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5.2. From length 3 towers to length n 
towers. 
 
In this section, we obtain a variant of Lemma 5.1.7 (Lemma 
5.2.12) involving length n towers rather than length 3 
towers of infinite sets. However, we only assert that the 
sets in the length n tower have at least r elements, for 
any r ≥ 1. Thus we pay a real cost for lengthening the 
towers.  
 
Because the sets in the tower are finite and not infinite, 
certain indiscernibility properties of the first set in the 
tower must now be stated explicitly as additional 
conditions. See Lemma 5.2.12, iii), viii). These 
indiscernibility properties can of course be obtained from 
the usual infinite Ramsey theorem by taking a subset of the 
infinite A ⊆ N from Lemma 5.1.7 - but then we would only 
have a tower of length 3.   
 
We will apply Lemma 5.1.7 with f arising from term 
assignments. Thus Lemma 5.2.12 uses g and not f.  
 
Recall the definition of the language L (Definition 5.1.8). 
In order to avoid having to write too many parentheses in 
terms and formulas of L, we use the following two standard 
precedence tables. 
 

↑ 
• 

+,- 
 
¬ 
∧,∨ 
→,↔ 

 
DEFINITION 5.2.1. Let t be a term of L. We write #(t) for 
the maximum of: the subscripts of variables in t, and the 
number of occurrences of the symbols  
 

01+-•↑()v1v2,...log 
 
We count log as a single symbol. Note that for all n ≥ 0, 
{t: #(t) ≤ n} is finite.  
 
DEFINITION 5.2.2. Let ϕ be a quantifier free formula in L. 
We write #(ϕ) for the maximum of: the subscripts of 
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variables in ϕ, and the number of occurrences of the 
symbols  
 

01+-•↑()=<¬∧∨→↔v1v2,...,vr log 
 
in ϕ. Note that for all n ≥ 0, {ϕ: #(ϕ) ≤ n} is finite. 
 
DEFINITION 5.2.3. For all r ≥ 1, let β(r) be the number of 
terms t in L with #(t) ≤ r. We fix a doubly indexed sequence 
t[i,r] of terms in L, which is defined if and only if r ≥ 1 
and 1 ≤ i ≤ β(r). For each r ≥ 1, the sequence t[i,r], 1 ≤ i 
≤ β(r), enumerates the terms t with #(t) ≤ r, without 
repetition. 
 
DEFINITION 5.2.4. For all r ≥ 1, let γ(r) be the number of 
quantifier free formulas ϕ in L with #(ϕ) ≤ r. We fix a 
doubly indexed sequence ϕ[i,r] of quantifier free formulas 
in L, which is defined if and only if r ≥ 1 and 1 ≤ i ≤ 
γ(r). For each r ≥ 1, the sequence ϕ[i,r], 1 ≤ i ≤ γ(r), 
enumerates the quantifier free formulas ϕ with #(ϕ) ≤ r, 
without repetition. 
 
We adhere to the convention of displaying all free 
variables (and possibly additional variables). Thus 
t(v1,...,vn) and ϕ(v1,...,vm) respectively indicate that all 
variables in the term t are among the first n variables 
v1,...,vn, and all variables in the quantifier free formula 
ϕ are among the first m variables v1,...,vm.  
 
Note that all terms t[i,r] have variables among v1,...,vr, 
and all formulas ϕ[i,r] have variables among v1,...,vr.  
 
We want to be more specific about the enumerations of terms 
and formulas in Definitions 5.2.3, 5.2.4. 
 
DEFINITION 5.2.5. Let r ≥ 1. The enumeration 
t[1,r],...,t[β(r),r] in Definition 5.2.3 is the enumeration 
of all terms t of L with #(t) ≤ r, ordered first by #(t), 
and second by the lexicographic ordering of strings of 
symbols, where, for specificity, the symbols are ordered by  
 

01+-•↑()v1v2...vr log  
 
DEFINITION 5.2.6. Let r ≥ 1. The enumeration 
ϕ[1,r],...,ϕ[γ(r),r] in Definition 5.2.4 is the enumeration 
of all quantifier free formulas ϕ of L with #(ϕ) ≤ r, 
ordered first by #(ϕ), and second by the lexicographic 
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ordering of strings of symbols, where the symbols are 
ordered by  
 

01+-•↑()=<¬∧∨→↔v1v2...vr log   
 
An important consequence of the way we have enumerated 
terms and formulas is the following.  
 

1 ≤ i ≤ β(r) ∧ 1 ≤ r ≤ r’ → t[i,r] = t[i,r’]. 
1 ≤ i ≤ γ(r) ∧ 1 ≤ r ≤ r’ → ϕ[i,r] = ϕ[i,r’]. 

 
DEFINITION 5.2.7. For E ⊆ N and r ≥ 1, we write α(r,E) for 
the set of values of all terms t[i,r], at assignments f to 
the variables in t, with rng(f) ⊆ E, including t[i,r] that 
are closed.  
 
DEFINITION 5.2.8. For E ⊆ N and integers p,q ≥ 0, we write 
α(r,E;p,q) for the set of all nonnegative integers x such 
that the following holds. There is a term t[i,r] that is 
not closed, and an assignment f to its variables, with 
rng(f) ⊆ E, such that x is the value of t[i,r] under f, and 
x ∈ [pmax(rng(f)),qmax(rng(f))]. We refer to p,q as the 
lower and upper coefficients, respectively. 
 
Note that for E ⊆ N, r ≥ 1, p,q ≥ 0, α(r,E;p,q) ⊆ 
[pmin(E),∞). 
 
Here is a version of Lemma 5.1.7, where the role of f is 
taken up by α. Recall Definition 5.1.12.  
 
LEMMA 5.2.1. Let r ≥ 1 and g ∈ ELG ∩ SD ∩ BAF, rng(g) ⊆ 6N. 
There exist infinite A ⊆ B ⊆ C ⊆ N\{0} such that  
i) 6α(r,A*;1,r) ⊆ B ∪ gB; 
ii) 6α(r,B*;1,r) ⊆ C ∪ gC; 
iii) 2α(r,A*;1,r)+1 ⊆ B; 
iv) 3α(r,A*;1,r)+1 ⊆ B; 
v) 2α(r,B*;1,r)+1 ⊆ C; 
vi) 3α(r,B*;1,r)+1 ⊆ C; 
vii) C ∩ gC = ∅; 
viii) A ∩ α(r,B*;2,r) = ∅. 
 
Proof: Let r,g be as given. We define f ∈ ELG ∩ SD ∩ BAF of 
arity β(r)+12+r as follows. Let x* =  
 

(y1,...,yβ(r),z1,...,z6,w1,...,w6,x1,...,xr) 
∈ Nβ(r)+12+r. 
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Let i,j,k be greatest such that  
 

y1 = ... = yi 
z1 = ... = zj 
w1 = ... = wk 

 
respectively. 
 
Define f(x*) =  
 

jt[i,r](x1,...,xr)+k-1 if  
|x*|+1,2|x*| ≤ jt[i,r](x1,...,xr)+k-1 ≤ r|x*|; 

max(|x*|+1,2|x*|) otherwise. 
 
Clearly f ∈ ELG ∩ SD ∩ BAF. We claim that for any D ⊆ N, 2 
≤ p ≤ 6, and 0 ≤ q ≤ 5,   
 

α(r,D*;2,r) ∪ pα(r,D*;1,r)+q ⊆ fD. 
 
To see this, let u ∈ α(r,D*;2,r), v ∈ pα(r,D*;1,r)+q, and 
write  
 

u = t[i,r](x1,...,xr) 
v = pt[i',r](x1,...,xr)+q 

 
where x1,...,xr ∈ D*, 1 ≤ i,i' ≤ β(r), 2|x1,...,xr| ≤ u ≤ 
r|x1,...,xr|, |x1,...,xr| ≤ v ≤ r|x1,...,xr|, and 
t[i,r],t[i',r] are not closed.  
 
First let y1 = ... = yi = min(D), yi+1 = ... = yβ(r) = 
|x1,...,xr|, z1 = w1 = min(D), z2 = ... = z6 = w2 = ... = w6 = 
|x1,...,xr|. Then f(y1,...,yβ(r),z1,...,z6,w1,...,w6,x1,...,xr) 
= u ∈ fD.   
 
Now let y1 = ... = yi = min(D), yi+1 = ... = yβ(r) = 
|x1,...,xr|, z1 = ... = zp = min(D), zp+1 = ... = z6 = 
|x1,...,xr|, w1 = ... = wq+1 = min(D), wq+2 = ... = w6 = 
|x1,...,xr|.  
 
It is obvious that 
f(y1,...,yβ(r),z1,...,z6,w1,...,w6,x1,...,xr) = v ∈ fD. 
 
Now apply Lemma 5.1.7 to f,g to obtain A,B,C ⊆ N\{0} with 
the properties i)-viii) cited there. 
 
From the demonstrated claim, we have  
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6α(r,A*;1,r) ⊆ fA. 
6α(r,B*;1,r) ⊆ fB. 
2α(r,A*;1,r)+1 ⊆ fA. 
3α(r,A*;1,r)+1 ⊆ fA. 
2α(r,B*;1,r)+1 ⊆ fB. 
3α(r,B*;1,r)+1 ⊆ fB. 
α(r,B*;2,r) ⊆ fB. 

 
We now obtain i)- viii) here immediately from the i)-viii) 
of Lemma 5.1.7. QED 
 
We are now going to define three properties of finite 
length towers of sets, of increasing strength: r,g-good for 
aN, r,g-great for aN, and r,g-terrific for aN. The notion 
of r-good generalizes some properties from Lemma 5.2.1. 
 
DEFINITION 5.2.9. Let n ≥ 3, r,a ≥ 1, and g ∈ ELG ∩ SD ∩ 
BAF. We say that (D1,...,Dn) is r,g-good for aN if and only 
if  
 
i) D1 ⊆ ... ⊆ Dn ⊆ N\{0}; 
ii) for all x < y from D1, x↑ < y; 
iii) for all 1 ≤ i ≤ n-1, aα(r,Di*;1,r) ⊆ Di+1 ∪ gDi+1; 
iv) for all 1 ≤ i ≤ n-1, 2α(r,Di*;1,r)+1 ⊆ Di+1; 
v) for all 1 ≤ i ≤ n-1, 3α(r,Di*;1,r)+1 ⊆ Di+1; 
vi) Dn ∩ gDn = ∅; 
vii) D1 ∩ α(r,D2*;2,r) = ∅. 
 
The following proves the existence of length 3 towers that 
are r,g-good for 6N.   
 
LEMMA 5.2.2. Let r ≥ 1 and g ∈ ELG ∩ SD ∩ BAF, rng(g) ⊆ 6N. 
There exists (A,B,C) which is r,g-good for 6N, where A is 
infinite.  
 
Proof: Let r,g be as given, and let A,B,C ⊆ N\{0} be as 
given by Lemma 5.2.1. Set D1 = A, D2 = B, D3 = C. Obviously 
i),iii)- vii) hold in the definition of r,g-good for 6N. 
However ii) may fail. We can obviously shrink A so that ii) 
holds, keeping A infinite, and retaining i),iii)-vii). QED  
 
We now want to define certain g ∈ ELG ∩ SD ∩ BAF so that 
any r,g-good sequence for N codes up the truth values of 
existential closures of quantifier free formulas ϕ[i,r], 1 ≤ 
i ≤ γ(r), in a convenient uniform way. This introduces a 
kind of quantifier elimination.  
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DEFINITION 5.2.10. Let r ≥ 1 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 24N. We define τ(g,r) ∈ ELG ∩ SD ∩ BAF as follows. 
τ(g,r) has arity γ(r)+k+r+1, where k is the arity of g. Let 
x* = (y1,...,yγ(r),z1,...,zk,x1,...,xr,w) ∈ N

γ(r)+k+r+1. Let i ∈ 
[1,γ(r)] be greatest such that 1 ≤ i ≤ γ(r) and y1 = ... = 
yi. 
 
case 1. |x*| = w ∧ x1,...,xr < w ∧ ϕ[i,r](x1,...,xr). Define 
τ(g,r)(x*) = 24γ(r)w+24i+6. 
 
case 2. |x*| = |z1,...,zk| ∧ x1 = ... = xr = w. Define 
τ(g,r)(x*) = g(z1,...,zk). 
 
case 3. Otherwise. Define τ(g,r)(x*) = 24|x*|+12. 
 
We now establish some useful coding properties of τ(g,r). 
 
LEMMA 5.2.3. τ(g,r) ∈ ELG ∩ SD ∩ BAF. The values arising 
out of the above three cases are mutually disjoint, and lie 
in 6N. Let E ⊆ N. For all w ∈ E and 1 ≤ i ≤ γ(r), 
24γ(r)w+24i+6 ∈ τ(g,r)E ↔ (∃v1,...,vr ∈ E)(v1,...,vr < w ∧ 
ϕ[i,r](v1,...,vr)). gE = τ(g,r)E ∩ 24N. 
 
Proof: Note that in case 1, γ(r),w ≥ 1, and 24w ≤ 
24γ(r)w+24i+6 ≤ 100γ(r)w. Hence  
 

|x*|+1,24|x*| ≤ τ(g,r)(x*) ≤ 100γ(r)|x*|. 
 
In case 2,  
 

|x*| = |z1,...,zk| 
|τ(g,r)(x*)| = |g(z1,...,zk)|. 

 
In case 3, |x*| ≥ 1, and 
 

24|x*| < τ(g,r)(x*) ≤ 36|x*|. 
 
Therefore τ(g,r) ∈ ELG ∩ SD ∩ BAF.  
 
Since rng(g) ⊆ 24N, the values arising out of the three 
cases are mutually disjoint. Also note that the w,i used in 
case 1 can be recovered from any value of τ(g,r) obtained by 
case 1. This is because 1 ≤ i ≤ γ(r) in case 1. 
 
Let E ⊆ N and w ∈ E. First suppose 24γ(r)w+24i+6 ∈ τ(g,r)E. 
Then 24γ(r)w+24i+6 must arise out of case 1, with, say, x* ∈ 
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Eγ(r)+k+r+1. Then the w,i used in case 1 must be this w,i. 
Hence the x1,...,xr used in case 1 must be < w, and 
ϕ[i,r](x1,...,xr).  
 
Conversely, suppose x1,...,xr ∈ E ∩ [0,w) and 
ϕ[i,r](x1,...,xr). Then we can choose y1 = ... = yi = x1 and 
yi+1 = ... = yγ(r) = z1 = ... = zk = w. Then case 1 applies, 
y1,...,yγ(r),z1,...,zk,w ∈ E, and i is greatest  such that y1 
= ... = yi. Hence τ(g,r)(y1,...,yγ(r),z1,...,zk,x1,...,xr,w) = 
24γ(r)w+24i+6.   
 
For the final claim, note that every element of gE arises 
out of case 2, since we can set y1 = ... = yγ(r) = x1 = ... = 
xr = w = z1, taking z1,...,zk to be arbitrary elements of E. 
On the other hand, all elements of τ(g,r)E lying in 24N must 
arise out of case 2, in which case they must lie in gE. QED 
 
DEFINITION 5.2.11. Throughout the book, we will use the 
logical construction 
 

ϕ1 ↔ ... ↔ ϕk 
 
for  
 

(ϕ1 ↔ ϕ2) ∧ (ϕ2 ↔ ϕ3) ∧ ... ∧ (ϕk-1 ↔ ϕk).  
 
LEMMA 5.2.4. Let r ≥ 1, g ∈ ELG ∩ SD ∩ BAF, rng(g) ⊆ 24N, 
and (A,B,C) be 100γ(r),τ(g,r)-good for 6N. Then  
 
i) for all 1 ≤ i ≤ γ(r) and x ∈ B*,  
 

(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔ 
24γ(r)x+24i+6 ∉ C; 

 
ii) for all 1 ≤ i ≤ γ(r) and x ∈ A*,  
 

(∃v1,...,vr ∈ B)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔  
(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔  

24γ(r)x+24i+6 ∉ B ↔  
24γ(r)x+24i+6 ∉ C.  

 
iii) (A,B,C) is r,g-good for 24N.  
 
Proof: Let r,g,A,B,C be as given. For claim i), let 1 ≤ i ≤ 
γ(r), x ∈ B*. Then 4γ(r)x+4i+1 ∈ α(100γ(r),B*;1,100γ(r)). To 
see this, note that γ(r),x ≥ 1, 2x ≤ 4γ(r)x+4i+1 ≤ 100γ(r)x. 
Also 4γ(r)x+4i+1 is a term t(x) with #(t) ≤ 100γ(r). 
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By clauses iii),vi) in the definition of 100γ(r),τ(g,r)-good 
for 6N, we have  
 

24γ(r)x+24i+6 ∈ C ∪ τ(g,r)C. 
C ∩ τ(g,r)C = ∅. 

 
By the above and Lemma 5.2.3,  
 

(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔ 
24γ(r)x+24i+6 ∈ τ(g,r)C ↔ 24γ(r)x+24i+6 ∉ C. 

  
For claim ii), let 1 ≤ i ≤ γ(r) and x ∈ A*. Then 4γ(r)x+4i+1 
∈ α(100γ(r),A*;1,100γ(r)). By clauses iii),iv),vi) in the 
definition of 100γ(r),τ(g,r)-good for 6N, we have  
 

24γ(r)x+24i+6 ∈ B ∪ τ(g,r)B 
B ∩ τ(g,r)B = ∅. 

 
By the above and Lemma 5.2.3,  
 

(∃v1,...,vr ∈ B)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔ 
24γ(r)x+24i+6 ∈ τ(g,r)B ↔ 24γ(r)x+24i+6 ∉ B. 

 
Hence  
 

(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) →  
24γ(r)x+24i+6 ∉ C →  
24γ(r)x+24i+6 ∉ B →  

(∃v1,...,vr ∈ B)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) →  
(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) 

 
and so all of the above → are also ↔.  
 
For claim iii), by the definition of 100γ(r),τ(g,r)-good for 
6N, we have  
 

6α(100γ(r),A*;1,100γ(r)) ⊆ B ∪ τ(g,r)B 
6α(100γ(r),B*;1,100γ(r)) ⊆ C ∪ τ(g,r)C 

2α(100γ(r),A*;1,100γ(r))+1 ⊆ B 
3α(100γ(r),A*;1,100γ(r))+1 ⊆ B 
2α(100γ(r),B*;1,100γ(r))+1 ⊆ C 
3α(100γ(r),B*;1,100γ(r))+1 ⊆ C 

C ∩ τ(g,r)C = ∅ 
A ∩ α(100γ(r),B*;2,100γ(r)) = ∅ 
for all x < y from A, x↑ < y. 
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By Lemma 5.2.3, gB = τ(g,r)B ∩ 24N and gC = τ(g,r)C ∩ 24N. 
Hence the conditions  
 

24α(r,A*;1,r) ⊆ B ∪ gB 
24α(r,B*;1,r) ⊆ C ∪ gC 

2α(r,A*;1,r)+1 ⊆ B 
3α(r,A*;1,r)+1 ⊆ B 
2α(r,B*;1,r)+1 ⊆ C 
3α(r,B*;1,r)+1 ⊆ C 

C ∩ gC = ∅ 
A ∩ α(r,B*;2,r) = ∅ 

for all x < y from A, x↑ < y 
 
follow immediately. Therefore (A,B,C) is r,g-good for 24N. 
QED 
 
We now define r,g-great towers, which feature a special 
form of indiscernibility for terms. We also define r,g-
terrific towers, which feature a special form of 
indiscernibility for quantifier free formulas. We will only 
use r,g-terrific towers of length 3.  
 
DEFINITION 5.2.12. Let n ≥ 3, r,a ≥ 1, and g ∈ ELG ∩ SD ∩ 
BAF. We say that (D1,...,Dn) is r,g-great for aN if and only 
if  
 
i) (D1,...,Dn) is r,g-good for aN; 
ii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr),(xr+1,...,x2r) have the same order type and 
min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3* ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3*. 
 
DEFINITION 5.2.13. Let r,a ≥ 1, and g ∈ ELG ∩ SD ∩ BAF. We 
say that (A,B,C) is r,g-terrific for aN if and only if  
 
i) (A,B,C) is r,g-great for aN; 
ii) A is infinite; 
iii) for all 1 ≤ i ≤ γ(r),   
 

(∃v1,...,vr ∈ B)(ϕ[i,r](v1,...,vr)) ↔ 
(∃v1,...,vr ∈ C)(ϕ[i,r](v1,...,vr)). 

 
We now derive an essentially well known infinitary 
combinatorial lemma. E.g., see [Sc74].  
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LEMMA 5.2.5. Let D be an infinite subset of N and r ≥ 1. Let 
f:N → N, and R1,...,Rs be a finite list of subsets of N2r. 
There exists an infinite D’ ⊆ D such that the following 
holds. Let 1 ≤ i ≤ s, x1,...,x2r ∈ D’, and y1,...,yr ∈ N, 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ f(min(x1,...,xr)). Then 
Ri(x1,...,xr,y1,...,yr) ↔ Ri(xr+1,...,x2r,y1,...,yr). 
 
Proof: Let D,r,f,R1,...,Rs be as given. Here we write 
Ri(z1,...,z2r) for (z1,...,z2r) ∈ Ri. We will partition the 
ordered 2r tuples from N into finitely many pieces as 
follows. Let x1,...,x2r ∈ N be given. We partition 
(x1,...,x2r)  
 
a. first according to the order type of (x1,...,x2r). 
b. second according to the set of all i ∈ [1,s] such that 
for all y1,..,yr ≤ f(min(x1,...,x2r)), Ri(x1,...,xr,y1,...,yr) 
↔ Ri(xr+1,...,x2r,y1,...,yr).  
 
By Ramsey’s theorem, let D’ ⊆ D be infinite, where any two 
(x1,...,x2r) ∈ D’2r with the same order type lie in the same 
partition.  
 
Let 1 ≤ i ≤ s and µ be the order type of an element of Nr. 
We say that (x1,...,x2r) is µ-special if and only if  
 
i) (x1,...,xr) and (xr+1,...,x2r) have order type µ; 
ii) min(x1,...,xr) = min(xr+1,...,x2r); 
iii) if xr+j > min(x1,...,xr), then |x1,...,xr| < xr+j.  
 
The µ-special tuples are exactly the 2r-tuples of some 
particular order type depending on µ. Hence for each µ,i, we 
have  
 
1) for all µ-special (x1,...,x2r) ∈ D’2r, we have: for all 
y1,...,y2r ≤ f(min(x1,...,x2r)), Ri(x1,...,xr,y1,...,yr) ↔ 
Ri(xr+1,...,x2r,y1,...,yr); or  
 
2) for all µ-special (x1,...,x2r) ∈ D’2r, we have: ¬(for all 
y1,...,yr ≤ f(min(x1,...,x2r)), Ri(x1,...,xr,y1,...,yr) ↔ 
Ri(xr+1,...,x2r,y1,...,yr)). 
 
Suppose 2) holds for µ. Let α1,α2,... be elements of Nr 
where each 2r-tuple (αj,αj+1) is µ-special. For each j < k 
from [1,∞), let h(j,k) be some counterexample (y1,...,yr) 
given by 2) for (x1,...,x2r) = (αj,αk).  
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Obviously h is bounded by f(min(α1)). By Ramsey’s theorem, h 
is constant on the j < k drawn from some infinite subset of 
N. But h(j,k) = h(j,p) = h(k,p) is obviously impossible for 
j < k < p. We conclude that 2) fails. Hence 1) holds for µ. 
 
We have thus shown that for all µ,i, 1) holds. To complete 
the argument, let 1 ≤ i ≤ s, x1,...,x2r ∈ D’, and y1,...,yr ∈ 
N, where (x1,...,xr) and (xr+1,...,x2r) have the same order 
type and min, and y1,...,yr ≤ f(min(x1,...,xr)). Let the 
order type of (x1,...,xr) be µ. Choose x1’,...,xr’ ∈ D' such 
that (x1,...,xr,x1’,...,xr’) and (xr+1,...,x2r,x1’,...,xr’)  
are µ-special. By 1),  
 

Ri(x1,...,xr,y1,...,yr) ↔  
Ri(x1’,...,xr’,y1,...,yr). 
Ri(xr+1,...,x2r,y1,...,yr) ↔  
Ri(x1’,...,xr’,y1,...,yr). 

 
Hence  
 

Ri(x1,...,xr,y1,...,yr) ↔  
Ri(xr+1,...,x2r,y1,...,yr) 

 
as required. QED 
 
We now prove the existence of r,g-terrific towers. 
 
LEMMA 5.2.6. Let r ≥ 1 and g ∈ ELG ∩ SD ∩ BAF, where rng(g) 
⊆ 24N. There exists (A,B,C) which is r,g-terrific for 24N. 
 
Proof: Let r,g be as given. By Lemma 5.2.2, there exists 
(A,B,C) which is 100γ(r),τ(g,r)-good for 6N, where A is 
infinite. By Lemma 5.2.4, (A,B,C) is r,g-good for 24N, and 
satisfies clauses i) and ii) in Lemma 5.2.4.  
 
For all 1 ≤ i ≤ β(2r), let Ri ⊆ N2r be given by  
 

Ri(x1,...,x2r) ↔  
t[i,2r](x1,...,x2r) ∈ C*. 

 
Apply Lemma 5.2.5 to these Ri with D = A to obtain A’ ⊆ A, 
A’ infinite, such that (A’,B,C) is r,g-great for 24N. 
 
To see that (A’,B,C) is r,g-terrific for 24N, we need only 
verify clause iii) in that definition. Since (A,B,C) 
satisfies clause ii) in Lemma 5.2.4, we have that for all 1 
≤ i ≤ γ(r) and x ∈ A*,  
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(∃v1,...,vr ∈ B)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)) ↔ 
(∃v1,...,vr ∈ C)(v1,...,vr < x ∧ ϕ[i,r](v1,...,vr)). 

 
Since A* is infinite, we have  
 

(∃v1,...,vr ∈ B)(ϕ[i,r](v1,...,vr)) ↔ 
(∃v1,...,vr ∈ C)(ϕ[i,r](v1,...,vr)). 

 
QED 
 
We remark that, using Lemma 5.2.5, we can obtain ii) in the 
definition of r,g-great with α(r,D2) replaced by N. However, 
if we formulated r,g-greatness in such a strong form, we 
would not be able to push down from C to B in Lemma 5.2.8.  
  
LEMMA 5.2.7. For all n ≥ 3 and k,p,r ≥ 1, there exists m ≥ 1 
such that the following holds. Let g ∈ ELG ∩ SD ∩ BAF be k-
ary, a ≥ 1, and (D1,...,Dn) be r,g-great for aN, |D1| = p. 
There exists (D1’,...,Dn’) which is r,g-great for aN, where 
D1’ = D1, each Di’ ⊆ Di, and |Dn’| ≤ m. 
 
Proof: Let n,k,p,r,a be as given. Let g,D1,...,Dn also be as 
given. We will construct the required D1’,...,Dn’ by 
induction on 1 ≤ j ≤ n, in such a way that there is an 
obvious bound on the cardinality of each Dj+1’ that depends 
only on j,k,p,r and not on a,n,g,D1,...,Dn.   
 
Suppose D1 = D1’ ⊆ ... ⊆ Dj’ have been defined, 1 ≤ j < n, 
such that (∀i ∈ [1,j])(Di’ ⊆ Di). We now construct Dj+1’ ⊆ 
Dj+1.  
 
First throw all elements of Dj’ into Dj+1’, and also min(Dj+1) 
into Dj+1’. Then for each x ∈ aα(r,Dj’*;1,r), throw x into 
Dj+1’ if x ∈ Dj+1; otherwise find a k-tuple y from Dj+1 such 
that g(y) = x and throw y1,..., yk into Dj+1’. Next, throw 
all elements of 2α(r,Dj’*;1,r)+1, 3α(r,Dj’*;1,r)+1, into 
Dj+1’. Note that these elements are in Dj+1, because 
(D1,...,Dn) is r,g-good. 
 
Finally, if j = 2 then let 1 ≤ i ≤ β(2r), x1,...,xr ∈ D1, and 
y1,...,yr ∈ α(r,D2’), y1,...,yr ≤ min(x1,...,xr). If 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3*, then throw 
t[i,2r](x1,...,xr,y1,...,yr) in D3’. Otherwise, take no 
action.  
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It is clear that (D1’,...,Dn’) is r,g-good for aN. We have 
to verify clause ii) in the definition of r,g-great for aN.  
 
Let 1 ≤ i ≤ β(2r), x1,...,xr ∈ D1, y1,...,yr ∈ α(r,D2’), 
where y1,...,yr ≤ min(x1,...,xr). We claim that  
 

t[i,2r](x1,...,xr,y1,...,yr) ∈ D3’* ↔  
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3*. 

 
The forward direction is immediate. For the reverse 
direction, first note that min(D3) = min(D3’) by 
construction. If the right side holds, then 
t[i,2r](x1,...,xr,y1,...,yr) has been thrown into D3’, and 
since t[i,2r](x1,...,xr,y1,...,yr) > min(D3) = min(D3’), the 
left side follows. 
 
Now let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2’), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). We must verify that  
 

t[i,2r](x1,...,xr,y1,...,yr) ∈ D3’* ↔  
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3’*. 

 
By the above, this is equivalent to  
 

t[i,2r](x1,...,xr,y1,...,yr) ∈ D3* ↔  
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3* 

 
which follows from the hypothesis on (D1,...,Dn) - in 
particular, from ii) in the definition of r,g-great.  
 
It is clear that we can write m as a specific iterated 
exponential in n,k,p,r. QED 
 
We show that, at the cost of increasing r to much larger s, 
we can guarantee that for any s,g-terrific tower (A,B,C), 
any r,g-great tower contained in C can be shrunk to an r,g-
great tower contained in B. 
 
LEMMA 5.2.8. Let n ≥ 3, k,p,r ≥ 1, and g ∈ ELG ∩ SD ∩ BAF 
be k-ary. There exists s ≥ 1 such that the following holds. 
Let (A,B,C) be s,g-terrific for 24N. Let (D1,...,Dn) be r,g-
great for 24N, |D1| = p, and Dn ⊆ C. Then some (D1’,...,Dn’) 
is r,g-great for 24N, where |D1’| = p and Dn’ ⊆ B is finite. 
 
Proof: Let n,k,p,r,g be as given. Let m ≥ 1 be given by 
Lemma 5.2.7, with a = 24, which depends only on n,k,p,r. 
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Let s >> n,k,p,r,m and the presentation of g. (Some 
specific iterated exponential in n,k,p,r,m, and the size of 
the presentation of g, will suffice). Let (A,B,C) be s,g-
terrific for 24N. Let (D1,...,Dn) be r,g-great for 24N, |D1| 
= p, and Dn ⊆ C.  
 
By Lemma 5.2.7, the following statement is true:  
 
*) there exists (D1,...,Dn) which is r,g-great for 24N, 
where |D1| = p and Dn = {x1,...,xm} ⊆ C. 
 
We claim that *) asserts the existence of x1,...,xm ∈ C such 
that a quantifier free formula ϕ(x1,...,xm) in L holds. This 
crucially depends on the fact that g ∈ BAF. The actual 
formula depends on n,k,p,r, and the function g.  
 
To see this, ϕ(x1,...,xm) asserts that x1,...,xm can be 
arranged into sets D1 ⊆ ... ⊆ Dn = {x1,...,xm}, where 
(D1,...,Dn) is r,g-great for 24N. We have to put clauses 
i),ii) in Definition 5.2.12, with a = 24, in quantifier 
free form. 
 
Each arrangement of x1,...,xm into sets D1 ⊆ ... ⊆ Dn = 
{x1,...,xm} is given by a double sequence xij, 1 ≤ i ≤ n, 1 ≤ 
j ≤ m, where the xij are among the variables x1,...,xm. So we 
disjunct over the finitely many such double sequences of 
variables. 
 
According to Definition 5.2.12, we assert  
 
i. ({x11,...,x1m},...,{xn1,...,xnm}) is r,g-good for 24N. 
ii. Let 1 ≤ i ≤ β[2r], x1,...,x2r ∈ {x11,...,x1m}, y1,...,yr ∈ 
α(r,{x21,...,x2m}), where (x1,...,xr), (xr+1,...,x2r) have the 
same order type and min, and y1,...,yr ≤ min(x1,...,xr). Then  
 

t[i,2r](x1,...,xr,y1,...,yr) ∈ {x31,...,x3m}\{0} ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ {x31,...,x3m}\{0}. 

 
It is clear that ii) is given by a quantifier free formula 
in L.  
 
As for i), it asserts  
 
i'. {x11,...,x1m} ⊆ ... ⊆ {xn1,...,xnm} ⊆ N\{0}. 
ii'. x1i < x1j → x1i↑ < x1j. 
iii'. For all 1 ≤ i ≤ n-1, 24α(r,{xi1,...,xim}\{0};1,r) ⊆ 
{xi+1,1,...,xi+1,m} ∪ g{xi+1,1,...,xi+1,m}. 
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iv'. For all 1 ≤ i ≤ n-1, 2α(r,{xi1,...,xim}\{0};1,r)+1 ⊆ 
{xi+1,1,...,xi+1,m}; 
v'. Same as iv' with 2 replaced by 3. 
vi'. {xn1,...,xnm} ∩ g{xn1,...,xnm} = ∅. 
vii'. {x11,...,x1m} ∩ α(r,{x21,...,x2m};2,r) = ∅. 
 
It is now clear that i) is also given by a quantifier free 
formula.  
 
By the choice of s, write ϕ = ϕ[i,s], where 1 ≤ i ≤ γ(s).   
 
By Lemma 5.2.7, we have  
 

(∃v1,...,vm ∈ C)(ϕ[i,s](v1,...,vm)). 
 
By clause iii) in the definition of s,g-terrific for 24N,  
 

(∃v1,...,vm ∈ B)(ϕ[i,s](v1,...,vm)). 
 
Hence  
 

(∃v1,...,vm ∈ B)(∃D1,...,Dn)((D1,...,Dn) is  
r,g-great for 24N ∧ |D1| = p ∧ Dn = {v1,...,vm}). 

 
I.e., some (D1’,...,Dn’) is r,g-great for 24N, where |D1’| = 
p and Dn’ ⊆ B has at most m elements. QED 
 
DEFINITION 5.2.14. Let s(n,k,p,r,g) be an s given by Lemma 
5.2.8. 
 
LEMMA 5.2.9. Let n ≥ 3, k,p,r ≥ 1, and g ∈ ELG ∩ SD ∩ BAF 
be k-ary. There exists t ≥ 1 such that the following holds. 
Let (A,B,C) be t,g-terrific for 24N. Then some (D1,...,Dn) 
is r,g-great for 24N, where |D1| = p and Dn ⊆ B is finite.  
 
Proof: Let n,k,p,r,g be as given. Let t = max{s(q,k,p,r,g): 
3 ≤ q ≤ n)}. Let (A,B,C) be t,g-terrific for 24N. We prove 
by induction on 3 ≤ q ≤ n that some (D1,...,Dq) is r,g-great 
for 24N, where |D1| = p and Dn ⊆ B is finite.  
 
For the basis case q = 3, apply Lemma 5.2.8 to (D1,D2,D3), 
where D1 is any subset of A of cardinality p, and D2 = B, D3 
= C. Note that t ≥ s(3,k,p,r,g). 
 
Let 3 ≤ q < n and (D1,...,Dq) be r,g-great for 24N, where 
|D1| = p and Dq ⊆ B is finite.  
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We claim that (D1,...,Dq,C) is r,g-great for 24N.  
 
We first verify that (D1,...,Dq,C) is r,g-good for 24N. In 
light of the fact that (D1,...,Dq) is r,g-good for 24N and q 
≥ 3, it suffices to show that   
 

24α(r,Dq*;2,r) ⊆ C ∪ gC 
2α(r,Dq*;2,r)+1 ⊆ C 
3α(r,Dq*;2,r)+1 ⊆ C 

C ∩ gC = ∅. 
 
These are immediate since Dq ⊆ B and (A,B,C) is r,g-good for 
24N. 
 
Clause ii) in the definition of (D1,...,Dq,C) is immediate 
since q ≥ 3 and (D1,...,Dq) is r,g-great for 24N.  
 
Now apply Lemma 5.2.8 to (D1,...,Dq,C)  to obtain a sequence  
(D1’,...,Dq+1’) that is r,g-great for 24N, where |D1| = p and  
Dq+1’ ⊆ B is finite. Note that t ≥ s(q+1,k,p,r,g). QED 
 
LEMMA 5.2.10. Let n ≥ 3, p,r ≥ 1, and g ∈ ELG ∩ SD ∩ BAF, 
where rng(g) ⊆ 24N. There exists (D1,...,Dn) which is r,g-
great for 24N, where |D1| = p and Dn is finite. 
 
Proof: Let n,p,r,g be as given. Let g be k-ary. Let t be 
given by Lemma 5.2.9. By Lemma 5.2.6, let (A,B,C) be t,g-
terrific for 24N. By Lemma 5.2.9, let (D1,...,Dn) be r,g-
great for 24N, where |D1| = p and Dn is finite. QED 
 
LEMMA 5.2.11. Let r ≥ 3 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 24N. There exists (D1,...,Dr) such that  
i) D1 ⊆ ... ⊆ Dr ⊆ N\{0}; 
ii) |D1| = r and Dr is finite; 
iii) for all x < y from D1, x↑ < y; 
iv) for all 1 ≤ i ≤ r-1, 24α(r,Di*;1,r) ⊆ Di+1 ∪ gDi+1; 
v) for all 1 ≤ i ≤ r-1, 2α(r,Di*;1,r)+1, 3α(r,Di*;1,r)+1 ⊆ 
Di+1; 
vi) Dr ∩ gDr = ∅; 
vii) D1 ∩ α(r,D2*;2,r) = ∅; 
viii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3* ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3*. 
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Proof: Immediate from Lemma 5.2.10 and the definition of 
r,g-great for 24N, setting n,p,r there to be r here. QED 
 
We now eliminate the use of the Di*.  
 
LEMMA 5.2.12. Let r ≥ 3 and g ∈ ELG ∩ SD ∩ BAF, where 
rng(g) ⊆ 48N. There exists (D1,...,Dr) such that  
i) D1 ⊆ ... ⊆ Dr ⊆ N\{0}; 
ii) |D1| = r and Dr is finite; 
iii) for all x < y from D1, x↑ < y; 
iv) for all 1 ≤ i ≤ r-1, 48α(r,Di;1,r) ⊆ Di+1 ∪ gDi+1; 
v) for all 1 ≤ i ≤ r-1, 2α(r,Di;1,r)+1, 3α(r,Di;1,r)+1 ⊆ 
Di+1; 
vi) Dr ∩ gDr = ∅; 
vii) D1 ∩ α(r,D2;2,r) = ∅; 
viii) Let 1 ≤ i ≤ β(2r), x1,...,x2r ∈ D1, y1,...,yr ∈ α(r,D2), 
where (x1,...,xr) and (xr+1,...,x2r) have the same order type 
and min, and y1,...,yr ≤ min(x1,...,xr). Then 
t[i,2r](x1,...,xr,y1,...,yr) ∈ D3 ↔ 
t[i,2r](xr+1,...,x2r,y1,...,yr) ∈ D3. 
 
Proof: Let r,g be as given. Let g:Nk → 48N.  
 
Define g’:Nk+1 → 24N by g’(x1,...,xk+1) = g(x1,...,xk) if xk+1 
< x1,...,xk; 48|x1,...,xk+1|+24 otherwise.  
 
Note that rng(g’) ⊆ 24N, and g’ ∈ ELG ∩ SD ∩ BAF. Let 
D1,...,Dn ⊆ N be given by Lemma 5.2.11 applied to r+1,g’. In 
particular, |D1| = r+1. 
 
We now verify that D1*,...,Dr* is as required.  
 
For claim i), since D1 ⊆ ... ⊆ Dr, we have min(D1) ≥ ... ≥ 
min(Dr). We claim that D1* ⊆ ... ⊆ Dr*. To see this, let n ∈ 
Di*. Then n ∈ Di+1, n > min(Di) ≥ min(Di+1), n ∈ Di+1*. 
 
For claim ii), since |D1| = r+1, we have |D1*| = r. since Dr 
is finite, Dr* is finite. 
 
Claim iii) is immediate from iii) of Lemma 5.2.11. 
 
For claim iv), let 1 ≤ i ≤ r-1, x ∈ 48α(r,Di*;1,r). Then x > 
min(Di) ≥ min(Di+1). By Lemma 5.2.11 iv), x ∈ Di+1 ∪ g’Di+1. 
If x ∈ Di+1 then x ∈ Di+1*. If x ∈ g’Di+1 then x ∈ g(Di+1*), 
because x must arise from the first clause in the 
definition of g’.  
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For claim v), let 1 ≤ i ≤ r-1, x ∈ 2α(r,Di*;1,r)+1 ∪ 
3α(r,Di*;1,r)+1. Then x > min(Di) ≥ min(Di+1). By Lemma 
5.2.11 v), x ∈ Di+1. Hence x ∈ Di+1*.  
 
For vi), we have Dr ∩ g’Dr = ∅. Since g(Dr*) ⊆ g’(Dr), we 
have Dr* ∩ g(Dr*) = ∅. 
 
Claim vii) is the same as vii) of Lemma 5.2.11. 
 
For claim viii), let 1 ≤ i ≤ β(2r). Let 1 ≤ i’ ≤ β(2r+2) be 
such that t[i’,2r+2] is the result of replacing the 
variables vr+1,...,v2r in t[i,2r] with the variables 
vr+2,...,v2r+1.  
 
Let x1,...,x2r ∈ D1*, y1,...,yr ∈ α(r,D2*), where (x1,...,xr) 
and (xr+1,...,x2r) have the same order type and min, and 
y1,...,yr ≤ min(x1,...,xr). Clearly 
 

t[i,2r](x1,...,xr,y1,...,yr) = 
t[i’,2r+2](x1,...,xr,xr,y1,...,yr,yr). 

 
t[i,2r](xr+1,...,x2r,y1,...,yr) = 

t[i’,2r+2](xr+1,...,x2r,x2r,y1,...,yr,yr). 
 
By Lemma 5.2.11 viii),  
 

t[i’,2r+2](x1,...,xr,xr,y1,...,yr,yr) ∈ D3* ↔ 
t[i’,2r+2](xr+1,...,x2r,x2r,y1,...,yr,yr) ∈ D3*. 

 
t[i,r](x1,...,xr,y1,...,yr) ∈ D3* ↔ 
t[i,r](xr+1,...,x2r,y1,...,yr) ∈ D3*. 

 
QED 


