4.4. Proof using l-consistency.

In this section we show that Propositions A,B can be proved
in ACA’ + 1-Con(SMAH). Here 1-Con(T) is the 1l-consistency
of T, which asserts that “every 2% sentence provable in T
is true”. 1-Con(T) is also equivalent to “every II° sentence
provable in T is true”.

By Lemma 4.2.1, Proposition B implies Proposition A in RCAy.
Hence it suffices to show that Proposition B can be proved
in ACA’ + 1-Con (SMAH) .

DEFINITION 4.4.1. We write ELG(p,b) for the set of all f &€
ELG of arity p satisfying the following conditions. For all
x € NP,

i. if |x|] > b then (1 + 1/b) x| = f(x) = b|x]|.
ii. if |x| = b then f(x) = b?.

Note that from Definition 2.1, £ € ELG if and only if there
exist positive integers p,b such that f € ELG(p,b). Also
note that each ELG(p,b) forms a compact subspace of the
Baire space of functions from N* into N.

DEFINITION 4.4.2. Let p,q,b = 1. A p,q,b-structure is a
system of the form

M* — (N*,O*,l*,<*,+*,f*,g*,co*,...)
such that

1. N* is countable. For specificity, we can assume that N*
is N.

2. (N*,0%,1*,<*,+*) 1is a discretely ordered commutative
semigroup (see definition below).

3. +*:N*? — N*, f*:N*® — N*, g*:N*? — N*.

4. f* obeys the above two inequalities for membership in
ELG(p,b), internally in M*.

5. g* obeys the above two inequalities for membership in
ELG(g,b), internally in M*.

6. Let 1 = 0. The sum of any finite number of copies of c;*
is < cia*.

7. The c*’s form a strictly increasing set of
indiscernibles for the atomic sentences of M*.

Note that the conditions under clauses 4-7 are all
universal sentences.



Note that we do not require every element of N* to be the
value of a closed term.

DEFINITION 4.4.3. A discretely ordered commutative
semigroup is a system (G,0,1,<,+) such that

i. < is a linear ordering of G.

ii. 0,1 are the first two elements of G.
iii. x+0 = x.

iv. x+ty = y+x.

v. (xty)+tz = x+(y+z).

vi. x <y = x+tz < y+z.

vii. x+1 is the immediate successor of x.

Note that the cancellation law
Xtz = ytz —= X =Y

holds in any discretely ordered commutative semigroup (in
this sense), since assuming x+z = y+z, the cases x < y and
y < x are impossible.

In any p,d,b-structure, the c,* have an important
inaccessibility condition: any closed term whose value is
cp* is a sum consisting of c,* and zero or more 0*’'s. To see
this, write c,* = t, and write t as a sum, t = s1 + ... +
Sk, k = 1, where each s; is either a constant or starts with
f or g. By 7, cp* is infinite, and so all s; that begin with
f or g must have immediate subterms < c,* (using 4,5). Hence
all s; that begin with f or g must be < cy* (using 4,5,6).
Hence all s; are either < cp* or are a constant. If no s; is
c;* then all s; are < cp*, violating 6. Hence some s; i1s cp*.
By 2, the remaining s; must be O.

We can follow the development of section 4.2 starting right
after the proof of Lemma 4.2.7. In this rerun, we do not
fix £ € ELG(p,b), and g € ELG(qg,Db) .

Instead we fix p,q,b,n = 1, a strongly p”ﬂ—Mahlo cardinal K,
and a p,q,b-structure M*, where every element of N* is the

value of a closed term in M*. Note that we must have b = 2.

As in the development of section 4.2 after the proof of
Lemma 4.2.7, we extend M* to the structure

M** = (N**,<**,O**,l**,‘l'**,f**,g**,co**, .. "C(x**’ .. .)’



o < K.

We follow this prior development through the first line of
the proof of Theorem 4.2.26.

Thus we have r 2 1, E € S C k¥ of order type w, and sets
E[1] € ... € E[n] € M**[S,r] such that
i. E[1] = {c,**: o € E}.

ii. For all 1 = i < n, £**E[1i] € E[i+1] U. g**E[i+1].

This construction of E € S C K of order type w uses that K
is strongly p" '-Mahlo.

In the proof of Theorem 4.2.26, we continued by
transferring this situation back into N via an S, r(p+q)-
embedding T from M** into M, thus establishing Proposition
B with the sets TE[1] C ... C TE[n].

Here we want to merely transfer this situation back into M*
via an S,r (ptqg)-embedding from M** into M*, and then
establish uniformities. By Lemma 4.2.12, we use the unique
isomorphism from M**<S> onto M* which maps {c,**: a € S}
onto {cs*: j = 0}.

As in section 4.2, for r = 1, we write M*[r] for the set of
all values of closed terms of length = r in M¥*.

Thus we obtain r = 1 and infinite sets D[1] € ... C D[n] C
M*[r] such that

iii. D[1] C {cy*: 3 = 0}.
iv. For all 1 = i < n, £*D[i] C D[i+1] U. g*D[i+1].

We summarize this modified development as follows.

LEMMA 4.4.1. Let p,q,b,n = 1. The following is provable in
SMAH. Let M* = (N*,0*,1*,<*,+*,f*,g*%,co*,...) be a p,q,b-
structure. There exist r = 1 and infinite sets D[1] C ... C
D[n] € M*[r] such that D[1] € {c5*: J = 0}, and for all 1 =
i <n, £*D[1i] € D[i41] U. g*D[i+1]. Furthermore, this

”

entire Lemma, starting with “Let p...”, 1s provable in RCAp.

Proof: Let p,qg,b,n,M* be as given. Proceed as discussed
above. One of the important points is that we only need M*
= (N*,0%,1*,<*,+*) to obey the axioms for a discretely
ordered commutative group. QED



By using Lemma 4.4.1, we will no longer need to refer back
to section 4.2.

We can obviously view clauses 3-7 in the definition of
P,d,b-structure as universal axioms. Recall that b is a
standard integer.

We now introduce the notion of p,q,b;r-structure, which is
a level r approximation to a p,q,b-structure.

DEFINITION 4.4.4. Let p,q,b,r =2 1. A p,q,b;r-structure is a
system of the form

M* = (N*,O*,l*,<*,+*,f*,g*,co*,...)
such that the following holds.

a. Clauses 1,2,3 in the definition of p,q,b-structure,

without change.

b. All instantiations of the universal sentences under

clauses 4-7, by closed terms of length = r. Here length
counts the total number of occurrences of constant and
function symbols that appear.

In particular, we are using the following specialization of
clause 7 in the definition of p,qg,b-structure:

77 . The c*’s form a strictly increasing set of
indiscernibles for the atomic sentences of M* whose terms
are of length = r.

Again, we do not require that every element of N* be the
value of a closed term.

DEFINITION 4.4.5. A p,q,b;r;n-special structure is a
p,q,b;r-structure M* where there exist infinite D; C ... C
Dn € M*[r/(p+tg)] such that

i. For all 1 = i < n, £*D; C Diy; U. g*Dis1.

ii. D3 € {cy:* j = 0}.

We use M*[r/(p+qg)] instead of M*[r] since in clause i, we
are applying f*,g* to p,qg, terms, respectively, and want
all relevant terms to have length at most r.

DEFINITION 4.4.6. The r-type of a p,qg,b;r-structure M* is
the set of all closed atomic sentences, whose terms have



length = r, involving only the constants 0,1,cq,...,Cor,
which hold in M*. Thus r-types are finite sets.

DEFINITION 4.4.7. A p,q,b;r-type is the r-type of a
pP,d,b;r-structure. A p,q,b;r;n-special type is the r-type
of a p,gq,b;r;n-special structure.

LEMMA 4.4.2. Let M* be a p,q,b;r-structure. Then M* is a
p,d,b;r;n-special structure if and only if the r-type of M*
is a p,q,b;r;n-special type.

Proof: Let M* be a p,q,b;r-structure. First suppose that M*
is a p,q,b;r;n-special structure. Then by definition, the
r-type of M* is a p,q,b;r;n-special type.

Conversely, suppose the r-type Tt of M* is a p,q,b;r;n-
special type. Let M*’ be a p,q,b;r;n-special structure of
r-type T.

Let D; € ... € D, € M*' [/ (p+g)] be infinite, where
i. For all 1 = i < n, £*D; C Diy; U. g*Dis1.
ii. Dy C {cs*: § = 0}.

We can obviously come up with an infinite list of atomic
sentences whose terms are of length = r, whose truth in M*’
witnesses that M*’ is a p,q,b;r;n-special structure. These
include the atomic sentences with terms of length = r that
justify that M*' is a p,q,b;r-structure, and the atomic
sentences with terms of length = r that justify the special
clauses 1i,ii just above. This uses the fact that the
lengths of f(si,...,5p), 9(ti,...,tg) are = r provided the
lengths of si,...,8p,t1,...,tq are = r/(p+q). But since M*
and M*’ have the same r-type, they agree on all such
statements. Hence M* is a p,q,b;r;n-special structure. QED

We can view the following as a uniform version of Lemma
4.4.1.

LEMMA 4.4.3. Let p,q,b,n = 1. The following is provable in
SMAH. There exist r = 1 such that every p,q,b;r-structure is
P,d,b;r;n-special. Furthermore, this entire Lemma, starting
with “Let p...” is provable in RCAp.

Proof: Fix p,g,b,n = 1. We now argue in SMAH. Suppose this
is false. Let T be the following theory in the language of
P,q,b-structures.



i. Let r =2 1. Assert the axioms for being a p,q,b;r-
structure.

ii. Let r =2 1 and T be a p,qg,b;r;n-special type. Assert that
T is not the r-type of the p,q,b;r-structure.

We claim that every finite subset of T is satisfiable. To
see this, let r be an upper bound on the r's used in the
finite subset. By hypothesis, there exists a p,q,b;r-
structure M* that is not a p,q,b;r;n-special structure. Fix
r,M*.

We claim that M* satisfies the finite subset of T. Let T be
the r-type of the p,q,b;r-structure M*.

Obviously M* satisfies all instances of i) for r’ = r. Now
let 1 = r" = r and t/ be a p,q,b;r’;n-special type. Suppose
that t/ is the correct r’-type of M*. I.e., M* has r’-type
T/. By Lemma 4.4.2, M* is a p,q,b;r’;n-special structure.
Since M* is a p,q,b;r-structure, M* is a p,q,b;r;n-special
structure. This is a contradiction.

By the compactness theorem, T is satisfiable. Let M*
satisfy T. By Lemma 4.4.1, let r be such that M* is
P,d,b;r;n-special. Let T be the r-type of M*. Then T is a
P,d,b;r;n-special type. By axioms ii) above, T is not the r-
type of M*. This is a contradiction. QED

LEMMA 4.4.4. There is a presentation of a primitive
recursive function Q(p,q,b,r,T) such that the following is
provable in RCAy. Q(p,q,b,r,T) = 1 if and only if T is a
p,q,b;r-type (as a Gbdel number).

Proof: We give the following necessary and sufficient
finitary condition for Tt to be a p,q,b;r-type.

1. T is a set of atomic sentences in 0,1,<,+,f,9,Co,...,Coxr
whose terms have length = r, involving only the constants
O,l,Co,...,C2r.

2. There is a system V* =
(D,E,Q0*,1*,<*,+*,f*,g*%,cp*,...,Cr*) which obeys the
following conditions.

i. D,E have cardinality at least 1 and at most some
specific iterated exponential in p,q,r.

ii. 0*,1* € D.

iii. +*:D° — E.



iv. £*:D° — E.

v. g*:DY — E.

vi. D is the set of values of the closed terms of length =
r.

vii. E is D union the values of +*,f*,g*.

vii. All axioms in clause b in the definition of p,q,b;r-
structure hold in V*.

viii. All sentences in T hold in V*.

ix. All atomic sentences in 0,1,<,+,f,g9,Co,...,Cor Outside T,
with terms of length = r, fail in V*.

This condition is necessary because such a structure V* can
be obtained from any p,q,b;r-structure M* of r-type T by
taking D to be the set of values of closed terms in M* of
length = r, restricting M* in the obvious way. The atomic
sentences in 0,1,<,+,f,9,Co,...,C2r that hold in V* are the
same as those that hold in M*, which are the elements of T.

For the other direction, let t,V* be given as above. Using
the indiscernibility in ix, we can canonically stretch V*
to

W* = (D,IE,IO*Il*I<*,I+*,If*,lg*,lco*,lcl*,l“‘)

which obviously obeys clause 1 and clauses 2i-2ix above,
modified to incorporate all constant symbols cg,C1,... . We
now have all of the conditions we need for being a p,q,b;r-
structure except that we only have D’ C E’. However, this
is easily remedied without affecting the properties of W*
by taking the domain to be E’, and extending +*’,f*’,g*’
arbitrarily to the tuples from E’ that are not tuples from
D’, into E’. This resulting modification of W* is a

P,d,b, r-structure with r-type t. QED

Let T be a p,gq,b;r-type. We want to express
1) T is a p,q,b;r;n-special type

as a sentence A(k,n,p+g+2,Ry, ...,Ry-1) of section 4.3, and
then apply Theorem 4.3.8.

Recall that 1) is equivalent to the condition

2) there exists a p,q,b;r-structure M* of r-type T and
infinite sets D; € ... € D, € M*[r/(p+g)] such that

i. For all 1 = i < n, £*D; C D;y; U. g*Dis1.

ii. D1 € {cy*: j = 0}.



We now put this in a more syntactic form.

DEFINITION 4.4.8. A p,q,r-term is a closed term in
0,1,+,f,9 and constants cg,ci1,... of length at most r.

We identify M*[r] with the set of all p,qgq,r-terms. Of
course, a given element of M*[r] may be the value of many
P,g,r-terms.

DEFINITION 4.4.9. We let t* be the set of all atomic
sentences obtained from elements of T by replacing c’s by
c’s in an order preserving way.

3) there exist infinite sets T; € ... € T, of p,q,r/ (p+q) -
terms such that

i. For any two distinct elements t,t’ of T,, t = t’/ & t*.
ii. Every t € T; is some ck.

iii. Let 1 =1 < n and ti,...,tp, € Ti. Then there exists t €&

Tiy1 such that f£(ti;,...,t,) = t € 1%, or there exist
ti1’,...,ty’ € Tiy1 such that f(ty, ...,ts) = g(ti’,...,ty") E
T*.

iv. Let t,ti,...,tq € Tn. Then g(ti, ..., tq) = t & T*.

v. For all k 2 0 and ti,...,ty € Tn, f(t1,...,tp) = cx & T*.

LEMMA 4.4.5. The following is provable in RCAy. Let
p,d,b,n,r = 1 and Tt be a p,q,b;r-type. Then conditions 1)-3)
are equivalent.

Proof: Let T be a p,q,b;r-type. It is obvious that 1),2) are
equivalent. So assume 2) holds. We derive 3). Let M* be a
p,qd,b;r-structure of r-type 1, and D C ... C p, C

M* [r/ (p+q)] be infinite sets such that

i. For all 1 = i < n, fD; € Di;y; U. gDi41.
ii. D; € {cy*: j = 1}.

For each x € D,, pick a p,q,r/(pt+tqg)-term x# of least
possible length whose value in M* is x. If x is some c;*
then make sure that x# is cj. Set T; = {x#: x € D;}.

Since D; € ... € D,, clearly T: € ... € T,. Since every x €
D, lies in M*[r/(p+q)], clearly every x# € T, has length =
r/ (p+q) .

Let t,t' € T, be distinct. Write t = x#, t' = y#. Then x# =
y#, and so t = t' is false. Hence t = t' & 1*. Let t € T;.



Write t = x#, X € D;. Then x is some cy*. Therefore x# = cx.
This establishes 3i and 3ii.

To verify 3iii, let 1 =i < n and xi#,...,x.# € Ti. Then
X1y« -1 Xp = D;i. Hence f*(Xl,...,Xp) = f*Di Q Dit+1 U. g*Di+1.

case 1. f*(x1,...,%Xp) € Dijy1. Let the p,q,r/(ptg)-term t €

Tiy1 have the value f*(x1,...,%Xp) in M*. Then f (xi#,...,x#) =
t holds in M*, and both terms in this equation have length =
r. Hence f(xi*,...,X*) = t € t*.

case 2. f£*(xi,...,%p) € gDiy1. Let £% (X1, ...,%p) =

g*(Vis«++.rYq) , Where vi, ...,vVq € Dis1. Then yvi#, ..., vq# € Tis1.
Also f(x1*,...,%*) = g(y1*,...,Y¢*) holds in M*, and both
terms in this equation have length = r. Hence f(xi*,...,%xp*)
= g(yi*,...,¥Y5%) € t*.

To verify 3iv, let x#,x:1#,...,xs# € Tn. Then g (xi#,...,xq#) =
x# & T* because g* (X1, ...,Xq) # X in M*,

To verify 3v, let k = 0 and x:i#,...,x.# € T,. Then
f(xi#, ..., x#) = cx & T* because f*(x1,...,%xp) # Cx* in M*.

Now assume that 3) holds. We establish 2). Let T; C ... C T,
be infinite sets of p,qg,r/ (pt+tg)-terms such that

i. For any two distinct elements t,t’ of T,, t = t’/ & t*.
ii. For all t € T; there exists k = 0 such that t is cx.
iii. Let 1 =1 < n and ty,...,tp, € Ti;. Then there exists t €&
Tiy1 such that f£(ti,...,t,) =t € Tiy1, or there exist
ti',...,ty’ € Ti1n such that f£(t,...,ty) = g(t',..., ") E
T*.

iv. Let t,ti,...,tq € Tn. Then g(ti, ..., tq) = t & T*.

v. For all k 2 0 and ti,...,ty € Tn, f(t1,...,ts) = cx & T*.

Let M* be any p,q,b;r-structure of r-type tT. For each 1 = i
< n, let D; be the set of values of terms in T;. Then D; C
C D, C M*[r/(pt+q)].

Let 1 =1 < n and x € £*D;. We claim that x € Di+1 U g*Dis1.

To see this, write x = £*(xi,...,%Xp), X1,...,%X € D;, and let
ti,...,t € Ty have values xi,...,Xp, respectively. By 3iii,
let t € Ti41, where f£(ti,...,t) = t € t*, or there exists
ti", ..., 8 € Tiy1 such that £(ty,...,t) = g(t',..., ) €
T*.
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case 1. f(ty,...,t,) =t € v*. Then £*(x1,...,%Xp) = x € Di41.

case 2. Let ti/,...,ty € Tin1, where f(ty,...,t) =
g(ti",...,ty") € . Let the wvalues of t{’,...,ty be
Vi,+-+rYqg € Diy1, respectively. Then f£*(xi,...,%Xp) =
g*(y11---IYq)-

Now suppose x € Diy1 N gDiy1. Let x be the value of t € Ti41,
and write x = g(YViy«--rYq)sr Yir---rY¥Yq € Diy1. Let t1,...,t5 €

Ti+1 have values yi,...,yq, respectively. By 3iv, g(ti,...,tq)
= t & 1*. Since both terms in this equation have length = r,
we see that g(t;,...,tg) = t is false in M*. Hence
g*(yis...,Yq) # xXx. This 1s a contradiction.

Finally, let x € D;. Then x is the value of a term t € T;.
By 3ii, t is some cx. Hence x is some cy*. QED

We can conveniently represent the p,q,r-terms as elements
of N* in the following way. This integer k will be set
below.

DEFINITION 4.4.10. Two p,q,r-terms have the same shape if
and only if the second can be obtained from the first by

replacing c¢’s by c’s, where we do not require that equal

c’s be replaced by equal c’s.

Let e be the number of shapes of the p,qg,r-terms.

We represent the p,qg,r-term 0 as follows. Let the shape of
O be 1 =i = e. Here the shapes have been arbitrarily
indexed without repetition, by 1 = 1 = e.

DEFINITION 4.4.9. The representations of 0 are obtained as
follows. First write down a sequence of e elements of N,
where exactly i of these elements are the same as the first
of these elements. Follow this by the sequence of
subscripts of the c¢’s that appear from left to right. If
this sequence of c¢’s is of length < r then fill it out to
length r by repeating the last argument. This results in a
representation of O as an element of N°*'". Obviously, O will
have infinitely many representations.

Set k = etr. We will use the above representation of p,q,r-
terms to write 3) in the form of a sentence
A(k,n,p+g+2,R1, ...,Ru-1), as in section 4.3.
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4) There exist infinite sets B; € ... C B, C N* of

p,d,r/ (ptg) —~representations such that

a. Distinct elements of B, represent distinct p,q,r/ (p+qg) -
terms.

b. For each 1 = 1 = n, let T; be the p,q,r/(p+g)-terms
represented by the elements of B;. Then Ti,...,T, obeys 3)

above.

Note the use of t* in 3). We represent elements of t* as a
p,d,r-representation followed by two equal elements of N
(indicating <), or followed by two unequal elements of N
(indicating =), followed by a p,q,r-representation. Keep in
mind that the lengths of p,q,r-representations are fixed at
k = etr. Hence representations of elements of t* are fixed
at length k+2+k = 2k+2. If Tt is a p,q,b;r-type, then T is
finite and t* is order invariant.

LEMMA 4.4.6. The following is provable in RCAy. Let
p,d9,b,n,r = 1 and T be a p,qg,b;r-type. Conditions 1)-4) are
each equivalent to A(k,n,p+g+2,Ri,...,Ry1), for some order
invariant relations Ry, ...,Rnq C N**®"%2) optained explicitly
from p,q,b,n,r,T.

Proof: We argue in RCAp. Let p,qg,b,n,r = 1 and T be a
p,d,b;r-type. It is clear that 3) is equivalent to 4), and
hence by Lemma 4.4.5, 1)-4) are equivalent. We now
exclusively use clause 4.

B, € ... C B, asserts, for each 1 = i < n, that (Vx € B;) (y
€ Biv1) (x = vy) .

“Distinct elements of B, represent distinct p,q,r/ (p+q)-
terms” is of the form (Vx,y € Bn) (S(xX,Vy)).

“Distinct elements t,t’ of the corresponding T, have t = t’
& 1*” is of the form (Vx,y € Bn) (S(x,vy)) .

Clause 3ii for the corresponding T; is of the form (Vx €
B1) (S (x)) .

Clause 3iii for the corresponding T’s is of the form (Vi €
[(1,n)) (Vxll « .7 Xp € Bi) (3y1/ -7 Yq € Bi+1) (S (x1, e ooy Xpy
er---qu))-

Clause 3iv for the corresponding T, is of the form
(Vxll e ooy Xgtl € Bn) (S(x1, .. -/Xq+1) ) .
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Clause 3v for the corresponding T, is of the form
(Vx1, ..., %11 € Bp) (S(Xp+1) — S’ (X1, -« -y Xps1) ) -

Here all the S’s are order invariant relations. QED

LEMMA 4.4.7. There is a presentation of a primitive
recursive function H such that the following is provable in
ACA’. Let p,g,b,n,r =21 and tT be a p,q,b;r-type. Then
H(p,gq,b,r,n,t) = 1 if and only if tv is a p,q,b;r;n-special
type (as a Godel number).

Proof: Let p,qg,b,r,n,t be given, where Tt is a p,q,b;r-type.
Apply Lemma 4.4.6 to obtain order invariant Ri,...,Rnp-1. Now
apply Theorem 4.3.8. QED

We fix H as given by Lemma 4.4.7.

LEMMA 4.4.8. Let p,gq,b,n = 1. The following is provable in
SMAH. (Hr) (V‘C) (Q(plqlblrl‘c) =1 — H(plqlblrlnl‘c) =1).
Furthermore, this entire Lemma, starting with “Let p...”,
is provable in RCA,.

Proof: Let p,g,b,n be as given. By Lemma 4.4.3, SMAH proves
the existence of r = 1 such that every p,qg,b;r-type is a
P,d,b;r;n-special type. Now apply Lemmas 4.4.4 and 4.4.7.
QED

LEMMA 4.4.9. RCA; + 1-Con(SMAH) proves (Vp,gq,b,n = 1)
(HI) (VT) (Q p,q,b,r,‘c) =1 — H(plqlblrlnl‘c) =1).

Proof: We argue within RCAy + 1-Con (SMAH). Let p,g,b,n = 1
be given. By Lemma 4.4.8,

1) (dr) (Vo) (Q(p,q,b,r,T) = 1 — H(p,9,b,r,n,T) = 1)

is provable in SMAH. Note that the quantifier Vt in 1) is
bounded. Hence by 1-Con (SMAH), this ¥% sentence is true.

QED

LEMMA 4.4.10. The following is provable in ACA’ + 1-

Con (SMAH) . (Vp,q,b,n = 1) (dr) (V1) (T is a p,g,b;r-type — =
is a p,qg,b;r;n-special type).

Proof: By Lemmas 4.4.4, 4.4.7, and 4.4.9. QED

For Propositions C,D, see Appendix A.
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THEOREM 4.4.11. Propositions A,B,C,D are provable in ACA’ +
1-Con (SMAH) .

Proof: Propositions A,C,D are immediate consequences of
Proposition B over RCA; (see Lemmas 4.2.1 and 5.1.1). We
argue in ACA’ + 1-Con(SMAH). Let p,g,b,n = 1, and f €
ELG(p,b), g € ELG(g,b). Let r be given by Lemma 4.4.10. By
Ramsey’s theorem for 2r-tuples in ACA’, we can find a
p,d,b;r-structure M = (N,0,1,<,+,f,9,co,C1,...). Let T be
its r-type. By Lemma 4.4.10, T is a p,q,b;n;r-special type.
By Lemma 4.4.2, M is a p,q,b;r;n-special structure. Let D; C

C b, € N, where D; € {cg,ci,...}, and each £fD; C D;,; U.
gDi+1, and D; N fD, = . This is Proposition B, thus
concluding the proof. QED



