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5.5. Comprehension, indiscernibles. 
 
We fix M = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...) and terms 
t1,t2,... of L(E) be given as in Lemma 5.4.17.  
 
We now consider unbounded quantifiers. Below, Q indicates 
either ∀ or ∃. All formulas of L(E) are interpreted in M. 
 
LEMMA 5.5.1. Let n,m ≥ 0, r ≥ 1, and ϕ(v1,...,vn+m) be a 
quantifier free formula of L(E). Let xn+1,...,xn+m ∈ E ∩ 
[0,cr]. Then  
(Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+m)) ↔  
(Qnxn ∈ E ∩ [0,cr+1])...(Q1x1 ∈ E ∩ [0,cr+n])(ϕ(x1,...,xn+m)). 
 
Proof: We prove the following statement by induction on n ≥ 
0. 
 
Let m ≥ 0, r ≥ 1, ϕ(x1,...,xn+m) be a quantifier free formula 
in L(E), Q1,...,Qn be quantifiers, and xn+1,...,xn+m ∈ E ∩ 
[0,cr]. Then  
 

(Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+m)) ↔ 
(Qnxn ∈ E ∩ [0,cr+1])...(Q1x1 ∈ E ∩ [0,cr+n])(ϕ(x1,...,xn+m)). 
 
The basis case n = 0 is trivial. Assume this is true for a 
given n ≥ 0. Let m ≥ 0, r ≥ 1, and ϕ(x1,...,xn+1+m) be a 
quantifier free formula in L(E). Let xn+2,...,xn+1+m ∈ E ∩ 
[0,cr]. We wish to verify that  
 

(Qn+1xn+1 ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)) ↔ 
(Qn+1xn+1 ∈ E ∩ [0,cr+1])...(Q1x1 ∈ E ∩ [0,cr+n+1]) 

(ϕ(x1,...,xn+1+m)). 
 
By duality, we may assume that Qn+1 is ∃. Thus we wish to 
verify that  
 

1) (∃xn+1 ∈ E)(Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m))  
↔ 

(∃xn+1 ∈ E ∩ [0,cr+1])(Qnxn ∈ E ∩ [0,cr+2])... 
(Q1x1 ∈ E ∩ [0,cr+n+1])(ϕ(x1,...,xn+1+m)). 

 
Let xn+1 ∈ E ∩ [0,cr+1] witness the right side of 1). I.e.,  
 

2) (Qnxn ∈ E ∩ [0,cr+2])...(Q1x1 ∈ E ∩ 
[0,cr+n+1])(ϕ(x1,...,xn+1+m)). 
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According to the induction hypothesis applied to 
m+1,r+1,ϕ(x1,...,xn+1+m),Q1,...,Qn, and xn+1,...,xm+1+m, ∈ E ∩ 
[0,cr+1], we have 
 

3) (Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)) ↔ 
(Qnxn ∈ E ∩ [0,cr+2])...(Q1x1 ∈ E ∩ 

[0,cr+n+1])(ϕ(x1,...,xn+1+m)). 
 
By 2),3),  
 

(Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)), 
 
which is the left side of 1) instantiated with xn+1.  
 
Finally, let xn+1 ∈ E witness the left side of 1). I.e.,  
 

4) (Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)). 
 
Let xn+1 ≤ cs, s ≥ r+1. According to the induction hypothesis 
applied to m+1,s,ϕ(x1,...,xn+1+m),Q1,...,Qn, and xn+2,...,xn+1+m, 
∈ E ∩ [0,cs], we have  
 

5) (Qnxn ∈ E)...(Q1x1 ∈ E)(ϕ(x1,...,xn+1+m)) ↔ 
(Qnxn ∈ E ∩ [0,cs+1])...(Q1x1 ∈ E ∩ [0,cs+n])(ϕ(x1,...,xn+1+m)). 
 
By 4),5),  
 

(∃xn+1 ∈ E ∩ [0,cs])(Qnxn ∈ E ∩ [0,cs+1])... 
(Q1x1 ∈ E ∩ [0,cs+n])(ϕ(x1,...,xn+1+m)). 

 
By Lemma 5.4.17 vii), since xn+2,...,xn+1+m ∈ E ∩ [0,cr], we 
have 
 

(∃xn+1 ∈ E ∩ [0,cr+1])(Qnxn ∈ E ∩ [0,cr+2])... 
(Q1x1 ∈ E ∩ [0,cr+n+1])(ϕ(x1,...,xn+1+m)) 

 
which is the right side of 1). QED 
 
Note that Lemmas 5.4.17 and 5.5.1 concern only the E 
formulas of L(E). I.e., all of the quantifiers are 
relativized to E. This is clear for Lemma 5.4.17 by 
Definitions 5.4.4, 5.4.5. Lemma 5.5.1 only involves 
quantifier free formulas which are inside quantifiers 
relativized to E.  
 
DEFINITION 5.5.1. Let k ≥ 1 and R ⊆ Ak. We say that R is M,E 
definable if and only if R ⊆ Ek, and R is definable by an E 
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formula of L(E) with parameters from E. I.e., there exists 
m ≥ 1, an E formula 
ϕ(x1,...,xk+m), and xk+1,...,xk+m ∈ E, such that  
 

R = {(x1,...,xk) ∈ Ek: ϕ(x1,...,xk+m)}. 
 
Recall the definition of x-definability (Definition 5.4.6).   
 
DEFINITION 5.5.2. We say that R is bounded if and only if 
there exists x ∈ E such that R ⊆ [0,x]k.  
 
DEFINITION 5.5.3. For all k ≥ 1, we write Xk for the set of 
all bounded M,E definable k-ary relations.  
 
LEMMA 5.5.2. Let k ≥ 1 and R ⊆ Ak. The following are 
equivalent. 
i) R ∈ Xk; 
ii) R is cn-definable for some n ≥ 1; 
iii) R is x-definable for some x ∈ E. 
 
Proof: Let k,R be as given. We have ii) → iii) → i). So we 
need only prove i) → ii). Let R ∈ Xk. By choosing r to be 
sufficiently large, we can write  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,cr]: ϕ(x1,...,xk+m)} 
 
where ϕ(x1,...,xk+m) is an E formula of L(E), r ≥ 1, and 
xk+1,...,xk+m ∈ E ∩ [0,cr]. We can assume that ϕ is in prenex 
form. By a change of bound variables, we can assume that ϕ 
is in the form  
 

(Q1xk+m+1 ∈ E)...(Qnxk+m+n ∈ E)(ψ(x1,...,xk+m+n)) 
 
where ψ(x1,...,xk+m+n) is a quantifier free formula of L(E).  
 
Let x1,...,xk ∈ E ∩ [0,cr]. By Lemma 5.5.1, 
 

R(x1,...,xk) ↔ ϕ(x1,...,xk+m) ↔ 
(Q1xk+m+1 ∈ E)...(Qnxk+m+n ∈ E)(ψ(x1,...,xk+m+n)) ↔ 

(Q1xk+m+1 ∈ E ∩ [0,cr+1])...(Qnxk+m+n ∈ E ∩ 
[0,cr+n])(ψ(x1,...,xk+m+n)). 

 
Since R ⊆ Ek ∩ [0,cr]k, this provides a cr+n-definition of R. 
QED 
 
Lemma 5.5.2 reveals a considerable amount of robustness.  
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DEFINITION 5.5.4. We say that a k-ary relation R ⊆ Ek is 
internal (to M) if and only if R obeys any (all) of 
conditions i) – iii) in Lemma 5.5.2.  
 
DEFINITION 5.5.5. Let k ≥ 1 and R ⊆ Ak. We say that 
y1,...,y9 codes R if and only if y1,...,y9 ∈ E and  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,y9]k:  
tk(x1,...,xk,y1,...,y8) ∈ E}. 

 
LEMMA 5.5.3. Every internal R is coded by some y1,...,y9. 
For k ≥ 1, every y1,...,y9 ∈ E codes some unique R ⊆ Ak, 
which must be internal.  
 
Proof: Let R be internal. Let n ≥ 1, where R is cn-
definable. By Lemma 5.4.17 vi), write 
 

R = {(x1,...,xk) ∈ Ek ∩ [0,cn]k:  
tk(x1,...,xk,y1,...,y8) ∈ E} 

 
where y1,...,y8 ∈ E. Then R is coded by y1,...,y8,cn. 
 
Now let k ≥ 1, and y1,...,y9 ∈ E. Then y1,...,y9 codes  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,y9]k:  
tk(x1,...,xk,y1,...,y8) ∈ E}. 

 
R is obviously unique (given k), bounded, and M,E 
definable. I.e., R is internal. QED 
 
We now work with the second order expansion M* of M, where 
M* = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...). Recall the 
definition of Xk (Definition 5.5.3). 
 
We use the following language L*(E) suitable for M*.  
 
DEFINITION 5.5.6. The first order terms of L*(E) are 
exactly the terms of L(E). The second order variables of 
L*(E) are written Vkn, k,n, ≥ 1. 
The atomic formulas of L*(E) are of the form  
 

t ∈ E 
Vkn(t1,...,tk) 

s = t 
s < t 
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where s,t,t1,...,tk are first order terms of L*(E) and k,n ≥ 
1. We view E as a unary predicate symbol, rather than a 
second order object.    
 
DEFINITION 5.5.7. The formulas of L*(E) are inductively 
defined as follows. 
 
i) every atomic formula of L*(E) is a formula of L*(E); 
ii) if ϕ,ψ are formulas of L*(E) then 
(¬ϕ),(ϕ∧ψ),(ϕ∨ψ),(ϕ→ψ),(ϕ↔ψ) are formulas of L*(E); 
iii) if ϕ is a formula of L*(E) and k,n ≥ 1, then (∀vn)(ϕ), 
(∃vn)(ϕ), (∀Vkn)(ϕ), (∃Vkn)(ϕ) are formulas of L*(E).  
 
As was the case with L(E), it is the E formulas of L*(E) 
that we focus on.  
 
DEFINITION 5.5.8. The E formulas of L*(E) are inductively 
defined as follows.  
 
1) every atomic formula of L*(E) is a formula of L*(E); 
ii) if ϕ,ψ are formulas of L*(E) then 
(¬ϕ),(ϕ∧ψ),(ϕ∨ψ),(ϕ→ψ),(ϕ↔ψ) are formulas of L*(E); 
iii) if ϕ is a formula of L*(E) and k,n ≥ 1, then (∀vn ∈ 
E)(ϕ), (∃vn ∈ E)(ϕ), (∀Vkn)(ϕ), (∃Vkn)(ϕ) are formulas of 
L*(E).  
 
DEFINITION 5.5.9. We use 
 

(∀vn ∈ E)(ϕ), (∃vn ∈ E)(ϕ) 
 
as abbreviations for 
 

(∀vn)(vn ∈ E → ϕ), (∃vn)(vn ∈ E ∧ ϕ). 
 
DEFINITION 5.5.10. The intended interpretation of L*(E) is 
the structure M* introduced above, where the first order 
quantifiers range over A, and the second order quantifiers 
Vkn range over Xk. 
 
Note that in M*, if a second order object holds at any 
arguments, then those arguments must have the attribute E. 
That is, all elements of all second order objects are 
tuples of elements of E.   
 
DEFINITION 5.5.11. A relation is said to be M*,E definable 
if and only if it is a relation on E that is M* definable 
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by an E formula of L*(E) with second order parameters from 
the various Xk and first order parameters from E only. 
 
In practice, we will allow flexibility of notation in 
presenting formulas of L*(E). In particular we will often 
drop the subscripts or superscripts on the second order 
variables.  
 
We also take advantage of the added flexibility of notation 
that comes from sometimes treating k-ary relations as sets 
of k-tuples, with the ∈ notation. 
 
LEMMA 5.5.4. Let k ≥ 1 and R ⊆ Ak. The following are 
equivalent.  
i) R ∈ Xk; 
ii) R is cn-definable for some n ≥ 1; 
iii) R is x-definable for some x ∈ E; 
iv) R is M*,E definable and bounded.  
 
Proof: Let k,R be as given. In light of Lemma 5.5.2, we 
have only to verify that iv) implies i). Let  
 

R = {(x1,...,xk) ∈ Ek ∩ [0,cr]k:  
ϕ(x1,...,xk+m,R1,...,Rn) holds in M*}, 

 
where k,m,n,r ≥ 1, ϕ(V1,...,vk+m,V1,...,Vn) is an E formula of 
L*(E) whose free variables are among the variables 
v1,...,vk+m,V1,...,Vn, xk+1,...,xk+m ∈ E ∩ [0,cr], and R1,...,Rk 
are internal.  
 
We can remove R1,...,Rn using definitions of R1,...,Rn in the 
form given by Lemma 5.4.17 vi).  
 
We can also remove second order quantifiers by 
appropriately quantifying over codes, as can be seen from 
Lemma 5.5.3. This involves quantifying over nine variables. 
Since each second order quantifier has a definite arity, k, 
we are only using the fixed term tk. We then obtain a 
definition of R by an E formula of L(E). Hence R is 
internal. QED  
 
DEFINITION 5.5.12. The bounded comprehension axioms of 
L*(E) consist of all E formulas of L*(E) of the form 
 

xk+1,...,xk+m+1 ∈ E → (∃R)(∀x1,...,xk ∈ E) 
(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)) 
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where k ≥ 1, m ≥ 0, ϕ is an E formula of L*(E) in which R is 
not free, and all first order variables free in ϕ are among 
x1,...,xk+m+1.  
 
LEMMA 5.5.5. The bounded comprehension axioms of L*(E) hold 
in M*.  
 
Proof: Let a bounded comprehension axiom of L*(E) 
 

1) xk+1,...,xk+m+1 ∈ E → (∃R)(∀x1,...,xk ∈ E) 
(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)) 

 
be given, subject to the required syntactic conditions 
above. Write ϕ = ϕ(x1,...,xk+m+1,V1,...,Vn), where V1,...,Vn 
are distinct second order variables of L*(E), and all free 
variables of ϕ are among x1,...,xk+m+1,V1,...,Vn.  
 
Let xk+1,...,xk+m+1 ∈ E and R1,...,Rn ∈ X have the same 
respective arities as V1,...,Vn. Set  
 

R = {(x1,...,xk) ∈ Ek: x1,...,xk ≤ xk+1  
∧ ϕ(x1,...,xk+m+1,R1,...,Rn)}. 

 
Then R is a bounded M*,E definable relation. By Lemma 
5.5.4, R ∈ Xk. Therefore R witnesses the consequent of 1). 
QED 
 
LEMMA 5.5.6. Let r ≥ 1, and ϕ(v1,...,v2r) be an E formula of 
L(E). Let 1 ≤ i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) 
have the same order type and the same min. Let x1,...,xr ∈ 
E, x1,...,xr ≤ min(ci_1,...,ci_r). Then 
ϕ(ci_1,...,ci_r,x1,...,xr) ↔ ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 
Proof: Let r,ϕ,i1,...,i2r be as given. Let t = 
max(i1,...,i2r). We can assume that ϕ is in prenex form: 
 

(Qnv2r+1 ∈ E)...(Q1v2r+n ∈ E)(ψ(v1,...,v2r+n)). 
 
where ψ is a quantifier free formula of L(E). By Lemma 
5.5.1, for all v1,...,v2r ∈ E ∩ [0,ct],  
 

(Qnv2r+1 ∈ E)...(Q1v2r+n ∈ E)(ψ(v1,...,v2r+n)) 
↔ 

(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ 
[0,ct+n])(ψ(v1,...,v2r+n)). 
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In particular, for all x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r), 
 

1) (Qnv2r+1 ∈ E)...(Q1v2r+n ∈ E) 
(ψ(ci_1,...,ci_r,x1,...,xr,v2r+1,...,v2r+n)) 

↔ 
(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ [0,ct+n]) 

(ψ(ci_1,...,ci_r,x1,...,xr,v2r+1,...,v2r+n)). 
 

2) (Qnv2r+1 ∈ E)...(Q1v2r+n ∈ E) 
(ψ(ci_r+1,...,ci_2r,x1,...,xr,v2r+1,...,v2r+n)) 

↔ 
(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ [0,ct+n]) 

(ψ(ci_r+1,...,ci_2r,x1,...,xr,v2r+1,...,v2r+n)). 
 
Hence  
 

3) ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ [0,ct+n]) 
(ψ(ci_1,...,ci_r,x1,...,xr,v2r+1,...,v2r+n))c_t+n. 

 
4) ϕ(ci_r+1,...,ci_2r,x1,...,xr) ↔ 

(Qnv2r+1 ∈ E ∩ [0,ct+1])...(Q1v2r+n ∈ E ∩ [0,ct+n]) 
(ψ(ci_r+1,...,ci_2r,x1,...,xr,v2r+1,...,v2r+n))c_t+n. 

 
The right sides of 3),4) are ψc_t+n,ρc_t+n, respectively, where 
ρ,ψ begin with the quantifier Qn. ρ,ψ are first expanded out 
to formulas of L(E) in the obvious way. Then the displayed 
quantifiers are relativized to E ∩ [0,ct+n].  
 
By Lemma 5.4.17 vii), for all x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r), 
 

ϕ(ci_1,...,ci_r,x1,...,xr) ↔ ϕ(ci_r+1,...,ci_2r,x1,...,xr)  
 
QED 
 
LEMMA 5.5.7. Let r ≥ 1, and ϕ(v1,...,v2r) be an E formula of 
L*(E), with no free second order variables. Let 1 ≤ 
i1,...,i2r, where (i1,...,ir) and (ir+1,...,i2r) have the same 
order type and the same min. Let x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 
Proof: By the same argument that we used in the proof of 
Lemma 5.5.4, using codes, we can remove all second order 
quantifiers in ϕ, thereby reducing ϕ to an equivalent E 
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formula ψ(v1,...,v2r) of L(E). No new parameters are 
introduced in this process. Then apply Lemma 5.5.6. QED 
 
LEMMA 5.5.8. There exists a countable second order 
structure M* = (A,<,0,1,+,-,•,↑,log,E,c1,c2,...,X1,X2,...), 
where for all i ≥ 1, Xi is the set of all i-ary relations on 
A that are cn-definable for some n ≥ 1; and terms t1,t2,... 
of L, where for all i, ti has variables among x1,...,xi+8, 
such that the following holds. 
i) (A,<,0,1,+,-,•,↑,log) satisfies TR(Π0

1,L); 
ii) E ⊆ A\{0}; 
iii) The cn, n ≥ 1, form a strictly increasing sequence of 
nonstandard elements of E\α(E;2,<∞) with no upper bound in 
A; 
iv) For all r,n ≥ 1, ↑r(cn) < cn+1; 
v) 2α(E;1,<∞)+1, 3α(E;1,<∞)+1 ⊆ E; 
vi) Let k,n ≥ 1 and R be a cn-definable k-ary relation. 
There exist y1,...,y8 ∈ E ∩ [0,cn+1] such that R = 
{(x1,...,xk) ∈ Ek ∩ [0,cn]k: tk(x1,...,xk,y1,...,y8) ∈ E}; 
vii) Let k ≥ 1, m ≥ 0, and ϕ be an E formula of L*(E) in 
which R is not free, where all first order variables free 
in ϕ are among x1,...,xk+m+1. Then xk+1,...,xk+m+1 ∈ E → 
(∃R)(∀x1,...,xk ∈ E)(R(x1,...,xk) ↔ (x1,...,xk ≤ xk+m+1 ∧ ϕ)); 
viii) Let r ≥ 1, and ϕ(x1,...,x2r) be an E formula of L*(E) 
with no free second order variables. Let 1 ≤ i1,...,i2r, 
where (i1,...,ir) and (ir+1,...,i2r) have the same order type 
and the same min. Let x1,...,xr ∈ E, x1,...,xr ≤ 
min(ci_1,...,ci_r). Then ϕ(ci_1,...,ci_r,x1,...,xr) ↔ 
ϕ(ci_r+1,...,ci_2r,x1,...,xr). 
 
Proof: i),ii),iii),v),vi) are identical to 
i),ii),iii),v),vi) of Lemma 5.4.17. iv) follows immediately 
from iv) of Lemma 5.4.17. vii) is from Lemma 5.5.5. viii) 
is from Lemma 5.5.7. QED 


