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CHAPTER 5 
INDEPENDENCE OF EXOTIC CASE 
 
5.1. Proposition C and Length 3 Towers. 
5.2. From Length 3 Towers to Length n Towers. 
5.3. Countable Nonstandard Models with Limited 
Indiscernibles. 
5.4. Limited Formulas, Limited Indiscernibles, x-
definability, Normal Form. 
5.5. Comprehension, Indiscernibles. 
5.6. Π0

1 Correct Internal Arithmetic, Simplification. 
5.7. Transfinite Induction, Comprehension, Indiscernibles, 
Infinity, Π0

1 Correctness.  
5.8. ZFC + V = L, Indiscernibles, and Π0

1 Correct 
Arithmetic. 
5.9. ZFC + V = L + {(∃κ)(κ is strongly k-Mahlo)}k + 
TR(Π0

1,L), and 1-Con(SMAH). 
 
5.1. Proposition C and length 3 towers. 
 
In sections 5.1 – 5.9 we show that Proposition A implies 
the 1-consistency of SMAH (ZFC with strongly Mahlo 
cardinals of every specific finite order). The derivation 
is obviously conducted in ZFC. With some detailed 
examination, we see that this derivation can be carried out 
in the system ACA’ used in Chapter 4. For a detailed 
discussion of RCA0 and other subsystems of second order 
arithmetic, see [Si99]. 
 
We actually show that the specialization of Proposition A 
to rather concrete functions implies the 1-consistency of 
SMAH.  
 
We use the following very basic functions on the set of all 
nonnegative integers N. 
 
DEFINITION 5.1.1. We define +,-,•,↑,log as follows. 
1. Addition. x+y is the usual addition. 
2. Subtraction. Since we are in N, x-y is defined by the 
usual x-y if x ≥ y; 0 otherwise. 
3. Multiplication. x•y is the usual multiplication. 
4. Base 2 exponentiation. x↑ is the usual base 2 
exponentiation. 
5. Base 2 logarithm. Since we are in N, log(x) is the floor 
of the usual base 2 logarithm, with log(0) = 0. 
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DEFINITION 5.1.2. TM(0,1,+,-,•,↑,log) is the set of all 
terms built up from 0,1,+,-,•,↑,log, and variables v1,v2,... 
.  
 
DEFINITION 5.1.3. Each t ∈ TM(0,1,+,-,•,↑,log) gives rise 
to infinitely many functions, one of each arity that is at 
least as large as all subscripts of variables appearing in 
t, as follows. Let the variables of t be among v1,...,vk, k 
≥ 1. Then we associate the function f:Nk → N given by  
 

f(v1,...,vk) = t(v1,...,vk) 
 
where t is interpreted according to Definition 5.1.1.  
 
DEFINITION 5.1.4. BAF (basic functions) is the set of all 
functions given by terms in 0,1,+,-,•,↑,log, according to 
Definition 5.1.3. 
 
It is very convenient to extend TM(0,1,+,-,•,↑,log) with 
definition by cases, to get an alternative description of 
BAF.  
 
DEFINITION 5.1.5. ETM(0,1,+,-,•,↑,log) is the set of 
“extended terms” of the following form:  

t1 if ϕ1; 
t2 if ϕ2 ∧ ¬ϕ1; 

... 
tn if ϕn ∧ ¬ϕ1 ∧ ... ∧ ¬ϕn-1; 

tn+1 if ¬ϕ1 ∧ ... ∧ ¬ϕn. 
 
where n ≥ 1, each ti ∈ TM(0,1,+,-,•,↑,log), and each ϕi is a 
propositional combination of atomic formulas of the forms s 
< t, s = t, where s,t ∈ TM(0,1,+,-,•,↑,log).  
 
DEFINITION 5.1.6. As in Definition 5.1.3, each t ∈ 
ETM(0,1,+,-,•,↑,log) gives rise to infinitely many 
functions, one of each arity at least as large as all 
subscripts of variables appearing in t.  
 
DEFINITION 5.1.7. EBAF (extended basic functions) is the 
set of all functions arising in this manner from 
ETM(0,1,+,-,•,↑,log).  
 
We now show that EBAF = BAF.  
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DEFINITION 5.1.8. We use L for the language in first order 
predicate calculus with equality based on the nonlogical 
symbols <,0,1,+,-,•,↑,log. 
 
Thus TM(0,1,+,-,•,↑,log) is the set of all terms in L. Also 
the formulas ϕi used in the extended terms above are exactly 
the quantifier free formulas in L.   
 
LEMMA 5.1.1. BAF ⊆ EBAF.  
 
Proof: Let t ∈ TM(0,1,+,-,•,↑,log), whose variables are 
among v1,...,vk, k ≥ 1. The function f(v1,...,vk) = 
t(v1,...,vk) is also defined by 
 

t if v1 = v1; 
t if ¬v1 = v1. 

 
which places f in EBAF. QED 
 
LEMMA 5.1.2. The following functions lie in BAF. 
i. neg(x) = 1 if x = 0; 0 otherwise. 
ii. α(x) = 1 if x ≥ 1; 0 otherwise.  
iii. conj(x,y) = 1 if x ≥ 1 ∧ y ≥ 1; 0 otherwise. 
iv. disj(x,y) = 1 if x ≥ 1 ∨ y ≥ 1; 0 otherwise. 
v. les(x,y) = 1 if x < y; 0 otherwise.  
vi. eq(x,y) = 1 if x = y; 0 otherwise.  
 
Proof: Note that  
 

neg(x) = 1-x. 
α(x) = 1-(1-x). 

conj(x,y) = α(x)•α(y). 
disj(x,y) = neg(conj(neg(x),neg(y)). 

les(x,y) = α(y-x). 
eq(x,y) = 1-((x-y)+(y-x)). 

 
QED 
 
LEMMA 5.1.3. Let ϕ be a quantifier free formula in L whose 
variables are among v1,...,vk, k ≥ 1. Then the function 
fϕ(x1,...,xk) = 1 if ϕ(x1,...,xk); 0 otherwise, lies in BAF. 
 
Proof: Fix k ≥ 1. We can assume that ϕ uses only the 
connectives ¬,∧. We prove this by induction on ϕ obeying 
the hypotheses.  
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case 1. ϕ is s = t. Then fϕ(v1,...,vk) = 
eq(s(v1,...,vk),t(v1,...,vk)). 
case 2. ϕ is s < t. Then fϕ(v1,...,vk) = 
les(s(v1,...,vk),t(v1,...,vk)). 
case 3. ϕ is ¬ψ. Then fϕ(v1,...,vk) = neg(fψ(v1,...,vk)). 
case 4. ϕ is ψ ∧ ρ. Then fϕ(v1,...,vk) = 
conj(fψ(v1,...,vk),fρ(v1,...,vk)). 
 
By Lemmas 5.1.1, 5.1.2, and the induction hypothesis, in 
each case the function constructed lies in BAF. QED 
 
THEOREM 5.1.4. EBAF = BAF. 
 
Proof: By Lemma 5.1.1, it suffices to prove EBAF ⊆ BAF. Now 
let f:Nk → N be the function in EBAF given by f(v1,...,vk) =  
 

t1 if ϕ1; 
t2 if ϕ2 ∧ ¬ϕ1; 

... 
tn if ϕn ∧ ¬ϕ1 ∧ ... ∧ ¬ϕn-1; 

tn+1 if ¬ϕ1 ∧ ... ∧ ¬ϕn. 
 
where the variables in t1,...,tn+1,ϕ1,...,ϕn+1 are among 
x1,...,xk, k ≥ 1.  
 
Then f:Nk → N is given by f(v1,...,vk) =  
 

fϕ_1•t1 + ... + fϕ_n∧¬ϕ_1∧...∧¬ϕ_n-1•tn + f¬ϕ_1∧...∧¬ϕ_n•tn+1 
 
using the notation of Lemma 5.1.3, with + associated to the 
left. Hence f ∈ BAF by Lemma 5.1.3. QED 
 
It is useful to know that certain functions lie in BAF. The 
powers of 2 are taken to be the integers 1,2,4,... .  
 
THEOREM 5.1.5. The following functions lie in BAF. 
i. All constant functions of every arity. 
ii. nx, where n is a given power of 2. 
iii. The greatest power of 2 that is ≤ x if x > 0; 0 
otherwise.   
 
Proof: i. This is obvious using the term 1+...+1. 
ii. Let n = 2k, k ≥ 0. Write nx = 2kx = (kx)↑ = (x+...+x)↑. 
iii. log(x)↑ is the greatest power of 2 that is ≤ x if x > 
0; 1 otherwise. To fix this, take log(x)↑-(1-x).    
 
QED 
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In this Chapter, we will show that the following 
specialization of Proposition A to these rather concrete 
functions implies the consistency of SMAH. Specifically, 
 
PROPOSITION C. For all f,g ∈ ELG ∩ SD ∩ BAF, there exist 
A,B,C ∈ INF such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
We have carefully chosen BAF so that we can choose A,B,C to 
be (primitive) recursive sets. Accordingly, Proposition C 
becomes an explicitly Π0

3 sentence. See Theorem 6.2.20.  
 
We use ELG ∩ SD ∩ BAF instead of ELG ∩ BAF because 
expansive linear growth is an asymptotic condition, and so 
ELG ∩ BAF is not included in SD. In BRT, the best course is 
to include both asymptotic and non asymptotic classes, as 
they behave differently. E.g., A ∪. fA = U is correct in 
EBRT in A,fA on SD, but incorrect in EBRT in A,fA on ELG. 
The function f(x) = 2n, which lies in ELG\SD, is a 
counterexample.  
 
In the remainder of this chapter, we will assume 
Proposition C. Our aim is to construct a model of the 
system  
 
SMAH = ZFC + {there exists a strongly k-Mahlo cardinal}k. 

 
Our construction will take place well within ZFC. (In 
section 5.9, we will analyze just what axioms are used for 
this entire development.) This will establish that none of 
Propositions A,B,C are provable in SMAH, provided SMAH is 
consistent. For otherwise, SMAH would prove its own 
consistency, and hence would be inconsistent by Gödel’s 
second incompleteness theorem. 
 
DEFINITION 5.1.9. The Π0

1(L) sentences are the sentences in 
L which begin with zero or more universal quantifiers, 
followed by a formula ψ in which all quantifiers are 
bounded. I.e., all quantifiers in ψ appear, in abbreviated 
form, as  
 

(∀x < t) 
(∃x < t) 
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where x is a variable, t is a term in which x does not 
appear, and where the intended range of all variables is N.  
 
DEFINITION 5.1.10. We use TR(Π0

1,L) for the set of all 
Π0

1(L) sentences that are true in N, using the 
interpretation in Definition 5.1.1.  
 
We will actually establish a stronger result. Using 
Proposition C, we will construct a model of the system  
 

SMAH + TR(Π0
1,L). 

 
Strictly speaking, Π0

1 sentences are obviously not in the 
language of set theory. However, in weak fragments of set 
theory, there is the standard version of N,<,0,1,+,•,↑,log, 
where N is the set theoretic ω, 0 is ∅, 1 is {∅}, and <,+,-
,•,↑,log are treated as sets of 2-tuples, 3-tuples, 3-
tuples, 3-tuples, 2-tuples, and 2-tuples, respectively. 
 
Accordingly, we view the system SMAH + TR(Π0

1,L) as a set 
theory that extends the system SMAH. The axioms of SMAH + 
TR(Π0

1,L) do not form a recursive set. However, this will 
not cause any difficulties.  
 
DEFINITION 5.1.11. For x ∈ Nr, |x| denotes the maximum term 
of x. 
 
DEFINITION 5.1.12. For E ⊆ N, we write E* for E\{min(E)}. 
If E = ∅ then we take E* = ∅.  
 
The reader should not confuse our E* with the set of all 
finite sequences from E.  
 
Recall Definition 1.1.3.  
 
DEFINITION 5.1.13. For S ⊆ N and p,q ∈ N, we define  
 

pS+q = {pn+q: n ∈ S}. 
 
LEMMA 5.1.6. Let f,g ∈ ELG ∩ SD ∩ BAF. There exist f’,g’ ∈ 
ELG ∩ SD ∩ BAF such that the following holds. Let S ⊆ N. 
i) g’S = g(S*) ∪ 6S+2; 
ii) f'S = f(S*) ∪ g’S ∪ 6f(S*)+2 ∪ 2S*+1 ∪ 3S*+1. 
 
Proof: Let f,g ∈ ELG ∩ SD ∩ BAF, where f:Np → N and g:Nq → 
N. We define g’:Nq+1 → N as follows. Let x1,...,xq,y ∈ N.  
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case 1. x1,...,xq > y. Set g’(x1,...,xq,y) = g(x1,...,xq). 
 
case 2. Otherwise. Set g’(x1,...,xq,y) = 6|x1,...,xq,y|+2.  
 
We define f’:N5p+q+1 → N as follows. Let x1,...,x5p,y1,...,yq+1 
∈ N.  
 
case a. |y1,...,yq+1| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x3p+1,...,x4p| = |x4p+1,...,x5p|. Set 
f’(x1,...,x5p,y1,...,yq+1) = g’(y1,...,yq+1). 
 
case b. |y1,...,yq+1| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x3p+1,...,x4p| < min(x4p+1,...,x5p). Set 
f’(x1,...,x5p,y1,...,yq+1) = f(x4p+1,...,x5p). 
 
case c. |y1,...,yq+1| = |x1,...,xp| = |xp+1,...,x2p| = 
|x2p+1,...,x3p| = |x4p+1,...,x5p| < min(x3p+1,...,x4p). Set 
f’(x1,...,x5p,y1,...,yq+1) = 6f(x3p+1,...,x4p)+2.  
 
case d. |y1,...,yq+1| = |x1,...,xp| = |xp+1,...,x2p| = 
|x3p+1,...,x4p| = |x4p+1,...,x5p| < min(x2p+1,...,x3p). Set 
f’(x1,...,x35,y1,...,yq+1) = 2|x2p+1,...,x3p|+1. 
 
case e. |y1,...,yq+1| = |x1,...,xp| = |x2p+1,...,x3p| = 
|x3p+1,...,x4p| = |x4p+1,...,x5p| < min(xp+1,...,x2p). Set 
f’(x1,...,x5p,y1,...,yq+1) = 3|xp+1,...,x2p|+1. 
 
case f. Otherwise. Set f’(x1,...,x5p,y1,...,yq+1) = 
2|x1,...,x5p,y1,...,yq+1|+1. 
 
Note that in case 1, |x1,...,xq,y| = |x1,...,xq|. Also note 
that in cases a)-e),  
 

|x1,...,x5p,y1,...,yq+1| = |y1,...,yq+1| 
|x1,...,x5p,y1,...,yq+1| = |x4p+1,...,x5p| 
|x1,...,x5p,y1,...,yq+1| = |x3p+1,...,x4p| 
|x1,...,x5p,y1,...,yq+1| = |x2p+1,...,x3p| 
|x1,...,x5p,y1,...,yq+1| = |xp+1,...,x2p| 

 
respectively. Hence f',g' ∈ ELG ∩ SD ∩ BAF.  
 
Let S ⊆ N. From S, case 1 produces exactly g(S*). Case 2 
produces exactly 6S+2. This establishes i). 
 
Case a) produces exactly g’S. Case b) produces exactly 
f(S*). Case c) produces exactly 6f(S*)+2. Case d produces 
exactly 2S*+1. Case e produces exactly 3S*+1.  
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Case f) produces exactly 2S*+1 since 2min(S)+1 is not 
produced. This is because 2min(S)+1 can only be produced 
from case f) if all of the arguments are min(S), which can 
only happen under case a). This establishes ii). QED 
 
LEMMA 5.1.7. Let f,g ∈ ELG ∩ SD ∩ BAF and rng(g) ⊆ 6N. 
There exist infinite A ⊆ B ⊆ C ⊆ N\{0} such that  
i) fA ∩ 6N ⊆ B ∪ gB; 
ii) fB ∩ 6N ⊆ C ∪ gC; 
iii) fA ∩ 2N+1 ⊆ B; 
iv) fA ∩ 3N+1 ⊆ B; 
v) fB ∩ 2N+1 ⊆ C; 
vi) fB ∩ 3N+1 ⊆ C; 
vii) C ∩ gC = ∅; 
viii) A ∩ fB = ∅. 
 
Proof: Let f,g be as given. Let f’,g’ be given by Lemma 
5.1.6. Let A,B,C ⊆ N be given by Proposition C for f’,g’. 
We have  
 

A ∪. f’A ⊆ C ∪. g’B 
 A ∪. f’B ⊆ C ∪. g’C. 

 
Let n ∈ B. Then 6n+2 ∈ g’B ⊆ f’B, and so 6n+2 ∈ C ∨ 6n+2 ∈ 
g’C. Now 6n+2 ∉ C by C ∩ g’B = ∅. Hence 6n+2 ∈ g’C. By 
Lemma 5.1.6 i) and rng(g) ⊆ 6N, we have 6n+2 ∈ 6C+2. 
Therefore n ∈ C. So we have established that B ⊆ C.  
 
Let n ∈ A. Then n ∈ C ∨ n ∈ g’B. Now n ∉ f’B by A ∩ f’B = 
∅. Also g’B ⊆ f’B. Hence n ∉ g’B, n ∈ C. Also 6n+2 ∈ g’A ⊆ 
f’A, and so 6n+2 ∈ C ∨ 6n+2 ∈ g’B. Since n ∈ C, we have 
6n+2 ∈ g’C. By C ∩ g’C = ∅, we have 6n+2 ∉ C. Hence 6n+2 ∈ 
g’B. Since rng(g) ⊆ 6N, we have 6n+2 ∈ 6B+2. Hence n ∈ B. 
So we have established that A ⊆ B.  
 
We have thus shown that A ⊆ B ⊆ C ⊆ N. 
 
We now verify all of the required conditions i)–viii) above 
using the three sets A*,B*,C*.  
 
Firstly note that A* ⊆ B* ⊆ C* ⊆ N\{0}. To see this, let n 
∈ A*. Then n ∈ A ∧ n > min(A). Hence n ∈ B ∧ n > min(B), 
and so n ∈ B*. By the same argument, n ∈ B* → n ∈ C*.  
 
We now claim that A* ∩ f(B*) = ∅. This follows from A* ⊆ A 
and f(B*) ⊆ f’B.  
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Next we claim that C* ∩ g(C*) = ∅. This follows from C* ⊆ C 
and g(C*) ⊆ g’C.  
 
Now we claim that f(A*) ∩ 6N ⊆ B* ∪ g(B*). To see this, let 
n ∈ f(A*) ∩ 6N. Then n ∈ f’A. Hence n ∈ C ∪ g’B.   
 
case 1. n ∈ C. Now 6n+2 ∈ g’C and 6n+2 ∈ 6f(A*)+2 ⊆ f’A. 
Since C ∩ g’C = ∅, we have 6n+2 ∉ C. Also 6n+2 ∈ C ∪ g’B. 
Hence 6n+2 ∈ g’B. Since rng(g) ⊆ 6N, we have 6n+2 ∈ 6B+2, 
and so n ∈ B. Since n ∈ f(A*) and f is strictly dominating, 
we have n > min(A) ≥ min(B). Hence n ∈ B*. 
 
case 2. n ∈ g’B. Since n ∈ 6N, n ∈ g(B*). This establishes 
the claim. 
 
Next we claim that f(B*) ∩ 6N ⊆ C* ∪ g(C*). To see this, 
let n ∈ f(B*) ∩ 6N. Then n ∈ f’B. Hence n ∈ C ∪ g’C.  
 
case 1’. n ∈ C. Since n ∈ f(B*) and f is strictly 
dominating, we have n > min(B) ≥ min(C). Hence n ∈ C*. 
 
case 2’. n ∈ g’C. Since n ∈ 6N, n ∈ g(C*). This establishes 
the claim. 
 
Now we claim that f(A*) ∩ 2N+1, f(A*) ∩ 3N+1 ⊆ B*. To see 
this, let n ∈ f(A*), n ∈ 2N+1 ∪ 3N+1. Then n ∈ f’A, and so 
n ∈ C ∪ g’B. Recall that rng(g) ⊆ 6N. Since n ∈ 2N+1 ∪ 
3N+1, we see that n ∉ g’B, and so n ∈ C. Now 6n+2 ∈ g’C and 
6n+2 ∈ 6f(A*)+2 ⊆ f’A. Since C ∩ g’C = ∅, we have 6n+2 ∉ 
C. Also 6n+2 ∈ f'A ⊆ C ∪ g’B. Hence 6n+2 ∈ g’B. Since 
rng(g) ⊆ 6N, we have 6n+2 ∈ 6B+2, and so n ∈ B. Since n ∈ 
f(A*) and f is strictly dominating on A, we have n > min(A) 
≥ min(B). Hence n ∈ B*. 
  
Finally we claim that f(B*) ∩ 2N+1, f(B*) ∩ 3N+1 ⊆ C*. To 
see this, let n ∈ f(B*), n ∈ 2N+1 ∪ 3N+1. Then n ∈ f’B, and 
so n ∈ C ∪ g’C. Since n ∈ 2N+1 ∪ 3N+1, we have n ∉ 6N ∪ 
6N+2. Hence n ∉ g’C, n ∈ C. Since n ∈ f(B*) and f is 
strictly dominating, n > min(B) ≥ min(C). Hence n ∈ C*. QED 
 
The phrase "length 3 towers" mentioned in the title of this 
section refers to the A ⊆ B ⊆ C in Lemma 5.1.7.  


