5.2. From length 3 towers to length n towers.

In this section, we obtain a variant of Lemma 5.1.7 (Lemma 5.2.12) involving length n towers rather than length 3 towers of infinite sets. However, we only assert that the sets in the length n tower have at least r elements, for any $r \geq 1$. Thus we pay a real cost for lengthening the towers.

Because the sets in the tower are finite and not infinite, certain indiscernibility properties of the first set in the tower must now be stated explicitly as additional conditions. See Lemma 5.2.12, iii), viii). These indiscernibility properties can of course be obtained from the usual infinite Ramsey theorem by taking a subset of the infinite $A \subseteq N$ from Lemma 5.1.7 - but then we would only have a tower of length 3.

We will apply Lemma 5.1.7 with f arising from term assignments. Thus Lemma 5.2.12 uses g and not f.

Recall the definition of the language L (Definition 5.1.8). In order to avoid having to write too many parentheses in terms and formulas of L, we use the following two standard precedence tables.

DEFINITION 5.2.1. Let t be a term of L. We write \# (t) for the maximum of: the subscripts of variables in t, and the number of occurrences of the symbols

$$
01+-\bullet \uparrow() \mathrm{v}_{1} \mathrm{v}_{2}, \ldots \mathrm{log}
$$

We count \log as a single symbol. Note that for all $n \geq 0$, \{t: \#(t) $\leq n\}$ is finite.

DEFINITION 5.2.2. Let φ be a quantifier free formula in L. We write \# (φ) for the maximum of: the subscripts of
variables in φ, and the number of occurrences of the symbols

$$
01+-\bullet \uparrow()=<\neg \wedge v \rightarrow \leftrightarrow \mathrm{v}_{1} \mathrm{~V}_{2}, \ldots, \mathrm{v}_{\mathrm{r}} \log
$$

in φ. Note that for all $\mathrm{n} \geq 0,\{\varphi: \#(\varphi) \leq \mathrm{n}\}$ is finite.
DEFINITION 5.2.3. For all $r \geq 1$, let $\beta(r)$ be the number of terms t in L with \#(t) $\leq r$. We fix a doubly indexed sequence t[i,r] of terms in L, which is defined if and only if $r \geq 1$ and $1 \leq i \leq \beta(r)$. For each $r \geq 1$, the sequence $t[i, r], 1 \leq i$ $\leq \beta(r)$, enumerates the terms t with $\#(t) \leq r$, without repetition.

DEFINITION 5.2.4. For all $r \geq 1$, let $\gamma(r)$ be the number of quantifier free formulas φ in L with $\#(\varphi) \leq r$. We fix a doubly indexed sequence $\varphi[i, r]$ of quantifier free formulas in L, which is defined if and only if $r \geq 1$ and $1 \leq i \leq$ $\gamma(r)$. For each $r \geq 1$, the sequence $\varphi[i, r], 1 \leq i \leq \gamma(r)$, enumerates the quantifier free formulas φ with \# $(\varphi) \leq r$, without repetition.

We adhere to the convention of displaying all free variables (and possibly additional variables). Thus $t\left(v_{1}, \ldots, v_{n}\right)$ and $\varphi\left(v_{1}, \ldots, v_{m}\right)$ respectively indicate that all variables in the term t are among the first n variables $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$, and all variables in the quantifier free formula φ are among the first m variables v_{1}, \ldots, v_{m}.

Note that all terms t[i,r] have variables among $\mathrm{v}_{1}, . . ., \mathrm{v}_{\mathrm{r}}$, and all formulas $\varphi[i, r]$ have variables among $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}}$.

We want to be more specific about the enumerations of terms and formulas in Definitions 5.2.3, 5.2.4.

DEFINITION 5.2.5. Let $r \geq 1$. The enumeration $t[1, r], \ldots, t[\beta(r), r]$ in Definition 5.2 .3 is the enumeration of all terms t of L with \#(t) $\leq r$, ordered first by \#(t), and second by the lexicographic ordering of strings of symbols, where, for specificity, the symbols are ordered by

$$
01+-\bullet \uparrow() \mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{r}} \log
$$

DEFINITION 5.2.6. Let $r \geq 1$. The enumeration
$\varphi[1, r], \ldots, \varphi[\gamma(r), r]$ in Definition 5.2 .4 is the enumeration of all quantifier free formulas φ of L with $\#(\varphi) \leq r$, ordered first by \# (φ), and second by the lexicographic
ordering of strings of symbols, where the symbols are ordered by

$$
01+-\bullet \uparrow()=<\neg \wedge \vee \rightarrow \leftrightarrow \mathrm{V}_{1} \mathrm{~V}_{2} \ldots \mathrm{v}_{\mathrm{r}} \log
$$

An important consequence of the way we have enumerated terms and formulas is the following.

$$
\begin{aligned}
& 1 \leq i \leq \beta(r) \wedge 1 \leq r \leq r^{\prime} \rightarrow t[i, r]=t\left[i, r^{\prime}\right] . \\
& 1 \leq i \leq \gamma(r) \wedge 1 \leq r \leq r^{\prime} \rightarrow \varphi[i, r]=\varphi\left[i, r^{\prime}\right] .
\end{aligned}
$$

DEFINITION 5.2.7. For $E \subseteq N$ and $r \geq 1$, we write $\alpha(r, E)$ for the set of values of all terms t[i,r], at assignments f to the variables in t, with $r n g(f) \subseteq E$, including $t[i, r]$ that are closed.

DEFINITION 5.2.8. For $\mathrm{E} \subseteq \mathrm{N}$ and integers $\mathrm{p}, \mathrm{q} \geq 0$, we write $\alpha(r, E ; p, q)$ for the set of all nonnegative integers x such that the following holds. There is a term t[i,r] that is not closed, and an assignment f to its variables, with $r n g(f) \subseteq E$, such that x is the value of $t[i, r]$ under f, and $x \in[\operatorname{pmax}(r n g(f)), q \max (r n g(f))]$. We refer to p, q as the lower and upper coefficients, respectively.

Note that for $E \subseteq N, r \geq 1, p, q \geq 0, \alpha(r, E ; p, q) \subseteq$ [pmin(E), ∞).

Here is a version of Lemma 5.1.7, where the role of f is taken up by α. Recall Definition 5.1.12.

LEMMA 5.2.1. Let $r \geq 1$ and $g \in E L G \cap S D \cap B A F, r n g(g) \subseteq 6 N$. There exist infinite $A \subseteq B \subseteq C \subseteq N \backslash\{0\}$ such that
i) $6 \alpha\left(r, A^{*} ; 1, r\right) \subseteq B \cup g B$;
ii) $6 \alpha\left(r, B^{*} ; 1, r\right) \subseteq C \cup g C$;
iii) $2 \alpha\left(r, A^{*} ; 1, r\right)+1 \subseteq B$;
iv) $3 \alpha\left(r, A^{*} ; 1, r\right)+1 \subseteq B ;$
v) $2 \alpha\left(r, B^{*} ; 1, r\right)+1 \subseteq C$;
vi) $3 \alpha\left(r, B^{*} ; 1, r\right)+1 \subseteq C$;
vii) $C \cap g C=\varnothing$;
viii) $A \cap \alpha\left(r, B^{*} ; 2, r\right)=\varnothing$.

Proof: Let r,g be as given. We define $f \in E L G \cap S D \cap B A F$ of arity $\beta(r)+12+r$ as follows. Let $\mathrm{x}^{*}=$

$$
\begin{gathered}
\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\beta(r)}, \mathrm{z}_{1}, \ldots \mathrm{~N}_{(} \mathrm{z}_{6}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{6}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{r}\right) \\
\in \mathrm{N}^{\beta(r)+12+r} .
\end{gathered}
$$

Let i,j,k be greatest such that

$$
\begin{aligned}
& \mathrm{y}_{1}=\ldots=\mathrm{y}_{\mathrm{i}} \\
& \mathrm{z}_{1}=\ldots=\mathrm{z}_{\mathrm{j}} \\
& \mathrm{w}_{1}=\ldots=\mathrm{w}_{\mathrm{k}}
\end{aligned}
$$

respectively.
Define $\mathrm{f}\left(\mathrm{x}^{*}\right)=$

$$
\begin{gathered}
j t[i, r]\left(x_{1}, \ldots, x_{r}\right)+k-1 \text { if } \\
\left|x^{*}\right|+1,2\left|x^{*}\right| \leq j t[i, r]\left(x_{1}, \ldots, x_{r}\right)+\mathrm{k}-1 \leq r\left|x^{*}\right| ; \\
\max \left(\left|x^{*}\right|+1,2\left|x^{*}\right|\right) \text { otherwise. }
\end{gathered}
$$

Clearly $f \in E L G \cap \operatorname{SD} \cap$ BAF. We claim that for any $D \subseteq N, 2$ $\leq p \leq 6$, and $0 \leq q \leq 5$,

$$
\alpha\left(r, D^{*} ; 2, r\right) \cup p \alpha\left(r, D^{*} ; 1, r\right)+q \subseteq f D .
$$

To see this, let $u \in \alpha\left(r, D^{*} ; 2, r\right), v \in p \alpha\left(r, D^{*} ; 1, r\right)+q$, and write

$$
\begin{gathered}
u=t[i, r]\left(x_{1}, \ldots, x_{r}\right) \\
v=p t\left[i^{\prime}, r\right]\left(x_{1}, \ldots, x_{r}\right)+q
\end{gathered}
$$

where $x_{1}, \ldots, x_{r} \in D^{*}, 1 \leq i, i ' \leq \beta(r), 2\left|x_{1}, \ldots, x_{r}\right| \leq u \leq$ $r\left|x_{1}, \ldots, x_{r}\right|,\left|x_{1}, \ldots, x_{r}\right| \leq v \leq r\left|x_{1}, \ldots, x_{r}\right|$, and $t[i, r], t\left[i^{\prime}, r\right]$ are not closed.

First let $y_{1}=\ldots=y_{i}=\min (D), y_{i+1}=\ldots=y_{\beta(r)}=$ $\left|x_{1}, \ldots, x_{r}\right|, z_{1}=w_{1}=\min (D), z_{2}=\ldots=z_{6}=w_{2}=\ldots=w_{6}=$ $\left|x_{1}, \ldots, x_{r}\right|$. Then $f\left(y_{1}, \ldots, y_{\beta(r)}, z_{1}, \ldots, z_{6}, W_{1}, \ldots, w_{6}, x_{1}, \ldots, x_{r}\right)$ $=u \in f D$.

Now let $y_{1}=\ldots=y_{i}=\min (\mathrm{D}), \mathrm{y}_{\mathrm{i}+1}=\ldots=\mathrm{y}_{\beta(\mathrm{r})}=$
$\left|x_{1}, \ldots, x_{r}\right|, z_{1}=\ldots=z_{p}=\min (D), z_{p+1}=\ldots=z_{6}=$ $\left|\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right|, \mathrm{w}_{1}=\ldots=\mathrm{w}_{\mathrm{q}+1}=\min (\mathrm{D}), \mathrm{w}_{\mathrm{q}+2}=\ldots=\mathrm{w}_{6}=$ $\left|x_{1}, \ldots, x_{r}\right|$.

It is obvious that
$f\left(y_{1}, \ldots, y_{\beta(r)}, z_{1}, \ldots, z_{6}, w_{1}, \ldots, w_{6}, x_{1}, \ldots, x_{r}\right)=v \in f D$.
Now apply Lemma 5.1.7 to f,g to obtain $A, B, C \subseteq N \backslash\{0\}$ with the properties i)-viii) cited there.

From the demonstrated claim, we have

$$
\begin{gathered}
6 \alpha\left(r, A^{*} ; 1, r\right) \subseteq f A . \\
6 \alpha\left(r, B^{*} ; 1, r\right) \subseteq f B . \\
2 \alpha\left(r, A^{*} ; 1, r\right)+1 \\
\hline \\
3 \alpha\left(r, A^{*} ; 1, r\right)+1 \\
\hline 2 \alpha\left(r, B^{*} ; 1, r\right)+1 \\
\subseteq f A . \\
3 \alpha\left(r, B^{*} ; 1, r\right)+1 \\
\alpha\left(r, B^{*} ; 2, r\right) \subseteq f B .
\end{gathered}
$$

We now obtain i)- viii) here immediately from the i)-viii) of Lemma 5.1.7. QED

We are now going to define three properties of finite length towers of sets, of increasing strength: r,g-good for aN, r,g-great for aN, and r,g-terrific for aN. The notion of r-good generalizes some properties from Lemma 5.2.1.

DEFINITION 5.2.9. Let $n \geq 3, r, a \geq 1$, and $g \in E L G \cap S D \cap$ BAF. We say that $\left(D_{1}, \ldots, D_{n}\right)$ is $r, g-g o o d$ for $a N$ if and only if
i) $\mathrm{D}_{1} \subseteq \ldots \subseteq \mathrm{D}_{\mathrm{n}} \subseteq \mathrm{N} \backslash\{0\}$;
ii) for all $\mathrm{x}<\mathrm{y}$ from $\mathrm{D}_{1}, \mathrm{x} \uparrow<\mathrm{y}$;
iii) for all $1 \leq i \leq n-1, a \alpha\left(r, D_{i}^{*} ; 1, r\right) \subseteq D_{i+1} \cup g D_{i+1}$;
iv) for all $1 \leq i \leq n-1,2 \alpha\left(r, D_{i}^{*} ; 1, r\right)+1 \subseteq D_{i+1}$;
v) for all $1 \leq i \leq n-1,3 \alpha\left(r, D_{i}^{*} ; 1, r\right)+1 \subseteq D_{i+1}$;
vi) $D_{n} \cap g D_{n}=\varnothing$;
vii) $D_{1} \cap \alpha\left(r, D_{2}^{*} ; 2, r\right)=\varnothing$.

The following proves the existence of length 3 towers that are r,g-good for 6 N .

LEMMA 5.2.2. Let $r \geq 1$ and $g \in E L G \cap S D \cap B A F, r n g(g) \subseteq 6 N$. There exists (A,B,C) which is r,g-good for 6 N , where A is infinite.

Proof: Let r,g be as given, and let $A, B, C \subseteq N \backslash\{0\}$ be as given by Lemma 5.2.1. Set $D_{1}=A, D_{2}=B, D_{3}=C$. Obviously i), iii)- vii) hold in the definition of $r, g-g o o d$ for 6 N . However ii) may fail. We can obviously shrink A so that ii) holds, keeping A infinite, and retaining i),iii)-vii). QED

We now want to define certain $g \in$ ELG \cap SD \cap BAF so that any $r, g-g o o d$ sequence for N codes up the truth values of existential closures of quantifier free formulas $\varphi[i, r], 1 \leq$ $i \leq \gamma(r)$, in a convenient uniform way. This introduces a kind of quantifier elimination.

DEFINITION 5.2.10. Let $r \geq 1$ and $g \in E L G \cap S D \cap B A F$, where $r n g(g) \subseteq 24 N$. We define $\tau(g, r) \in E L G \cap S D \cap$ BAF as follows. $\tau(g, r)$ has arity $\gamma(r)+k+r+1$, where k is the arity of g. Let $x^{*}=\left(y_{1}, \ldots, y_{\gamma(r)}, z_{1}, \ldots, z_{k}, x_{1}, \ldots, x_{r}, w\right) \in N^{\gamma(r)+k+r+1}$. Let $i \in$ $[1, \gamma(r)]$ be greatest such that $1 \leq i \leq \gamma(r)$ and $y_{1}=\ldots=$ Yi.
case 1. $\left|x^{*}\right|=w \wedge x_{1}, \ldots, x_{r}<w \wedge \varphi[i, r]\left(x_{1}, \ldots, x_{r}\right)$. Define $\tau(g, r)\left(x^{*}\right)=24 \gamma(r) w+24 i+6$.
case 2. $\left|\mathrm{x}^{*}\right|=\left|\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}\right| \wedge \mathrm{x}_{1}=\ldots . .=\mathrm{x}_{\mathrm{r}}=\mathrm{w}$. Define $\tau(g, r)\left(x^{*}\right)=g\left(z_{1}, \ldots, z_{k}\right)$.
case 3. Otherwise. Define $\boldsymbol{\tau}(\mathrm{g}, \mathrm{r})\left(\mathrm{x}^{*}\right)=24\left|\mathrm{x}^{*}\right|+12$.
We now establish some useful coding properties of $\tau(\mathrm{g}, \mathrm{r})$.
LEMMA 5.2.3. $\tau(\mathrm{g}, \mathrm{r}) \in$ ELG $\cap \mathrm{SD} \cap$ BAF. The values arising out of the above three cases are mutually disjoint, and lie in 6 N. Let $\mathrm{E} \subseteq \mathrm{N}$. For all $\mathrm{w} \in \mathrm{E}$ and $1 \leq i \leq \gamma(r)$, $24 \gamma(r) w+24 i+6 \in \tau(g, r) E \leftrightarrow\left(\exists v_{1}, \ldots, v_{r} \in E\right)\left(v_{1}, \ldots, v_{r}<w \wedge\right.$ $\left.\varphi[i, r]\left(v_{1}, \ldots, v_{r}\right)\right) . g E=\tau(g, r) E \cap 24 N$.

Proof: Note that in case $1, \gamma(r), w \geq 1$, and $24 w \leq$ $24 \gamma(r) w+24 i+6 \leq 100 \gamma(r) w$. Hence

$$
\left|x^{*}\right|+1,24\left|x^{*}\right| \leq \tau(g, r)\left(x^{*}\right) \leq 100 \gamma(r)\left|x^{*}\right| .
$$

In case 2,

$$
\begin{aligned}
\left|x^{*}\right| & =\left|z_{1}, \ldots, z_{k}\right| \\
\left|\tau(g, r)\left(x^{*}\right)\right| & =\left|g\left(z_{1}, \ldots, z_{k}\right)\right| .
\end{aligned}
$$

In case $3,\left|x^{*}\right| \geq 1$, and

$$
24\left|x^{*}\right|<\tau(g, r)\left(x^{*}\right) \leq 36\left|x^{*}\right| .
$$

Therefore $\tau(\mathrm{g}, \mathrm{r}) \in \mathrm{ELG} \cap \mathrm{SD} \cap \mathrm{BAF}$.
Since rng(g) $\subseteq 24 \mathrm{~N}$, the values arising out of the three cases are mutually disjoint. Also note that the w,i used in case 1 can be recovered from any value of $\tau(g, r)$ obtained by case 1. This is because $1 \leq i \leq \gamma(r)$ in case 1 .

Let $E \subseteq N$ and $w \in E$. First suppose $24 \gamma(r) w+24 i+6 \in \tau(g, r) E$. Then $24 \gamma(r) w+24 i+6$ must arise out of case 1 , with, say, $x^{*} \in$
$E^{\gamma(r)+k+r+1}$. Then the w,i used in case 1 must be this w,i. Hence the x_{1}, \ldots, x_{r} used in case 1 must be $<w$, and $\varphi[i, r]\left(x_{1}, \ldots, x_{r}\right)$.

Conversely, suppose $x_{1}, \ldots, x_{r} \in E \cap[0, w)$ and $\varphi[i, r]\left(x_{1}, \ldots, x_{r}\right)$. Then we can choose $y_{1}=\ldots=y_{i}=x_{1}$ and $y_{i+1}=\ldots=y_{\gamma(r)}=z_{1}=\ldots=z_{k}=w$. Then case 1 applies, $y_{1}, \ldots, y_{\gamma(r)}, z_{1}, \ldots, z_{k}, w \in E$, and i is greatest such that y_{1} $=\ldots=Y_{i}$. Hence $\tau(g, r)\left(y_{1}, \ldots, y_{\gamma}(r), z_{1}, \ldots, z_{k}, x_{1}, \ldots, x_{r}, w\right)=$ $24 \gamma(r) w+24 i+6$.

For the final claim, note that every element of gE arises out of case 2 , since we can set $y_{1}=\ldots=y_{\gamma(r)}=x_{1}=\ldots=$ $\mathrm{x}_{\mathrm{r}}=\mathrm{w}=\mathrm{z}_{1}$, taking $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{k}}$ to be arbitrary elements of E . On the other hand, all elements of $\tau(\mathrm{g}, \mathrm{r}) \mathrm{E}$ lying in 24 N must arise out of case 2 , in which case they must lie in gE. QED

DEFINITION 5.2.11. Throughout the book, we will use the logical construction

$$
\varphi_{1} \leftrightarrow \ldots \leftrightarrow \varphi_{k}
$$

for

$$
\left(\varphi_{1} \leftrightarrow \varphi_{2}\right) \wedge\left(\varphi_{2} \leftrightarrow \varphi_{3}\right) \wedge \ldots \wedge\left(\varphi_{\mathrm{k}-1} \leftrightarrow \varphi_{\mathrm{k}}\right) .
$$

LEMMA 5.2.4. Let $r \geq 1, g \in \operatorname{ELG} \cap \operatorname{SD} \cap \operatorname{BAF}, r n g(g) \subseteq 24 N$, and (A,B,C) be $100 \gamma(r), \tau(g, r)-g o o d$ for $6 N$. Then
i) for all $1 \leq i \leq \gamma(r)$ and $x \in B^{*}$,

$$
\begin{gathered}
\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}} \in \mathrm{C}\right)\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}<\mathrm{x} \wedge \varphi[i, r]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}}\right)\right) \leftrightarrow \\
24 \gamma(\mathrm{r}) \mathrm{x}+24 i+6 \notin \mathrm{C} ;
\end{gathered}
$$

ii) for all $1 \leq i \leq \gamma(r)$ and $x \in A^{*}$,
$\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}} \in \mathrm{B}\right)\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}}<\mathrm{x} \wedge \varphi[\mathrm{i}, \mathrm{r}]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}}\right)\right) \leftrightarrow$
$\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}} \in \mathrm{C}\right)\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}}<\mathrm{x} \wedge \varphi[\mathrm{i}, \mathrm{r}]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}}\right)\right) \leftrightarrow$ $24 \gamma(r) x+24 i+6 \notin B \leftrightarrow$ $24 \gamma(r) x+24 i+6 \notin C$.
iii) (A, B, C) is $r, g-g o o d$ for $24 N$.

Proof: Let r, g, A, B, C be as given. For claim i), let $1 \leq i \leq$ $\gamma(r), x \in B^{*}$. Then $4 \gamma(r) x+4 i+1 \in \alpha\left(100 \gamma(r), B^{*} ; 1,100 \gamma(r)\right)$. To see this, note that $\gamma(r), x \geq 1,2 x \leq 4 \gamma(r) x+4 i+1 \leq 100 \gamma(r) x$. Also $4 \gamma(r) x+4 i+1$ is a term $t(x)$ with $\#(t) \leq 100 \gamma(r)$.

By clauses iii), vi) in the definition of $100 \gamma(r), \tau(g, r)-g o o d$ for 6 N , we have

$$
\begin{gathered}
24 \gamma(r) x+24 i+6 \in C \cup \tau(g, r) C . \\
C \cap \tau(g, r) C=\varnothing .
\end{gathered}
$$

By the above and Lemma 5.2.3,

$$
\begin{aligned}
& \left(\exists v_{1}, \ldots, v_{r} \in C\right)\left(v_{1}, \ldots, v_{r}<x \wedge \varphi[i, r]\left(v_{1}, \ldots, v_{r}\right)\right) \\
& 24 \gamma(r) x+24 i+6 \in \tau(g, r) C \leftrightarrow 24 \gamma(r) x+24 i+6 \notin C .
\end{aligned}
$$

For claim ii), let $1 \leq i \leq \gamma(r)$ and $x \in A^{*}$. Then $4 \gamma(r) x+4 i+1$ $\in \alpha\left(100 \gamma(r), A^{*} ; 1,100 \gamma(r)\right)$. By clauses iii),iv),vi) in the definition of $100 \gamma(r), \tau(g, r)-g o o d$ for 6 N , we have

$$
24 \gamma(r) x+24 i+6 \in B \cup \tau(g, r) B
$$

$$
B \cap \tau(g, r) B=\varnothing .
$$

By the above and Lemma 5.2.3,

$$
\begin{gathered}
\left(\exists v_{1}, \ldots, v_{r} \in B\right)\left(v_{1}, \ldots, v_{r}<x \wedge \varphi[i, r]\left(v_{1}, \ldots, v_{r}\right)\right) \\
24 \gamma(r) x+24 i+6 \in \tau(g, r) B \leftrightarrow 24 \gamma(r) x+24 i+6 \notin B .
\end{gathered}
$$

Hence

$$
\begin{aligned}
&\left(\exists v_{1}, \ldots, v_{r} \in C\right)\left(v_{1}, \ldots, v_{r}<x \wedge \varphi[i, r]\left(v_{1}, \ldots, v_{r}\right)\right) \rightarrow \\
& 24 \gamma(r) x+24 i+6 \notin C \rightarrow \\
& 24 \gamma(r) x+24 i+6 \notin B \rightarrow \\
&\left(\exists v_{1}, \ldots, v_{r} \in B\right)\left(v_{1}, \ldots, v_{r}<x \wedge \varphi[i, r]\left(v_{1}, \ldots, v_{r}\right)\right) \rightarrow \\
&\left(\exists v_{1}, \ldots, v_{r} \in C\right)\left(v_{1}, \ldots, v_{r}<x \wedge \varphi[i, r]\left(v_{1}, \ldots, v_{r}\right)\right)
\end{aligned}
$$

and so all of the above \rightarrow are also \leftrightarrow.

For claim iii), by the definition of $100 \gamma(r), \tau(g, r)$-good for 6 N, we have

$$
\begin{gathered}
6 \alpha\left(100 \gamma(r), A^{*} ; 1,100 \gamma(r)\right) \subseteq B \cup \tau(g, r) B \\
6 \alpha\left(100 \gamma(r), B^{*} ; 1,100 \gamma(r)\right) \subseteq C \cup \tau(g, r) C \\
2 \alpha\left(100 \gamma(r), A^{*} ; 1,100 \gamma(r)\right)+1 \subseteq B \\
3 \alpha\left(100 \gamma(r), A^{*} ; 1,100 \gamma(r)\right)+1 \subseteq B \\
2 \alpha\left(100 \gamma(r), B^{*} ; 1,100 \gamma(r)\right)+1 \subseteq C \\
3 \alpha\left(100 \gamma(r), B^{*} ; 1,100 \gamma(r)\right)+1 \subseteq C \\
C \cap \tau(g, r) C=\varnothing \\
A \cap \alpha\left(100 \gamma(r), B^{*} ; 2,100 \gamma(r)\right)=\varnothing \\
\text { for } a l 1 x<y \text { from } A, x \uparrow<y .
\end{gathered}
$$

By Lemma 5.2.3, $g B=\tau(g, r) B \cap 24 N$ and $g C=\tau(g, r) C \cap 24 N$. Hence the conditions

$$
\begin{gathered}
24 \alpha\left(r, A^{*} ; 1, r\right) \subseteq B \cup g B \\
24 \alpha\left(r, B^{*} ; 1, r\right) \subseteq C \cup g C \\
2 \alpha\left(r, A^{*} ; 1, r\right)+1 \subseteq B \\
3 \alpha\left(r, A^{*} ; 1, r\right)+1 \subseteq B \\
2 \alpha\left(r, B^{*} ; 1, r\right)+1 \subseteq C \\
3 \alpha\left(r, B^{*} ; 1, r\right)+1 \subseteq C \\
C \cap g C=\varnothing \\
A \cap \alpha\left(r, B^{*} ; 2, r\right)=\varnothing \\
\text { for } a l l x<y \text { from } A, x \uparrow<y
\end{gathered}
$$

follow immediately. Therefore (A,B,C) is r,g-good for 24 N . QED

We now define r,g-great towers, which feature a special form of indiscernibility for terms. We also define r,gterrific towers, which feature a special form of indiscernibility for quantifier free formulas. We will only use r,g-terrific towers of length 3 .

DEFINITION 5.2.12. Let $n \geq 3, r, a \geq 1$, and $g \in E L G \cap S D \cap$ BAF. We say that $\left(D_{1}, \ldots, D_{n}\right)$ is $r, g-g r e a t$ for $a N$ if and only if
i) $\left(D_{1}, \ldots, D_{n}\right)$ is $r, g-g o o d$ for $a N$;
ii) Let $1 \leq i \leq \beta(2 r), x_{1}, \ldots, x_{2 r} \in D_{1}, y_{1}, \ldots, y_{r} \in \alpha\left(r, D_{2}\right)$, where $\left(x_{1}, \ldots, x_{r}\right),\left(x_{r+1}, \ldots, x_{2 r}\right)$ have the same order type and min, and $Y_{1}, \ldots, y_{r} \leq \min \left(x_{1}, \ldots, x_{r}\right)$. Then $t[i, 2 r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \in D_{3} * \leftrightarrow$ $t[i, 2 r]\left(x_{r+1}, \ldots, x_{2 r}, Y_{1}, \ldots, y_{r}\right) \in D_{3} *$.

DEFINITION 5.2.13. Let $r, a \geq 1$, and $g \in E L G \cap S D \cap B A F$. We say that (A,B,C) is r,g-terrific for aN if and only if
i) ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) is r,g-great for aN ;
ii) A is infinite;
iii) for all $1 \leq i \leq \gamma(r)$,

$$
\begin{gathered}
\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{r} \in \mathrm{~B}\right)\left(\varphi[i, r]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right)\right) \leftrightarrow \\
\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{r} \in \mathrm{C}\right)\left(\varphi[i, r]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right)\right) .
\end{gathered}
$$

We now derive an essentially well known infinitary combinatorial lemma. E.g., see [Sc74].

LEMMA 5.2.5. Let D be an infinite subset of N and $r \geq 1$. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$, and $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{s}}$ be a finite list of subsets of $\mathrm{N}^{2 r}$. There exists an infinite $D^{\prime} \subseteq D$ such that the following holds. Let $1 \leq i \leq s, x_{1}, \ldots, x_{2 r} \in D^{\prime}$, and $y_{1}, \ldots, y_{r} \in N$, where $\left(x_{1}, \ldots, x_{r}\right)$ and $\left(x_{r+1}, \ldots, x_{2 r}\right)$ have the same order type and min, and $y_{1}, \ldots, y_{r} \leq f\left(\min \left(x_{1}, \ldots, x_{r}\right)\right)$. Then $R_{i}\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \leftrightarrow R_{i}\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right)$.

Proof: Let $D, r, f, R_{1}, \ldots, R_{s}$ be as given. Here we write $R_{i}\left(z_{1}, \ldots, z_{2 r}\right)$ for $\left(z_{1}, \ldots, z_{2 r}\right) \in R_{i}$. We will partition the ordered $2 r$ tuples from N into finitely many pieces as follows. Let $x_{1}, \ldots, x_{2 r} \in N$ be given. We partition ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 \mathrm{r}}$)
a. first according to the order type of ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 r}$). b. second according to the set of all $i \in[1, s]$ such that for all $Y_{1}, \ldots, y_{r} \leq f\left(\min \left(x_{1}, \ldots, x_{2 r}\right)\right), R_{i}\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right)$ $\leftrightarrow R_{i}\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right)$.

By Ramsey's theorem, let $D^{\prime} \subseteq$ D be infinite, where any two $\left(x_{1}, \ldots, x_{2 r}\right) \in D^{\prime 2 r}$ with the same order type lie in the same partition.

Let $1 \leq i \leq s$ and μ be the order type of an element of N^{r}. We say that $\left(x_{1}, \ldots, x_{2 r}\right)$ is μ-special if and only if
i) ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}$) and ($\mathrm{x}_{\mathrm{r}+1}, \ldots, \mathrm{x}_{2 \mathrm{r}}$) have order type μ;
ii) $\min \left(x_{1}, \ldots, x_{r}\right)=\min \left(x_{r+1}, \ldots, x_{2 r}\right)$;
iii) if $x_{r+j}>\min \left(x_{1}, \ldots, x_{r}\right)$, then $\left|x_{1}, \ldots, x_{r}\right|<x_{r+j}$.

The μ-special tuples are exactly the $2 r$-tuples of some particular order type depending on μ. Hence for each μ, i, we have

1) for all μ-special $\left(x_{1}, \ldots, x_{2 r}\right) \in D^{\prime 2 r}$, we have: for all $y_{1}, \ldots, y_{2 r} \leq f\left(m i n\left(x_{1}, \ldots, x_{2 r}\right)\right), R_{i}\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \leftrightarrow$ $R_{i}\left(X_{r+1}, \ldots, x_{2 r}, Y_{1}, \ldots, y_{r}\right)$; or
2) for all μ-special $\left(x_{1}, \ldots, x_{2 r}\right) \in D^{\prime 2 r}$, we have: $\neg($ for all $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}} \leq \mathrm{f}\left(\min \left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 \mathrm{r}}\right)\right), \mathrm{R}_{\mathrm{i}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right) \leftrightarrow$ $\left.R_{i}\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right)\right)$.

Suppose 2) holds for $\boldsymbol{\mu}$. Let $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \ldots$ be elements of N^{r} where each $2 r$-tuple $\left(\alpha_{j}, \alpha_{j+1}\right)$ is μ-special. For each $j<k$ from $[1, \infty)$, let $h(j, k)$ be some counterexample (y_{1}, \ldots, y_{r}) given by 2) for ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 \mathrm{r}}$) $=\left(\alpha_{j}, \alpha_{k}\right)$.

Obviously h is bounded by $f\left(m i n\left(\alpha_{1}\right)\right)$. By Ramsey's theorem, h is constant on the $j<k$ drawn from some infinite subset of N. But $h(j, k)=h(j, p)=h(k, p)$ is obviously impossible for $j<k<p$. We conclude that 2) fails. Hence 1) holds for μ.

We have thus shown that for all $\mu, i, 1)$ holds. To complete the argument, let $1 \leq i \leq s, x_{1}, \ldots, x_{2 r} \in D^{\prime}$, and $y_{1}, \ldots, y_{r} \in$ N , where ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}$) and ($\mathrm{x}_{\mathrm{r}+1}, \ldots . \mathrm{x}_{2 r}$) have the same order type and min, and $y_{1}, \ldots, y_{r} \leq f\left(m i n\left(x_{1}, \ldots, x_{r}\right)\right)$. Let the order type of $\left(x_{1}, \ldots, x_{r}\right)$ be μ. Choose $x_{1}{ }^{\prime}, \ldots, x_{r}$ ' $\in D^{\prime}$ such that ($x_{1}, \ldots, x_{r}, x_{1}{ }^{\prime}, \ldots, x_{r}^{\prime}$) and ($x_{r+1}, \ldots, x_{2 r}, x_{1}{ }^{\prime}, \ldots, x_{r}^{\prime}$) are μ-special. By 1),

$$
\begin{gathered}
R_{i}\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \leftrightarrow \\
R_{i}\left(x_{1}, \ldots, x_{r}^{\prime}, y_{1}, \ldots, y_{r}\right) . \\
R_{i}\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right) \leftrightarrow \\
R_{i}\left(x_{1}, \ldots, x_{r}^{\prime}, y_{1}, \ldots, y_{r}\right) .
\end{gathered}
$$

Hence

$$
\begin{aligned}
& R_{i}\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \leftrightarrow \\
& R_{i}\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right)
\end{aligned}
$$

as required. QED
We now prove the existence of r,g-terrific towers.
LEMMA 5.2.6. Let $r \geq 1$ and $g \in E L G \cap S D \cap B A F$, where $r n g(g)$ $\subseteq 24 N$. There exists (A,B,C) which is r,g-terrific for 24 N .

Proof: Let r,g be as given. By Lemma 5.2.2, there exists ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) which is $100 \gamma(r), \tau(\mathrm{g}, \mathrm{r})-\mathrm{good}$ for 6 N , where A is infinite. By Lemma 5.2.4, (A, B, C) is $r, g-g o o d$ for $24 N$, and satisfies clauses i) and ii) in Lemma 5.2.4.

For all $1 \leq i \leq \beta(2 r)$, let $R_{i} \subseteq N^{2 r}$ be given by

$$
\begin{aligned}
R_{i}\left(x_{1}, \ldots, x_{2 r}\right) & \leftrightarrow \\
t[i, 2 r]\left(x_{1}, \ldots, x_{2 r}\right) & \in C^{*} .
\end{aligned}
$$

Apply Lemma 5.2.5 to these R_{i} with $\mathrm{D}=\mathrm{A}$ to obtain $\mathrm{A}^{\prime} \subseteq \mathrm{A}$, A^{\prime} infinite, such that (A^{\prime}, B, C) is r,g-great for 24 N .

To see that (A^{\prime}, B, C) is r,g-terrific for $24 N$, we need only verify clause iii) in that definition. Since (A, B, C) satisfies clause ii) in Lemma 5.2.4, we have that for all 1 $\leq i \leq \gamma(r)$ and $x \in A^{*}$,

$$
\begin{aligned}
& \left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{r} \in \mathrm{~B}\right)\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}<\mathrm{x} \wedge \varphi[i, r]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right)\right) \leftrightarrow \\
& \left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{r} \in \mathrm{C}\right)\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}<\mathrm{x} \wedge \varphi[i, r]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right)\right) .
\end{aligned}
$$

Since A* is infinite, we have

$$
\begin{gathered}
\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}} \in \mathrm{~B}\right)\left(\varphi[i, r]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{r}}\right)\right) \leftrightarrow \\
\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{r} \in \mathrm{C}\right)\left(\varphi[i, r]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right)\right) .
\end{gathered}
$$

QED
We remark that, using Lemma 5.2.5, we can obtain ii) in the definition of $r, g-g r e a t ~ w i t h ~ \alpha\left(r, D_{2}\right) ~ r e p l a c e d ~ b y ~ N . ~ H o w e v e r, ~$ if we formulated r,g-greatness in such a strong form, we would not be able to push down from C to B in Lemma 5.2.8.

LEMMA 5.2.7. For all $n \geq 3$ and $k, p, r \geq 1$, there exists $m \geq 1$ such that the following holds. Let $g \in E L G \cap \operatorname{SD} \cap$ BAF be $k-$ ary, $a \geq 1$, and (D_{1}, \ldots, D_{n}) be r,g-great for aN, $\left|D_{1}\right|=p$. There exists ($D_{1}{ }^{\prime}, \ldots, D_{n}^{\prime \prime}$) which is r,g-great for aN, where $D_{1}{ }^{\prime}=D_{1}$, each $D_{i}^{\prime} \subseteq \subseteq D_{i}$, and $\left|D_{n}{ }^{\prime}\right| \leq m$.

Proof: Let n, k, p, r, a be as given. Let g, D_{1}, \ldots, D_{n} also be as given. We will construct the required $D_{1} \prime, . . ., D_{n}{ }^{\prime}$ by induction on $1 \leq j \leq n$, in such a way that there is an obvious bound on the cardinality of each D_{j+1} ' that depends only on j, k, p, r and not on $a, n, g, D_{1}, \ldots, D_{n}$.

Suppose $D_{1}=D_{1}^{\prime} \subseteq \ldots \subseteq D_{j}^{\prime}$ have been defined, $1 \leq j<n$, such that $(\forall i \in[1, j])\left(D_{i}^{\prime} \subseteq D_{i}\right)$. We now construct $D_{j+1}{ }^{\prime} \subseteq$ $\mathrm{D}_{\mathrm{j}+1}$.

First throw all elements of D_{j}^{\prime} into D_{j+1}, and also min(D_{j+1}) into D_{j+1}. Then for each $x \in a \alpha\left(r, D_{j}{ }^{\prime *} ; 1, r\right)$, throw x into $D_{j+1}{ }^{\prime}$ if $x \in D_{j+1}$; otherwise find a k-tuple y from D_{j+1} such that $g(y)=x$ and throw y_{1}, \ldots, y_{k} into D_{j+1}. Next, throw all elements of $2 \alpha\left(r, D_{j}{ }^{\prime *} ; 1, r\right)+1,3 \alpha\left(r, D_{j}{ }^{\prime *} ; 1, r\right)+1$, into $D_{j+1}{ }^{\prime}$. Note that these elements are in D_{j+1}, because $\left(D_{1}, \ldots, D_{n}\right)$ is $r, g-g o o d$.

Finally, if $j=2$ then let $1 \leq i \leq \beta(2 r), x_{1}, \ldots, x_{r} \in D_{1}$, and $y_{1}, \ldots, y_{r} \in \alpha\left(r, D_{2}^{\prime}\right), y_{1}, \ldots, y_{r} \leq m i n\left(x_{1}, \ldots, x_{r}\right)$. If $t[i, 2 r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \in D_{3}^{*}$, then throw $t[i, 2 r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right)$ in $D_{3}{ }^{\prime}$. Otherwise, take no action.

It is clear that ($\mathrm{D}_{1}^{\prime \prime}, \ldots, \mathrm{D}_{\mathrm{n}}{ }^{\prime}$) is r,g-good for aN. We have to verify clause ii) in the definition of r,g-great for aN.

Let $1 \leq i \leq \beta(2 r), x_{1}, \ldots, x_{r} \in D_{1}, y_{1}, \ldots, y_{r} \in \alpha\left(r, D_{2}^{\prime}\right)$, where $Y_{1}, \ldots, Y_{r} \leq \min \left(x_{1}, \ldots, x_{r}\right)$. We claim that

$$
\begin{aligned}
& t[i, 2 r]\left(x_{1}, \ldots, \ldots x_{r}, Y_{1}, \ldots, y_{r}\right) \in D_{3}{ }^{\prime} * \leftrightarrow \\
& t[i, 2 r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \in D_{3}^{*} .
\end{aligned}
$$

The forward direction is immediate. For the reverse direction, first note that $\min \left(D_{3}\right)=\min \left(D_{3}{ }^{\prime}\right)$ by construction. If the right side holds, then t $[i, 2 r]\left(x_{1}, \ldots, x_{r}, Y_{1}, \ldots, Y_{r}\right)$ has been thrown into $D_{3} \prime$, and since $t[i, 2 r]\left(x_{1}, \ldots, x_{r}, Y_{1}, \ldots, Y_{r}\right)>\min \left(D_{3}\right)=\min \left(D_{3}{ }^{\prime}\right)$, the left side follows.

Now let $1 \leq i \leq \beta(2 r), x_{1}, \ldots, x_{2 r} \in D_{1}, Y_{1}, \ldots, Y_{r} \in \alpha\left(r, D_{2}\right)$, where $\left(x_{1}, \ldots, x_{r}\right)$ and $\left(x_{r+1}, \ldots, x_{2 r}\right)$ have the same order type and min, and $Y_{1}, \ldots, Y_{r} \leq \min \left(x_{1}, \ldots, x_{r}\right)$. We must verify that

$$
\begin{aligned}
& t[i, 2 r]\left(x_{1}, \ldots, x_{r}, Y_{1}, \ldots, Y_{r}\right) \in D_{3}^{\prime \star} \leftrightarrow \\
& t[i, 2 r]\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right) \in D_{3}^{\prime *} .
\end{aligned}
$$

By the above, this is equivalent to

$$
\begin{aligned}
& t[i, 2 r]\left(x_{1}, \ldots, x_{r}, Y_{1}, \ldots, Y_{r}\right) \in D_{3}^{*} \leftrightarrow \\
& t[i, 2 r]\left(x_{r+1}, \ldots, x_{2 r}, Y_{1}, \ldots, Y_{r}\right) \in D_{3} *
\end{aligned}
$$

which follows from the hypothesis on (D_{1}, \ldots, D_{n}) - in particular, from ii) in the definition of r,g-great.

It is clear that we can write m as a specific iterated exponential in n, k, p, r. QED

We show that, at the cost of increasing r to much larger s, we can guarantee that for any s, g-terrific tower (A, B, C), any r,g-great tower contained in C can be shrunk to an r,ggreat tower contained in B.

LEMMA 5.2.8. Let $n \geq 3, k, p, r \geq 1$, and $g \in E L G \cap S D \cap B A F$ be k-ary. There exists $s \geq 1$ such that the following holds. Let (A, B, C) be $s, g-t e r r i f i c$ for $24 N$. Let (D_{1}, \ldots, D_{n}) be r,ggreat for $24 N,\left|D_{1}\right|=p$, and $D_{n} \subseteq C$. Then $\operatorname{some}\left(D_{1}^{\prime \prime}, \ldots, D_{n}^{\prime}\right)$ is r,g-great for $24 N$, where $\left|D_{1}^{\prime}\right|=p$ and $D_{n}^{\prime} \subseteq B$ is finite.

Proof: Let n, k, p, r, g be as given. Let $m \geq 1$ be given by Lemma 5.2.7, with $a=24$, which depends only on n, k, p, r.

Let $s \gg n, k, p, r, m$ and the presentation of g. (Some specific iterated exponential in n, k, p, r, m, and the size of the presentation of g, will suffice). Let (A,B,C) be s,gterrific for 24 N . Let ($\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}$) be r,g-great for $24 \mathrm{~N},\left|D_{1}\right|$ $=\mathrm{p}$, and $\mathrm{D}_{\mathrm{n}} \subseteq \mathrm{C}$.

By Lemma 5.2.7, the following statement is true:
*) there exists (D_{1}, \ldots, D_{n}) which is r,g-great for 24 N , where $\left|D_{1}\right|=p$ and $D_{n}=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq C$.

We claim that *) asserts the existence of $x_{1}, \ldots, x_{m} \in C$ such that a quantifier free formula $\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)$ in L holds. This crucially depends on the fact that $g \in B A F$. The actual formula depends on n, k, p, r, and the function g.

To see this, $\varphi\left(x_{1}, \ldots, x_{m}\right)$ asserts that x_{1}, \ldots, x_{m} can be arranged into sets $D_{1} \subseteq \ldots \subseteq D_{n}=\left\{x_{1}, \ldots, x_{m}\right\}$, where ($\mathrm{D}_{1}, . . ., \mathrm{D}_{\mathrm{n}}$) is $r, g-g r e a t$ for 24 N . We have to put clauses i),ii) in Definition 5.2.12, with a $=24$, in quantifier free form.

Each arrangement of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$ into sets $\mathrm{D}_{1} \subseteq \ldots \subseteq \mathrm{D}_{\mathrm{n}}=$ $\left\{x_{1}, \ldots, x_{m}\right\}$ is given by a double sequence $x_{i j}, 1 \leq i \leq n, 1 \leq$ $j \leq m$, where the $x_{i j}$ are among the variables x_{1}, \ldots, x_{m}. So we disjunct over the finitely many such double sequences of variables.

According to Definition 5.2.12, we assert
i. (\{ $\left.\left.x_{11}, \ldots, x_{1 m}\right\}, \ldots,\left\{x_{n 1}, \ldots, x_{n m}\right\}\right)$ is $r, g-g o o d$ for $24 N$.
ii. Let $1 \leq i \leq \beta[2 r], x_{1}, \ldots, x_{2 r} \in\left\{x_{11}, \ldots, x_{1 m}\right\}, y_{1}, \ldots, y_{r} \in$ $\alpha\left(r,\left\{x_{21}, \ldots, x_{2 m}\right\}\right)$, where $\left(x_{1}, \ldots, x_{r}\right),\left(x_{r+1}, \ldots, x_{2 r}\right)$ have the same order type and min, and $y_{1}, \ldots, y_{r} \leq \min \left(x_{1}, \ldots, x_{r}\right)$. Then

$$
\begin{aligned}
& t[i, 2 r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \in\left\{x_{31}, \ldots, x_{3 m}\right\} \backslash\{0\} \leftrightarrow \\
& t[i, 2 r]\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right) \in\left\{x_{31}, \ldots, x_{3 m}\right\} \backslash\{0\} .
\end{aligned}
$$

It is clear that ii) is given by a quantifier free formula in L.

As for i), it asserts
i'. $\left\{\mathrm{x}_{11}, \ldots, \mathrm{x}_{1 \mathrm{~m}}\right\} \subseteq \ldots \subseteq\left\{\mathrm{x}_{\mathrm{n} 1}, \ldots, \mathrm{x}_{\mathrm{nm}}\right\} \subseteq \mathrm{N} \backslash\{0\}$.
ii'. $x_{1 i}<x_{1 j} \rightarrow x_{1 i} \uparrow<x_{1 j}$.
iii'. For all $1 \leq i \leq n-1,24 \alpha\left(r,\left\{x_{i 1}, \ldots, x_{i m}\right\} \backslash\{0\} ; 1, r\right) \subseteq$ $\left\{x_{i+1}, 1, \ldots, x_{i+1, m}\right\} \cup g\left\{x_{i+1,1}, \ldots, x_{i+1, m}\right\}$.
iv'. For all $1 \leq i \leq n-1,2 \alpha\left(r,\left\{x_{i 1}, \ldots, x_{i m}\right\} \backslash\{0\} ; 1, r\right)+1 \subseteq$ $\left\{x_{i+1}, 1, \ldots, x_{i+1, m}\right\}$;
v'. Same as iv' with 2 replaced by 3.
vi'. $\left\{x_{\mathrm{n} 1}, \ldots, x_{\mathrm{nm}}\right\} \cap \mathrm{g}\left\{\mathrm{x}_{\mathrm{n} 1}, \ldots, \mathrm{x}_{\mathrm{nm}}\right\}=\varnothing$.
vii'. $\left\{\mathrm{x}_{11}, \ldots, \mathrm{x}_{1 \mathrm{~m}}\right\} \cap \alpha\left(\mathrm{r},\left\{\mathrm{x}_{21}, \ldots, \mathrm{x}_{2 \mathrm{~m}}\right\} ; 2, \mathrm{r}\right)=\varnothing$.
It is now clear that i) is also given by a quantifier free formula.

By the choice of s, write $\varphi=\varphi[i, s]$, where $1 \leq i \leq \gamma(s)$.
By Lemma 5.2.7, we have

$$
\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}} \in \mathrm{C}\right)\left(\varphi[\mathrm{i}, \mathrm{~s}]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}\right)\right) .
$$

By clause iii) in the definition of s,g-terrific for 24 N ,

$$
\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}} \in \mathrm{~B}\right)\left(\varphi[\mathrm{i}, \mathrm{~s}]\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}\right)\right) .
$$

Hence
$\left(\exists \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}} \in \mathrm{B}\right)\left(\exists \mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}\right)\left(\left(\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}\right)\right.$ is
r,g-great for $24 \mathrm{~N} \wedge\left|D_{1}\right|=p \wedge D_{n}=\left\{v_{1}, \ldots, v_{m}\right\}$).
I.e., some ($\mathrm{D}_{1}^{\prime}, \ldots . \mathrm{D}_{\mathrm{n}}{ }^{\prime}$) is r,g-great for 24 N , where $\left|\mathrm{D}_{1}^{\prime \prime}\right|=$ p and $\mathrm{D}_{\mathrm{n}}{ }^{\prime} \subseteq \mathrm{B}$ has at most m elements. QED

DEFINITION 5.2.14. Let $\mathrm{s}(\mathrm{n}, \mathrm{k}, \mathrm{p}, \mathrm{r}, \mathrm{g})$ be an s given by Lemma 5.2.8.

LEMMA 5.2.9. Let $n \geq 3, k, p, r \geq 1$, and $g \in E L G \cap S D \cap B A F$ be k-ary. There exists $t \geq 1$ such that the following holds. Let (A, B, C) be t, g-terrific for $24 N$. Then some (D_{1}, \ldots, D_{n}) is r,g-great for $24 N$, where $\left|D_{1}\right|=p$ and $D_{n} \subseteq B$ is finite.

Proof: Let n, k, p, r, g be as given. Let $t=\max \{s(q, k, p, r, g):$ $3 \leq q \leq n)\}$. Let ($A, B, C)$ be t,g-terrific for $24 N$. We prove by induction on $3 \leq q \leq n$ that some ($\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{q}}$) is r,g-great for $24 N$, where $\left|D_{1}\right|=p$ and $D_{n} \subseteq B$ is finite.

For the basis case $q=3$, apply Lemma 5.2.8 to ($\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$), where D_{1} is any subset of A of cardinality p, and $D_{2}=B, D_{3}$ $=C$. Note that $t \geq s(3, k, p, r, g)$.

Let $3 \leq q<n$ and $\left(D_{1}, \ldots, D_{q}\right)$ be r,g-great for $24 N$, where $\left|D_{1}\right|=p$ and $D_{q} \subseteq B$ is finite.

We claim that ($\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{q}}, \mathrm{C}$) is r,g-great for 24 N .
We first verify that ($\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{q}}, \mathrm{C}$) is $\mathrm{r}, \mathrm{g}-\mathrm{good}$ for 24 N . In light of the fact that ($\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{q}}$) is $\mathrm{r}, \mathrm{g}-\mathrm{good}$ for 24 N and q ≥ 3, it suffices to show that

$$
\begin{gathered}
24 \alpha\left(r, D_{q}^{\star} ; 2, r\right) \subseteq C \cup g C \\
2 \alpha\left(r, D_{q}{ }^{\star} ; 2, r\right)+1 \subseteq C \\
3 \alpha\left(r, D_{q}^{\star} ; 2, r\right)+1 \subseteq C \\
C \cap g C=\varnothing .
\end{gathered}
$$

These are immediate since $\mathrm{D}_{\mathrm{q}} \subseteq \mathrm{B}$ and ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) is r, g-good for $24 N$.

Clause ii) in the definition of ($\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{q}}, \mathrm{C}$) is immediate since $q \geq 3$ and (D_{1}, \ldots, D_{q}) is r,g-great for $24 N$.

Now apply Lemma 5.2.8 to ($\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{q}}, \mathrm{C}$) to obtain a sequence (D_{1},, $\mathrm{D}_{\mathrm{q}+1}$ ') that is r,g-great for 24 N , where $\left|\mathrm{D}_{1}\right|=\mathrm{p}$ and $\mathrm{D}_{\mathrm{q}+1} \mathbf{\prime}^{\prime} \subseteq \mathrm{B}$ is finite. Note that $\mathrm{t} \geq \mathrm{s}(\mathrm{q}+1, \mathrm{k}, \mathrm{p}, \mathrm{r}, \mathrm{g})$. QED

LEMMA 5.2.10. Let $n \geq 3, p, r \geq 1$, and $g \in E L G \cap S D \cap B A F$, where $\mathrm{rng}(\mathrm{g}) \subseteq 24 \mathrm{~N}$. There exists $\left(\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}\right)$ which is $\mathrm{r}, \mathrm{g}-$ great for 24 N , where $\left|D_{1}\right|=p$ and D_{n} is finite.

Proof: Let n, p, r, g be as given. Let g be k-ary. Let t be given by Lemma 5.2.9. By Lemma 5.2.6, let (A,B,C) be t,gterrific for 24 N . By Lemma 5.2.9, let ($\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}$) be $\mathrm{r}, \mathrm{g}-$ great for 24 N , where $\left|D_{1}\right|=p$ and D_{n} is finite. QED

LEMMA 5.2.11. Let $r \geq 3$ and $g \in E L G \cap \operatorname{SD} \cap$ BAF, where rng $(g) \subseteq 24 N$. There exists (D_{1}, \ldots, D_{r}) such that
i) $\mathrm{D}_{1} \subseteq \ldots \subseteq \mathrm{D}_{\mathrm{r}} \subseteq \mathrm{N} \backslash\{0\}$;
ii) $\left|D_{1}\right|=r$ and D_{r} is finite;
iii) for all $x<y$ from $D_{1}, x \uparrow<y ;$
$i v) f o r ~ a l l ~ 1 \leq i \leq r-1,24 \alpha\left(r, D_{i}^{*} ; 1, r\right) \subseteq D_{i+1} \cup g D_{i+1} ;$
v) for all $1 \leq i \leq r-1,2 \alpha\left(r, D_{i}^{*} ; 1, r\right)+1,3 \alpha\left(r, D_{i}^{*} ; 1, r\right)+1 \subseteq$ $\mathrm{D}_{\mathrm{i}+1}$;
vi) $D_{r} \cap g D_{r}=\varnothing$;
vii) $D_{1} \cap \alpha\left(r, D_{2}^{*} ; 2, r\right)=\varnothing$;
viii) Let $1 \leq i \leq \beta(2 r), x_{1}, \ldots, x_{2 r} \in D_{1}, y_{1}, \ldots, y_{r} \in \alpha\left(r, D_{2}\right)$, where ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}$) and ($\mathrm{x}_{\mathrm{r}+1}, \ldots, \mathrm{x}_{2 r}$) have the same order type and min, and $y_{1}, \ldots, y_{r} \leq \min \left(x_{1}, \ldots, x_{r}\right)$. Then
$t[i, 2 r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \in D_{3} * \leftrightarrow$
$t[i, 2 r]\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right) \in D_{3}^{*}$.

Proof: Immediate from Lemma 5.2.10 and the definition of r,g-great for $24 N$, setting n, p, r there to be r here. QED

We now eliminate the use of the $D_{i}{ }^{*}$.
LEMMA 5.2.12. Let $r \geq 3$ and $g \in E L G \cap S D \cap B A F$, where rng $(g) \subseteq 48 N$. There exists (D_{1}, \ldots, D_{r}) such that
i) $\mathrm{D}_{1} \subseteq \ldots \subseteq \mathrm{D}_{\mathrm{r}} \subseteq \mathrm{N} \backslash\{0\}$;
ii) $\left|D_{1}\right|=r$ and D_{r} is finite;
iii) for all $x<y$ from $D_{1}, x \uparrow<y$;
$i v) f o r ~ a l l ~ 1 \leq i \leq r-1,48 \alpha\left(r, D_{i} ; 1, r\right) \subseteq D_{i+1} \cup g D_{i+1}$;
v) for all $1 \leq i \leq r-1,2 \alpha\left(r, D_{i} ; 1, r\right)+1,3 \alpha\left(r, D_{i} ; 1, r\right)+1 \subseteq$ Di+1;
vi) $D_{r} \cap g D_{r}=\varnothing$;
vii) $D_{1} \cap \alpha\left(r, D_{2} ; 2, r\right)=\varnothing$;
viii) Let $1 \leq i \leq \beta(2 r), x_{1}, \ldots, x_{2 r} \in D_{1}, y_{1}, \ldots, y_{r} \in \alpha\left(r, D_{2}\right)$, where $\left(x_{1}, \ldots, x_{r}\right)$ and $\left(x_{r+1}, \ldots, x_{2 r}\right)$ have the same order type and min, and $y_{1}, \ldots, y_{r} \leq \min \left(x_{1}, \ldots, x_{r}\right)$. Then
$t[i, 2 r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \in D_{3} \leftrightarrow$
$t[i, 2 r]\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right) \in D_{3}$.
Proof: Let r,g be as given. Let $g: N^{k} \rightarrow 48 N$.
Define $g^{\prime}: N^{k+1} \rightarrow 24 N$ by $g^{\prime}\left(x_{1}, \ldots, x_{k+1}\right)=g\left(x_{1}, \ldots, x_{k}\right)$ if x_{k+1} < $x_{1}, \ldots, x_{k} ; 48\left|x_{1}, \ldots, x_{k+1}\right|+24$ otherwise.

Note that $\mathrm{rng}\left(\mathrm{g}^{\prime}\right) \subseteq 24 \mathrm{~N}$, and $\mathrm{g}^{\prime} \in \operatorname{ELG} \cap \mathrm{SD} \cap$ BAF. Let $D_{1}, \ldots, D_{n} \subseteq N$ be given by Lemma 5.2.11 applied to r+1, g^{\prime}. In particular, $\left|D_{1}\right|=r+1$.

We now verify that $\mathrm{D}_{1} *, . . ., \mathrm{D}_{\mathrm{r}}$ * is as required.
For claim i), since $D_{1} \subseteq \ldots \subseteq D_{r}$, we have min $\left(D_{1}\right) \geq \ldots \geq$ $\min \left(D_{r}\right)$. We claim that $D_{1} * \subseteq \ldots \subseteq D_{r}{ }^{*}$. To see this, let $n \in$ $D_{i}{ }^{*}$. Then $n \in D_{i+1}, n>\min \left(D_{i}\right) \geq \min \left(D_{i+1}\right), n \in D_{i+1} *$.

For claim ii), since $\left|D_{1}\right|=r+1$, we have $\left|D_{1} *\right|=r$ since D_{r} is finite, D_{r}^{*} is finite.

Claim iii) is immediate from iii) of Lemma 5.2.11.
For claim iv), let $1 \leq i \leq r-1, x \in 48 \alpha\left(r, D_{i}^{*} ; 1, r\right)$. Then $x>$ $\min \left(D_{i}\right) \geq \min \left(D_{i+1}\right)$. By Lemma 5.2.11 iv), $x \in D_{i+1} \cup g^{\prime} D_{i+1}$. If $x \in D_{i+1}$ then $x \in D_{i+1}{ }^{*}$. If $x \in g^{\prime} D_{i+1}$ then $x \in g\left(D_{i+1}^{*}\right)$, because x must arise from the first clause in the definition of g^{\prime}.

For claim v), let $1 \leq i \leq r-1, x \in 2 \alpha\left(r, D_{i}^{*} ; 1, r\right)+1 \cup$ $3 \alpha\left(r, D_{i} * ; 1, r\right)+1$. Then $x>\min \left(D_{i}\right) \geq \min \left(D_{i+1}\right)$. By Lemma 5.2.11 v), $x \in D_{i+1}$. Hence $x \in D_{i+1} *$.

For vi), we have $D_{r} \cap g^{\prime} D_{r}=\varnothing$. Since $g\left(D_{r} *\right) \subseteq g^{\prime}\left(D_{r}\right)$, we have $D_{r} * \cap g\left(D_{r} *\right)=\varnothing$.

Claim vii) is the same as vii) of Lemma 5.2.11.
For claim viii), let $1 \leq i \leq \beta(2 r)$. Let $1 \leq i^{\prime} \leq \beta(2 r+2)$ be such that $t\left[i^{\prime}, 2 r+2\right]$ is the result of replacing the variables $v_{r+1}, \ldots, v_{2 r}$ in $t[i, 2 r]$ with the variables $\mathrm{v}_{\mathrm{r}+2}, \ldots, \mathrm{v}_{2 \mathrm{r}+1}$.

Let $x_{1}, \ldots, x_{2 r} \in D_{1} *, y_{1}, \ldots, y_{r} \in \alpha\left(r, D_{2} *\right)$, where (x_{1}, \ldots, x_{r}) and $\left(x_{r+1}, \ldots, x_{2 r}\right)$ have the same order type and min, and $y_{1}, \ldots, y_{r} \leq \min \left(x_{1}, \ldots, x_{r}\right)$. Clearly

$$
\begin{gathered}
t[i, 2 r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right)= \\
t\left[i^{\prime}, 2 r+2\right]\left(x_{1}, \ldots, x_{r}, x_{r}, y_{1}, \ldots, y_{r}, y_{r}\right) . \\
t[i, 2 r]\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right)= \\
t\left[i^{\prime}, 2 r+2\right]\left(x_{r+1}, \ldots, x_{2 r}, x_{2 r}, y_{1}, \ldots, y_{r}, y_{r}\right) .
\end{gathered}
$$

By Lemma 5.2.11 viii),

$$
\begin{aligned}
& t\left[i^{\prime}, 2 r+2\right]\left(x_{1}, \ldots, x_{r}, x_{r}, y_{1}, \ldots, y_{r}, y_{r}\right) \in D_{3} * \leftrightarrow \\
& t\left[i^{\prime}, 2 r+2\right]\left(x_{r+1}, \ldots, x_{2 r}, x_{2 r}, y_{1}, \ldots, y_{r}, y_{r}\right) \in D_{3} * . \\
& t[i, r]\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}\right) \in D_{3}^{*} \leftrightarrow \\
& t[i, r]\left(x_{r+1}, \ldots, x_{2 r}, y_{1}, \ldots, y_{r}\right) \in D_{3}^{*} .
\end{aligned}
$$

QED

