 ≤ x3 ∧ ϕ(x2,...,xk) holds in M#}. 
 
By Lemma 5.6.16, we can write S in the form 
 

S = {x2 ∈ D: x2 ≤ x3 ∧ ϕ’(x2,...,xk,c1) holds in M*} 
 
where ϕ’(v2,...,vk+1) is an E formula of L*(E). Hence S is 
internal. By Lemma 5.6.15, let y ∈ E, y > x3,c2, be such 
that  
 

S = {x ∈ E: σ(x,y)}. 
 
Note that since y ∈ E and y > c2, we have y ∈ D. 
 
Since S ⊆ D, y ∈ D, and S is strictly bounded above by y, 
we have  
 

S = {x ∈ D: x ∈M# y}. 
 
We now claim that   
 

(∀x2)(x2 ∈ y ↔ (x2 ≤ x3 ∧ ϕ(x2,...,xk))) 
 
holds in M#. To see this, let x2 ∈ D, x2 ∈M# y. Then x2 ∈ S, 
and so x2 ≤ x3, and ϕ(x2,...,xk) holds in M#.  
 
Conversely, suppose x2 ∈ D, x2 ≤ x3, and ϕ(x2,...,xk) holds 
in M#. Then x2 ∈ S, and so x2 ∈M# y.  
 
For axiom 5, let r ≥ 1, ϕ(v1,...,v2r) be a formula in L#. Let 
1 ≤ i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the 
same order type and the same min. Let xr+1,...,x2r ∈ D, 
xr+1,...,x2r ≤ min(di_1,...,di_r). 
 
Let ϕ’(x1,...,x2r+1) be given by Lemma 5.6.16. Then for all 
x1,...,x2r ∈ D,  
 

ϕ(di_1,...,di_r,xr+1,...,x2r) holds in M# ↔ 
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ϕ’(ci_1 +1,...,ci_r +1,xr+1,...,x2r,c1) holds in M*. 
 

ϕ(di_r+1,...,di_2r,xr+1,...,x2r) holds in M# ↔ 
ϕ’(ci_r+1 +1,...,ci_2r +1,xr+1,...,x2r,c1) holds in M*. 

 
By Lemma 5.5.8 viii), the right sides of the above two 
equivalences are equivalent. Hence the left sides of the 
above two equivalences are equivalent.  
 
For axiom 6, NAT defines a nonempty initial segment under < 
by construction, and is I. I has no greatest element, and 
no limit point by Lemmas 5.6.8, 5.6.9. NAT lives below d1 
since I ⊆ [0,c2), according to Lemma 5.6.8, and d1 = c2. The 
first two elements of NAT are the 0,1 of M# by 
construction.  
 
For axiom 7, by Lemma 5.6.8, I is internally well ordered 
in M*. By Lemma 5.6.16, NAT = I remains internally well 
ordered in M#.  
 
For axiom 8, NAT with the 0,1,<,+,-,•,↑,log of M# is the 
same as M(I). By Lemma 5.6.13, M(I) satisfies TR(Π0

1,L). 
Hence NAT with the 0,1,<,+,-,•,↑,log of M# satisfies the 
sentences in TR(Π0

1,L).   
 
The d's are unbounded in M# because the c's are unbounded 
in M*. QED 
 
We now put Lemma 5.6.17 into our usual format to be used in 
the next section. 
 
LEMMA 5.6.18. There exists a countable structure M# = 
(D,<,∈,NAT,0,1,+,-,•,↑,log,d1,d2,...) such that the 
following holds. 
i) < is a linear ordering (irreflexive, transitive, 
connected); 
ii) x ∈ y → x < y; 
iii) The dn, n ≥ 1, form a strictly increasing sequence of 
elements of D with no upper bound in D; 
iv) Let ϕ be a formula of L# in which v1 is not free. Then 
(∃v1)(∀v2)(v2 ∈ v1 ↔ (v2 ≤ v3 ∧ ϕ)); 
v) Let r ≥ 1 and ϕ(v1,...,v2r) be a formula of L# not 
mentioning any constants dn, n ≥ 1. Let 1 ≤ i1,...,i2r, where 
(i1,...,ir) and (ir+1,...,i2r) have the same order type and 
min. Let y1,...,yr ≤ min(di_1,...,di_r). Then 
ϕ(di_1,...,di_r,y1,...,yr) ↔ ϕ(di_r+1,...,di_2r,y1,...,yr); 
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vi) NAT defines a nonempty initial segment under <, with no 
greatest element, and no limit point, where all points are 
< d1, and whose first two elements are 0,1, respectively; 
vii) (∀x)(if x has an element obeying NAT then x has a < 
least element);  
viii) Let ϕ ∈ TR(Π0

1,L). The relativization of ϕ to NAT 
holds.  
ix) +,-,•,↑,log have the default value 0 in case one or 
more arguments lie outside NAT. 
 
Proof: This is immediate from Lemma 5.6.17. QED  


