
 1 

4.4. Proof using 1-consistency. 
 
In this section we show that Propositions A,B can be proved 
in ACA’ + 1-Con(SMAH). Here 1-Con(T) is the 1-consistency 
of T, which asserts that “every Σ01 sentence provable in T 
is true”. 1-Con(T) is also equivalent to “every Π0

2 sentence 
provable in T is true”.   
 
By Lemma 4.2.1, Proposition B implies Proposition A in RCA0. 
Hence it suffices to show that Proposition B can be proved 
in ACA’ + 1-Con(SMAH). 
 
DEFINITION 4.4.1. We write ELG(p,b) for the set of all f ∈ 
ELG of arity p satisfying the following conditions. For all 
x ∈ Np,  
 
i. if |x| > b then (1 + 1/b)|x| ≤ f(x) ≤ b|x|. 
ii. if |x| ≤ b then f(x) ≤ b2. 
 
Note that from Definition 2.1, f ∈ ELG if and only if there 
exist positive integers p,b such that f ∈ ELG(p,b). Also 
note that each ELG(p,b) forms a compact subspace of the 
Baire space of functions from Nk into N. 
 
DEFINITION 4.4.2. Let p,q,b ≥ 1. A p,q,b-structure is a 
system of the form 
 

M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) 
 
such that  
 
1. N* is countable. For specificity, we can assume that N* 
is N. 
2. (N*,0*,1*,<*,+*) is a discretely ordered commutative 
semigroup (see definition below).   
3. +*:N*2 → N*, f*:N*p → N*, g*:N*q → N*. 
4. f* obeys the above two inequalities for membership in 
ELG(p,b), internally in M*. 
5. g* obeys the above two inequalities for membership in 
ELG(q,b), internally in M*. 
6. Let i ≥ 0. The sum of any finite number of copies of ci* 
is < ci+1*. 
7. The c*’s form a strictly increasing set of 
indiscernibles for the atomic sentences of M*. 
 
Note that the conditions under clauses 4-7 are all 
universal sentences.  
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Note that we do not require every element of N* to be the 
value of a closed term.  
 
DEFINITION 4.4.3. A discretely ordered commutative 
semigroup is a system (G,0,1,<,+) such that  
 
i. < is a linear ordering of G. 
ii. 0,1 are the first two elements of G. 
iii. x+0 = x.  
iv. x+y = y+x. 
v. (x+y)+z = x+(y+z). 
vi. x < y → x+z < y+z. 
vii. x+1 is the immediate successor of x.   
 
Note that the cancellation law  
 

x+z = y+z → x = y 
 
holds in any discretely ordered commutative semigroup (in 
this sense), since assuming x+z = y+z, the cases x < y and 
y < x are impossible. 
 
In any p,q,b-structure, the cn* have an important 
inaccessibility condition: any closed term whose value is 
cn* is a sum consisting of cn* and zero or more 0*’s. To see 
this, write cn* = t, and write t as a sum, t = s1 + ... + 
sk, k ≥ 1, where each si is either a constant or starts with 
f or g. By 7, cn* is infinite, and so all si that begin with 
f or g must have immediate subterms < cn* (using 4,5). Hence 
all si that begin with f or g must be < cn* (using 4,5,6). 
Hence all si are either < cn* or are a constant. If no si is 
ci* then all si are < cn*, violating 6. Hence some si is cn*. 
By 2, the remaining si must be 0.  
 
We can follow the development of section 4.2 starting right 
after the proof of Lemma 4.2.7. In this rerun, we do not 
fix f ∈ ELG(p,b), and g ∈ ELG(q,b).  
 
Instead we fix p,q,b,n ≥ 1, a strongly pn-1-Mahlo cardinal κ, 
and a p,q,b-structure M*, where every element of N* is the 
value of a closed term in M*. Note that we must have b ≥ 2. 
 
As in the development of section 4.2 after the proof of 
Lemma 4.2.7, we extend M* to the structure  
 

M** = (N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...),  
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α < κ. 
 
We follow this prior development through the first line of 
the proof of Theorem 4.2.26.  
 
Thus we have r ≥ 1, E ⊆ S ⊆ κ of order type ω, and sets 
E[1] ⊆ ... ⊆ E[n] ⊆ M**[S,r] such that  
 
i. E[1] = {cα**: α ∈ E}. 
ii. For all 1 ≤ i < n, f**E[i] ⊆ E[i+1] ∪. g**E[i+1]. 
 
This construction of E ⊆ S ⊆ κ of order type ω uses that κ 
is strongly pn-1-Mahlo. 
 
In the proof of Theorem 4.2.26, we continued by 
transferring this situation back into N via an S,r(p+q)-
embedding T from M** into M, thus establishing Proposition 
B with the sets TE[1] ⊆ ... ⊆ TE[n].  
 
Here we want to merely transfer this situation back into M* 
via an S,r(p+q)-embedding from M** into M*, and then 
establish uniformities. By Lemma 4.2.12, we use the unique 
isomorphism from M**<S> onto M* which maps {cα**: α ∈ S} 
onto {cj*: j ≥ 0}.  
 
As in section 4.2, for r ≥ 1, we write M*[r] for the set of 
all values of closed terms of length ≤ r in M*.  
 
Thus we obtain r ≥ 1 and infinite sets D[1] ⊆ ... ⊆ D[n] ⊆ 
M*[r] such that  
 
iii. D[1] ⊆ {cj*: j ≥ 0}. 
iv. For all 1 ≤ i < n, f*D[i] ⊆ D[i+1] ∪. g*D[i+1]. 
 
We summarize this modified development as follows.  
 
LEMMA 4.4.1. Let p,q,b,n ≥ 1. The following is provable in 
SMAH. Let M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) be a p,q,b-
structure. There exist r ≥ 1 and infinite sets D[1] ⊆ ... ⊆ 
D[n] ⊆ M*[r] such that D[1] ⊆ {cj*: j ≥ 0}, and for all 1 ≤ 
i < n, f*D[i] ⊆ D[i+1] ∪. g*D[i+1]. Furthermore, this 
entire Lemma, starting with “Let p...”, is provable in RCA0. 
 
Proof: Let p,q,b,n,M* be as given. Proceed as discussed 
above. One of the important points is that we only need M* 
= (N*,0*,1*,<*,+*) to obey the axioms for a discretely 
ordered commutative group. QED 
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By using Lemma 4.4.1, we will no longer need to refer back 
to section 4.2.  
 
We can obviously view clauses 3-7 in the definition of 
p,q,b-structure as universal axioms. Recall that b is a 
standard integer. 
 
We now introduce the notion of p,q,b;r-structure, which is 
a level r approximation to a p,q,b-structure.  
 
DEFINITION 4.4.4. Let p,q,b,r ≥ 1. A p,q,b;r-structure is a 
system of the form  
 

M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) 
 
such that the following holds.  
 
a. Clauses 1,2,3 in the definition of p,q,b-structure, 
without change. 
b. All instantiations of the universal sentences under 
clauses 4-7, by closed terms of length ≤ r. Here length 
counts the total number of occurrences of constant and 
function symbols that appear.  
 
In particular, we are using the following specialization of 
clause 7 in the definition of p,q,b-structure: 
 
7’. The c*’s form a strictly increasing set of 
indiscernibles for the atomic sentences of M* whose terms 
are of length ≤ r.  
 
Again, we do not require that every element of N* be the 
value of a closed term.  
 
DEFINITION 4.4.5. A p,q,b;r;n-special structure is a 
p,q,b;r-structure M* where there exist infinite D1 ⊆ ... ⊆ 
Dn ⊆ M*[r/(p+q)] such that  
i. For all 1 ≤ i < n, f*Di ⊆ Di+1 ∪. g*Di+1. 
ii. D1 ⊆ {cj:* j ≥ 0}.  
 
We use M*[r/(p+q)] instead of M*[r] since in clause i, we 
are applying f*,g* to p,q, terms, respectively, and want 
all relevant terms to have length at most r.  
 
DEFINITION 4.4.6. The r-type of a p,q,b;r-structure M* is 
the set of all closed atomic sentences, whose terms have 



 5 

length ≤ r, involving only the constants 0,1,c0,...,c2r, 
which hold in M*. Thus r-types are finite sets.  
 
DEFINITION 4.4.7. A p,q,b;r-type is the r-type of a 
p,q,b;r-structure. A p,q,b;r;n-special type is the r-type 
of a p,q,b;r;n-special structure.  
 
LEMMA 4.4.2. Let M* be a p,q,b;r-structure. Then M* is a 
p,q,b;r;n-special structure if and only if the r-type of M* 
is a p,q,b;r;n-special type.  
 
Proof: Let M* be a p,q,b;r-structure. First suppose that M* 
is a p,q,b;r;n-special structure. Then by definition, the 
r-type of M* is a p,q,b;r;n-special type.  
 
Conversely, suppose the r-type τ of M* is a p,q,b;r;n-
special type. Let M*’ be a p,q,b;r;n-special structure of 
r-type τ.  
 
Let D1 ⊆ ... ⊆ Dn ⊆ M*’[r/(p+q)] be infinite, where 
i. For all 1 ≤ i < n, f*Di ⊆ Di+1 ∪. g*Di+1. 
ii. D1 ⊆ {cj*: j ≥ 0}.  
 
We can obviously come up with an infinite list of atomic 
sentences whose terms are of length ≤ r, whose truth in M*’ 
witnesses that M*’ is a p,q,b;r;n-special structure. These 
include the atomic sentences with terms of length ≤ r that 
justify that M*' is a p,q,b;r-structure, and the atomic 
sentences with terms of length ≤ r that justify the special 
clauses i,ii just above. This uses the fact that the 
lengths of f(s1,...,sp), g(t1,...,tq) are ≤ r provided the 
lengths of s1,...,sp,t1,...,tq are ≤ r/(p+q). But since M* 
and M*’ have the same r-type, they agree on all such 
statements. Hence M* is a p,q,b;r;n-special structure. QED 
 
We can view the following as a uniform version of Lemma 
4.4.1. 
 
LEMMA 4.4.3. Let p,q,b,n ≥ 1. The following is provable in 
SMAH. There exist r ≥ 1 such that every p,q,b;r-structure is 
p,q,b;r;n-special. Furthermore, this entire Lemma, starting 
with “Let p...” is provable in RCA0. 
 
Proof: Fix p,q,b,n ≥ 1. We now argue in SMAH. Suppose this 
is false. Let T be the following theory in the language of 
p,q,b-structures. 
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i. Let r ≥ 1. Assert the axioms for being a p,q,b;r-
structure. 
ii. Let r ≥ 1 and τ be a p,q,b;r;n-special type. Assert that 
τ is not the r-type of the p,q,b;r-structure. 
 
We claim that every finite subset of T is satisfiable. To 
see this, let r be an upper bound on the r's used in the 
finite subset. By hypothesis, there exists a p,q,b;r-
structure M* that is not a p,q,b;r;n-special structure. Fix 
r,M*. 
 
We claim that M* satisfies the finite subset of T. Let τ be 
the r-type of the p,q,b;r-structure M*. 
 
Obviously M* satisfies all instances of i) for r’ ≤ r. Now 
let 1 ≤ r’ ≤ r and τ’ be a p,q,b;r’;n-special type. Suppose 
that τ’ is the correct r’-type of M*. I.e., M* has r’-type 
τ’. By Lemma 4.4.2, M* is a p,q,b;r’;n-special structure. 
Since M* is a p,q,b;r-structure, M* is a p,q,b;r;n-special 
structure. This is a contradiction.   
 
By the compactness theorem, T is satisfiable. Let M* 
satisfy T. By Lemma 4.4.1, let r be such that M* is 
p,q,b;r;n-special. Let τ be the r-type of M*. Then τ is a 
p,q,b;r;n-special type. By axioms ii) above, τ is not the r-
type of M*. This is a contradiction. QED 
 
LEMMA 4.4.4. There is a presentation of a primitive 
recursive function Q(p,q,b,r,τ) such that the following is 
provable in RCA0. Q(p,q,b,r,τ) = 1 if and only if τ is a 
p,q,b;r-type (as a Gödel number).  
 
Proof: We give the following necessary and sufficient 
finitary condition for τ to be a p,q,b;r-type.  
 
1. τ is a set of atomic sentences in 0,1,<,+,f,g,c0,...,c2r 
whose terms have length ≤ r, involving only the constants 
0,1,c0,...,c2r. 
 
2. There is a system V* = 
(D,E,0*,1*,<*,+*,f*,g*,c0*,...,c2r*) which obeys the 
following conditions. 
 
i. D,E have cardinality at least 1 and at most some 
specific iterated exponential in p,q,r.  
ii. 0*,1* ∈ D. 
iii. +*:D2 → E. 
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iv. f*:Dp → E. 
v. g*:Dq → E. 
vi. D is the set of values of the closed terms of length ≤ 
r. 
vii. E is D union the values of +*,f*,g*.  
vii. All axioms in clause b in the definition of p,q,b;r-
structure hold in V*.  
viii. All sentences in τ hold in V*. 
ix. All atomic sentences in 0,1,<,+,f,g,c0,...,c2r outside τ, 
with terms of length ≤ r, fail in V*.  
 
This condition is necessary because such a structure V* can 
be obtained from any p,q,b;r-structure M* of r-type τ by 
taking D to be the set of values of closed terms in M* of 
length ≤ r, restricting M* in the obvious way. The atomic 
sentences in 0,1,<,+,f,g,c0,...,c2r that hold in V* are the 
same as those that hold in M*, which are the elements of τ.  
 
For the other direction, let τ,V* be given as above. Using 
the indiscernibility in ix, we can canonically stretch V* 
to 
 

W* = (D’,E’,0*,1*,<*’,+*’,f*’,g*’,c0*’,c1*’,...) 
 
which obviously obeys clause 1 and clauses 2i-2ix above, 
modified to incorporate all constant symbols c0,c1,... . We 
now have all of the conditions we need for being a p,q,b;r-
structure except that we only have D’ ⊆ E’. However, this 
is easily remedied without affecting the properties of W* 
by taking the domain to be E’, and extending +*’,f*’,g*’ 
arbitrarily to the tuples from E’ that are not tuples from 
D’, into E’. This resulting modification of W* is a 
p,q,b,r-structure with r-type τ. QED 
 
Let τ be a p,q,b;r-type. We want to express  
 
1) τ is a p,q,b;r;n-special type 
 
as a sentence λ(k,n,p+q+2,R1,...,Rn-1) of section 4.3, and 
then apply Theorem 4.3.8. 
 
Recall that 1) is equivalent to the condition  
 
2) there exists a p,q,b;r-structure M* of r-type τ and 
infinite sets D1 ⊆ ... ⊆ Dn ⊆ M*[r/(p+q)] such that  
i. For all 1 ≤ i < n, f*Di ⊆ Di+1 ∪. g*Di+1. 
ii. D1 ⊆ {cj*: j ≥ 0}. 
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We now put this in a more syntactic form.  
 
DEFINITION 4.4.8. A p,q,r-term is a closed term in 
0,1,+,f,g and constants c0,c1,... of length at most r.  
 
We identify M*[r] with the set of all p,q,r-terms. Of 
course, a given element of M*[r] may be the value of many 
p,q,r-terms.  
 
DEFINITION 4.4.9. We let τ* be the set of all atomic 
sentences obtained from elements of τ by replacing c’s by 
c’s in an order preserving way. 
 
3) there exist infinite sets T1 ⊆ ... ⊆ Tn of p,q,r/(p+q)-
terms such that  
i. For any two distinct elements t,t’ of Tn, t = t’ ∉ τ*. 
ii. Every t ∈ T1 is some ck.  
iii. Let 1 ≤ i < n and t1,...,tp ∈ Ti. Then there exists t ∈ 
Ti+1 such that f(t1,...,tp) = t ∈ τ*, or there exist 
t1’,...,tq’ ∈ Ti+1 such that f(t1,...,tp) = g(t1’,...,tq’) ∈ 
τ*. 
iv. Let t,t1,...,tq ∈ Tn. Then g(t1,...,tq) = t ∉ τ*. 
v. For all k ≥ 0 and t1,...,tp ∈ Tn, f(t1,...,tp) = ck ∉ τ*. 
 
LEMMA 4.4.5. The following is provable in RCA0. Let 
p,q,b,n,r ≥ 1 and τ be a p,q,b;r-type. Then conditions 1)–3) 
are equivalent. 
 
Proof: Let τ be a p,q,b;r-type. It is obvious that 1),2) are 
equivalent. So assume 2) holds. We derive 3). Let M* be a 
p,q,b;r-structure of r-type τ, and D1 ⊆ ... ⊆ Dn ⊆ 
M*[r/(p+q)] be infinite sets such that  
 
i. For all 1 ≤ i < n, fDi ⊆ Di+1 ∪. gDi+1. 
ii. D1 ⊆ {cj*: j ≥ 1}. 
 
For each x ∈ Dn, pick a p,q,r/(p+q)-term x# of least 
possible length whose value in M* is x. If x is some ci* 
then make sure that x# is ci. Set Ti = {x#: x ∈ Di}.  
 
Since D1 ⊆ ... ⊆ Dn, clearly T1 ⊆ ... ⊆ Tn. Since every x ∈ 
Dn lies in M*[r/(p+q)], clearly every x# ∈ Tn has length ≤ 
r/(p+q).  
 
Let t,t' ∈ Tn be distinct. Write t = x#, t' = y#. Then x# ≠ 
y#, and so t = t' is false. Hence t = t' ∉ τ*. Let t ∈ T1. 
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Write t = x#, x ∈ D1. Then x is some ck*. Therefore x# = ck. 
This establishes 3i and 3ii.   
 
To verify 3iii, let 1 ≤ i < n and x1#,...,xp# ∈ Ti. Then 
x1,...,xp ∈ Di. Hence f*(x1,...,xp) ∈ f*Di ⊆ Di+1 ∪. g*Di+1.  
 
case 1. f*(x1,...,xp) ∈ Di+1. Let the p,q,r/(p+q)-term t ∈ 
Ti+1 have the value f*(x1,...,xp) in M*. Then f(x1#,...,xp#) = 
t holds in M*, and both terms in this equation have length ≤ 
r. Hence f(x1*,...,xp*) = t ∈ τ*.  
 
case 2. f*(x1,...,xp) ∈ gDi+1. Let f*(x1,...,xp) = 
g*(y1,...,yq), where y1,...,yq ∈ Di+1. Then y1#,...,yq# ∈ Ti+1. 
Also f(x1*,...,xp*) = g(y1*,...,yq*) holds in M*, and both 
terms in this equation have length ≤ r. Hence f(x1*,...,xp*) 
= g(y1*,...,yq*) ∈ τ*.  
 
To verify 3iv, let x#,x1#,...,xq# ∈ Tn. Then g(x1#,...,xq#) = 
x# ∉ τ* because g*(x1,...,xq) ≠ x in M*.  
 
To verify 3v, let k ≥ 0 and x1#,...,xp# ∈ Tn. Then 
f(x1#,...,xp#) = ck ∉ τ* because f*(x1,...,xp) ≠ ck* in M*.   
 
Now assume that 3) holds. We establish 2). Let T1 ⊆ ... ⊆ Tn 
be infinite sets of p,q,r/(p+q)-terms such that  
 
i. For any two distinct elements t,t’ of Tn, t = t’ ∉ τ*. 
ii. For all t ∈ T1 there exists k ≥ 0 such that t is ck.  
iii. Let 1 ≤ i < n and t1,...,tp ∈ Ti. Then there exists t ∈ 
Ti+1 such that f(t1,...,tp) = t ∈ Ti+1, or there exist 
t1’,...,tq’ ∈ Ti+1 such that f(t1,...,tp) = g(t1’,...,tq’) ∈ 
τ*. 
iv. Let t,t1,...,tq ∈ Tn. Then g(t1,...,tq) = t ∉ τ*. 
v. For all k ≥ 0 and t1,...,tp ∈ Tn, f(t1,...,tp) = ck ∉ τ*. 
 
Let M* be any p,q,b;r-structure of r-type τ. For each 1 ≤ i 
≤ n, let Di be the set of values of terms in Ti. Then D1 ⊆ 
... ⊆ Dn ⊆ M*[r/(p+q)]. 
 
Let 1 ≤ i < n and x ∈ f*Di. We claim that x ∈ Di+1 ∪ g*Di+1.  
 
To see this, write x = f*(x1,...,xp), x1,...,xp ∈ Di, and let 
t1,...,tp ∈ Ti have values x1,...,xp, respectively. By 3iii, 
let t ∈ Ti+1, where f(t1,...,tp) = t ∈ τ*, or there exists 
t1’,...,tq’ ∈ Ti+1 such that f(t1,...,tp) = g(t1’,...,tq’) ∈ 
τ*.  
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case 1. f(t1,...,tp) = t ∈ τ*. Then f*(x1,...,xp) = x ∈ Di+1.  
 
case 2. Let t1’,...,tq’ ∈ Ti+1, where f(t1,...,tp) = 
g(t1’,...,tq’) ∈ τ*. Let the values of t1’,...,tq’ be 
y1,...,yq ∈ Di+1, respectively. Then f*(x1,...,xp) = 
g*(y1,...,yq).   
 
Now suppose x ∈ Di+1 ∩ gDi+1. Let x be the value of t ∈ Ti+1, 
and write x = g(y1,...,yq), y1,...,yq ∈ Di+1. Let t1,...,tq ∈ 
Ti+1 have values y1,...,yq, respectively. By 3iv, g(t1,...,tq) 
= t ∉ τ*. Since both terms in this equation have length ≤ r, 
we see that g(t1,...,tq) = t is false in M*. Hence 
g*(y1,...,yq) ≠ x. This is a contradiction.  
 
Finally, let x ∈ D1. Then x is the value of a term t ∈ T1. 
By 3ii, t is some ck. Hence x is some ck*. QED 
 
We can conveniently represent the p,q,r-terms as elements 
of Nk in the following way. This integer k will be set 
below. 
 
DEFINITION 4.4.10. Two p,q,r-terms have the same shape if 
and only if the second can be obtained from the first by 
replacing c’s by c’s, where we do not require that equal 
c’s be replaced by equal c’s. 
 
Let e be the number of shapes of the p,q,r-terms.  
 
We represent the p,q,r-term σ as follows. Let the shape of 
σ be 1 ≤ i ≤ e. Here the shapes have been arbitrarily 
indexed without repetition, by 1 ≤ i ≤ e.  
 
DEFINITION 4.4.9. The representations of σ are obtained as 
follows. First write down a sequence of e elements of N, 
where exactly i of these elements are the same as the first 
of these elements. Follow this by the sequence of 
subscripts of the c’s that appear from left to right. If 
this sequence of c’s is of length < r then fill it out to 
length r by repeating the last argument. This results in a 
representation of σ as an element of Ne+r. Obviously, σ will 
have infinitely many representations.  
 
Set k = e+r. We will use the above representation of p,q,r-
terms to write 3) in the form of a sentence 
λ(k,n,p+q+2,R1,...,Rn-1), as in section 4.3.  
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4) There exist infinite sets B1 ⊆ ... ⊆ Bn ⊆ Nk of 
p,q,r/(p+q)-representations such that  
a. Distinct elements of Bn represent distinct p,q,r/(p+q)-
terms. 
b. For each 1 ≤ i ≤ n, let Ti be the p,q,r/(p+q)-terms 
represented by the elements of Bi. Then T1,...,Tn obeys 3) 
above.   
 
Note the use of τ* in 3). We represent elements of τ* as a 
p,q,r-representation followed by two equal elements of N 
(indicating <), or followed by two unequal elements of N 
(indicating =), followed by a p,q,r-representation. Keep in 
mind that the lengths of p,q,r-representations are fixed at 
k = e+r. Hence representations of elements of τ* are fixed 
at length k+2+k = 2k+2. If τ is a p,q,b;r-type, then τ is 
finite and τ* is order invariant.   
 
LEMMA 4.4.6. The following is provable in RCA0. Let 
p,q,b,n,r ≥ 1 and τ be a p,q,b;r-type. Conditions 1)–4) are 
each equivalent to λ(k,n,p+q+2,R1,...,Rn-1), for some order 
invariant relations R1,...,Rn-1 ⊆ N2k(p+q+2) obtained explicitly 
from p,q,b,n,r,τ.   
 
Proof: We argue in RCA0. Let p,q,b,n,r ≥ 1 and τ be a 
p,q,b;r-type. It is clear that 3) is equivalent to 4), and 
hence by Lemma 4.4.5, 1)–4) are equivalent. We now 
exclusively use clause 4.  
 
B1 ⊆ ... ⊆ Bn asserts, for each 1 ≤ i < n, that (∀x ∈ Bi)(∃y 
∈ Bi+1)(x = y).  
 
“Distinct elements of Bn represent distinct p,q,r/(p+q)-
terms” is of the form (∀x,y ∈ Bn)(S(x,y)).  
 
“Distinct elements t,t’ of the corresponding Tn have t = t’ 
∉ τ*” is of the form (∀x,y ∈ Bn)(S(x,y)).  
 
Clause 3ii for the corresponding T1 is of the form (∀x ∈ 
B1)(S(x)). 
 
Clause 3iii for the corresponding T’s is of the form (∀i ∈ 
[1,n))(∀x1,...,xp ∈ Bi)(∃y1,...,yq ∈ Bi+1)(S(x1,...,xp, 
y1,...,yq)). 
 
Clause 3iv for the corresponding Tn is of the form 
(∀x1,...,xq+1 ∈ Bn)(S(x1,...,xq+1)).  
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Clause 3v for the corresponding Tn is of the form 
(∀x1,...,xp+1 ∈ Bn)(S(xp+1) → S’(x1,...,xp+1)).  
 
Here all the S’s are order invariant relations. QED     
 
LEMMA 4.4.7. There is a presentation of a primitive 
recursive function H such that the following is provable in 
ACA’. Let p,q,b,n,r ≥ 1 and τ be a p,q,b;r-type. Then 
H(p,q,b,r,n,τ) = 1 if and only if τ is a p,q,b;r;n-special 
type (as a Gödel number). 
 
Proof: Let p,q,b,r,n,τ be given, where τ is a p,q,b;r-type. 
Apply Lemma 4.4.6 to obtain order invariant R1,...,Rn-1. Now 
apply Theorem 4.3.8. QED 
 
We fix H as given by Lemma 4.4.7.   
 
LEMMA 4.4.8. Let p,q,b,n ≥ 1. The following is provable in 
SMAH. (∃r)(∀τ)(Q(p,q,b,r,τ) = 1 → H(p,q,b,r,n,τ) = 1). 
Furthermore, this entire Lemma, starting with “Let p...”, 
is provable in RCA0. 
 
Proof: Let p,q,b,n be as given. By Lemma 4.4.3, SMAH proves 
the existence of r ≥ 1 such that every p,q,b;r-type is a 
p,q,b;r;n-special type. Now apply Lemmas 4.4.4 and 4.4.7. 
QED  
 
LEMMA 4.4.9. RCA0 + 1-Con(SMAH) proves (∀p,q,b,n ≥ 1) 
(∃r)(∀τ)(Q(p,q,b,r,τ) = 1 → H(p,q,b,r,n,τ) = 1). 
 
Proof: We argue within RCA0 + 1-Con(SMAH). Let p,q,b,n ≥ 1 
be given. By Lemma 4.4.8,  
 
1) (∃r)(∀τ)(Q(p,q,b,r,τ) = 1 → H(p,q,b,r,n,τ) = 1) 
 
is provable in SMAH. Note that the quantifier ∀τ in 1) is 
bounded. Hence by 1-Con(SMAH), this Σ01 sentence is true. 
QED 
 
LEMMA 4.4.10. The following is provable in ACA’ + 1-
Con(SMAH). (∀p,q,b,n ≥ 1)(∃r)(∀τ)(τ is a p,q,b;r-type → τ 
is a p,q,b;r;n-special type).   
 
Proof: By Lemmas 4.4.4, 4.4.7, and 4.4.9. QED  
 
For Propositions C,D, see Appendix A.  
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THEOREM 4.4.11. Propositions A,B,C,D are provable in ACA’ + 
1-Con(SMAH). 
 
Proof: Propositions A,C,D are immediate consequences of 
Proposition B over RCA0 (see Lemmas 4.2.1 and 5.1.1). We 
argue in ACA’ + 1-Con(SMAH). Let p,q,b,n ≥ 1, and f ∈ 
ELG(p,b), g ∈ ELG(q,b). Let r be given by Lemma 4.4.10.  By 
Ramsey’s theorem for 2r-tuples in ACA’, we can find a 
p,q,b;r-structure M = (N,0,1,<,+,f,g,c0,c1,...). Let τ be 
its r-type. By Lemma 4.4.10, τ is a p,q,b;n;r-special type. 
By Lemma 4.4.2, M is a p,q,b;r;n-special structure. Let D1 ⊆ 
... ⊆ Dn ⊆ N, where D1 ⊆ {c0,c1,...}, and each fDi ⊆ Di+1 ∪. 
gDi+1, and D1 ∩ fDn = ∅. This is Proposition B, thus 
concluding the proof. QED   


