
 1 

4.3. Some Existential Sentences. 
 
In this section, we prove a crucial Lemma needed for 
section 4.4. We consider existential sentences of the 
following special form.   
 
DEFINITION 4.3.1. Define λ(k,n,m,R1,...,Rn-1) =  
 

(∃ infinite B1,...,Bn ⊆ Nk) 
(∀i ∈ {1,...,n-1})(∀x1,...,xm ∈ Bi)  

(∃y1,...,ym ∈ Bi+1)(Ri(x1,...,xm,y1,...,ym)) 
 
where k,n,m ≥ 1, and R1,...,Rn-1 ⊆ N2km are order invariant 
relations. Recall that order invariant sets of tuples are 
sets of tuples where membership depends only on the order 
type of a tuple. 
 
Note the stratified structure of λ(k,n,m,R1,...,Rn-1). It 
asserts that there are n infinite sets such that for all 
elements of the first there are elements of the second with 
a property, and for all elements of the second there are 
elements of the third with a property, etcetera.   
 
It is evident that even RCA0 suffices to define truth for 
the sentences of the form λ(k,n,m,R1,...,Rn-1). For in RCA0, 
we can  
 
i. Appropriately code finite sequences of subsets of Nk as 
subsets of N. 
ii. Appropriately code finite sequences of elements of N as 
elements of N. 
iii. Appropriately treat order invariant sets of tuples 
from N. 
 
This does not mean that we can form the set of all true 
sentences of the form λ(k,n,m,R1,...,Rn-1) in RCA0 or even 
ACA’. However, we will show that this is in fact the case 
for ACA’. See Definition 1.4.1.  
 
Specifically, we will present a primitive recursive 
criterion for the truth of sentences λ(k,n,m,R1,...,Rn-1), 
and prove that the criterion is correct, within the system 
ACA’. 
 
We first put the sentences λ(k,n,m,R1,...,Rn-1) in 
substantially simpler form.  
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DEFINITION 4.3.2. Define λ’(k,n,R1,...,Rn-1) =  
 

(∃ infinite B1,...,Bn ⊆ Nk) 
(∀i ∈ {1,...,n-1}) 

(∀x,y,z ∈ Bi)(∃w ∈ Bi+1)(Ri(x,y,z,w)) 
 
where k,n ≥ 1, and R1,...,Rn-1 ⊆ N4k are order invariant 
relations.  
 
LEMMA 4.3.1. There is a primitive recursive procedure for 
converting any sentence λ(k,n,m,R1,...,Rn-1) to a sentence 
λ’(k’,n’,S1,...,Sn’-1) with the same truth value. In fact, 
ACA’ proves that any λ(k,n,m,R1,...,Rn-1) has the same truth 
value as its conversion λ’(k’,n’,S1,...,Sn’-1). 
 
Proof: Start with  
 
*) (∃ infinite B1,...,Bn ⊆ Nk)(∀i ∈ {1,...,n-1}) 
(∀x1,...,xm ∈ Bi)(∃y1,...,ym ∈ Bi+1)(Ri(x1,...,xm,y1,...,ym)).  
 
Let C,D ⊆ Nkm. We think of C,D as sets of m-tuples from Nk. 
We write C# ⊆ Nk for the set of all k-tuple components of 
elements of C.  
 
We write C ≤ D if and only if C,D ⊆ Nkm, and for all 
(x1,...,xm),(y1,...,ym),(z1,...,zm)  ∈ C,  
 
i. If (x1,...,xm) = (y1,...,ym) = (z1,...,zm) then (x1,...,xm) 
∈ D. 
ii. If (x1,...,xm),(y1,...,ym),(z1,...,zm) are distinct then 
(x2,...,xm,x1) ∈ D. 
iii. If (x1,...,xm) ≠ (y1,...,ym) = (z1,...,zm) then 
(x1,y1,...,ym-1) ∈ D.  
iv. If (x1,...,xm) = (y1,...,ym) ≠ (z1,...,zm) then 
(x1,y1,...,ym-1) ∈ D.  
 
We claim that if C1 has at least three elements and C1 ≤ ... 
≤ C2m, then C1#m ⊆ C2m ⊆ Nkm. To see this, let C1,...,C2m be as 
given. By i), C1 ⊆ ... ⊆ C2m. By ii), (x1,...,xm) ∈ C1 → 
(x2,...,xm,x1) ∈ C2. We can continue for m steps, obtaining 
that for all (x1,...,xm) ∈ C1, all m rotations of (x1,...,xm) 
lie in Cm.  
 
It follows that every α ∈ C1#m is the sequence of first 
terms of some β1,...,βm ∈ Cm. (Here α is an m tuple from C1# 
and β1,...,βm are m tuples from Cm). By iii,iv, we can 
replace the first term of βm by the first term of βm-1, and 
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shift the remaining terms of βm to the right, removing the 
last term of βm, with the resulting m tuple β' starting with 
the first term of βm-1 followed by the first term of βm. Thus 
β' ∈ Cm+1. At the second stage, we can use βm-2 and β' to form 
β'' ∈ Cm+2. We continue this process until we finally use β1, 
to arrive at α ∈ C2m.   
 
We now claim that *) is equivalent to   
 
**) (∃ infinite C1,...,C2nm ⊆ Nkm)(C1 ≤ ... ≤ C2m ∧ C2m+1 ≤ ... 
≤ C4m ∧ ... ∧ C2nm-2m+1 ≤ ... ≤ C2nm ∧ (∀i ∈ {1,...,n-1}) 
(∀x ∈ C2im)(∃y ∈ C2im+1)(Ri(x,y))).   
 
To see this, let B1,...,Bn witness *). Set  
 

C1 = ... = C2m = B1m 
... 

C2nm-2m+1 = ... = C2nm = Bnm. 
 
Clearly  
 

C1 ≤ ... ≤ C2m 
... 

C2nm-2m+1 ≤ ... ≤ C2nm. 
 
Conversely, let C1,...,C2nm witness **). Since C1,...,C2nm are 
infinite, we see that C1#m ⊆ C2m ∧ ... ∧ C2nm-2m+1#m ⊆ C2nm. For 
all 1 ≤ i ≤ n, set Bi = C2(i-1)m+1#. Then these B’s witness *).  
 
It is easy to see that **) is a sentence of the form 
λ’(k’,n’,S1,...,Sn’-1). The relations in **) between 
successive C1,...,C2m, and between successive C2m+1,...,C4m, 
etcetera, are of the form ∀∀∀∃ according to the definition 
of ≤. The relations in **) between C2m,C2m+1, and between 
C4m,C4m+1, etcetera, are of the form ∀∃. QED  
 
We now define sets Y1,...,Yn by  
 
i. Y1 = N. 
ii. For 1 ≤ i < n, Yi+1 = Yi × Yi × Yi × Yi.  
 
LEMMA 4.3.2. A sentence λ’(k,n,R1,...,Rn-1) holds if and only 
if there exist functions fi:Yi → Nk, 1 ≤ i ≤ n, such that 
the following holds.  
i. f1 is one-one. 
ii. For all 1 ≤ i ≤ n and x,y,z ∈ Yi, fi(x,y,z,w) as a 
function of w ∈ Yi, is one-one.   



 4 

iii. For all 1 ≤ i < n and x,y,z ∈ Yi, 
Ri(fi(x),fi(y),fi(z),fi+1(x,y,z,z)). 
 
Proof: Let λ’(k,n,R1,...,Rn-1) be given. Suppose 
λ’(k,n,R1,...,Rn-1) is true. Let B1,...,Bn ⊆ Nk be infinite, 
where for all 1 ≤ i < n, (∀x,y,z ∈ Bi)(∃w ∈ Bi+1)(Ri(x,y,z)).  
 
We now define f1,...,fn inductively as follows. Let f1:N → 
B1 be a bijection. Suppose surjective fi:Yi → Bi has been 
defined, 1 ≤ i < n. To define fi+1:Yi+1 → Bi+1, let x,y,z ∈ 
Yi. Since fi(x),fi(y),fi(z) ∈ Bi, set fi+1(x,y,z,z) ∈ Bi+1 to 
be such that Ri(fi(x),fi(y),fi(z),fi+1(x,y,z,z)). Define 
fi+1(x,y,z,w), w ∈ Yi, w ≠ z, so that fi+1(x,y,z,w) is a 
bijection from Yi+1 onto Bi+1 as a function of w.  
 
Conversely, let fi:Yi → Nk, 1 ≤ i ≤ n, be such that i)-iii) 
above hold. For all 1 ≤ i ≤ n, let Bi = rng(fi). Then each Bi 
is infinite. Let 1 ≤ i < n and u,v,w ∈ Bi. Let u = fi(x), v 
= fi(y), w = fi(z), where x,y,z ∈ Yi. Then 
Ri(u,v,w,fi+1(x,y,z,z)). Since fi+1(x,y,z,z) ∈ Bi+1, we are 
done. QED 
 
We can use Lemma 4.3.2 to convert λ’(k,n,R1,...,Rn-1) into a 
sentence of a rather simple form.  
 
DEFINITION 4.3.3. Define µ(p,q,ϕ) = 
 

(∃f:Np → N)(∀x1,...,xq ∈ N)(ϕ) 
 
where ϕ is a propositional combination of atomic formulas 
of the forms xi < xj, f(y1,...,yp) < f(z1,...,zp), where 
xi,xj,y1,...,yp,z1,...,zp are among the (distinct) variables 
x1,...,xq.  
 
LEMMA 4.3.3. There is a primitive recursive procedure for 
converting any sentence λ’(k,n,S1,...,Sn-1) to a sentence 
µ(p,q,ϕ), with the same truth value. In fact, ACA’ proves 
that any λ’(k,n,S1,...,Sn-1) has the same truth value as its 
conversion µ(p,q,ϕ). 
 
Proof: We use Lemma 4.3.2. We can obviously identify each Yi 
with N4^(i-1). Then the condition in Lemma 4.3.2 takes the 
following form: there exists a definite finite number of 
functions from various Cartesian powers of N into Nk such 
that a universally quantified statement (quantifiers in N) 
holds whose matrix is a propositional combination of 
numerical comparisons, either between integer variables, or 
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designated coordinates of values (which lie in Nk) of the 
functions at tuples of variables. This is clear by 
examining clauses i) – iii) in Lemma 4.3.2, and noting that 
the Si are order invariant.  
 
The use of Nk as a range here can be eliminated in favor of 
using more functions from various Cartesian powers of N 
into N. Thus we obtain an equivalent of the following form: 
there exists a definite finite number of functions from 
various Cartesian powers of N into N such that a 
universally quantified statement holds whose matrix is a 
propositional combination of numerical comparisons, either 
between integer variables, or values of the functions at 
tuples of variables. 
 
By adding dummy variables, we can assume that all of the 
functions have the same arity. Thus we have  
 

*) (∃f1,...,fr:Np → N)(∀x1,...,xq ∈ N)(ϕ) 
 
where ϕ is a propositional combination of atomic formulas 
of the forms xi < xj, fa(y1,...,yp) < fb(z1,...,zp), where 
xi,xj,y1,...,yp,z1,...,zp are among the (distinct) variables 
x1,...,xq. It remains to reduce this to quantification over 
a single function. 
 
The idea is to introduce a single function variable f:Np+r → 
N which does the work of f1,...,fr in a sufficiently 
explicit way. We say that f is special if and only if for 
all distinct c,d ∈ N, f(y1,...,yp,c,...,c,d,...,d) depends 
only on y1,...,yp and the number of c’s displayed (which is 
from 1 to r), and not what integers c,d are (as long as c ≠ 
d).  
 
It is now clear that *) is equivalent to  
 

**) (∃f:Np+r → N)(∀u,v ∈ N)(∀x1,...,xp ∈ N) 
(f is special ∧ (u ≠ v → ϕ’)) 

 
where ϕ’ is obtained from ϕ by replacing each fi(y1,...,yp) 
in *) by f(y1,...,yp,u,...,u,v,...,v), where the number of 
u’s displayed is i. QED 
 
We now prove a combinatorial lemma.  
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DEFINITION 4.3.4. Let f:Np → N and A ⊆ N. We say that A is 
an SOI for f if and only if the truth value of any 
statement  
 

f(x1,...,xp) < f(y1,...,yp) 
 
where x1,...,xp,y1,...,yp ∈ A, depends only on the order type 
of the 2p-tuple (x1,...,xp,y1,...,yp). 
 
DEFINITION 4.3.5. We say that A is a strong SOI for f if 
and only if A is an SOI for f such that the following 
holds. Let x1,...,xp,y1,...,yp ∈ A. Suppose (x1,...,xp) and 
(y1,...,yp) have the same order type. Suppose also that for 
all 1 ≤ i ≤ p, xi = yi ∨ yi > max(x1,...,xp). Then 
f(x1,...,xp) ≤ f(y1,...,yp);  
 
DEFINITION 4.3.6. We say that A is a special SOI for f if 
and only if A is a strong SOI for f such that the following 
holds. Let x1,...,xp,y1,...,yp ∈ A. Suppose (x1,...,xp) and 
(y1,...,yp) have the same order type. Suppose also that for 
all 1 ≤ i ≤ p, xi = yi ∨ yi > max(x1,...,xp). If f(x1,...,xp) 
< f(y1,...,yp) then f(y1,...,yp) is greater than all 
f(z1,...,zp), with |z1,...,zp| ≤ |x1,...,xp|.   
 
The above definitions makes perfectly good sense for 
functions f:Ap → N where A is finite. In this finite 
context, we will be particularly interested in the case A = 
[0,q].  
 
LEMMA 4.3.4. The following is provable in ACA’. For all p ≥ 
1, every f:Np → N has an infinite special SOI A ⊆ N. In 
fact, every infinite SOI for f:Np → N is a special SOI for 
f.  
 
Proof: Let f:Np → N. By the infinite Ramsey theorem for 2p-
tuples, let A ⊆ N be an infinite SOI for f. We now show 
that A is a special SOI for f.  
 
Let x1,...,xp,y1,...,yp ∈ A. Suppose x = (x1,...,xp) and y = 
(y1,...,yp) have the same order type, and for all 1 ≤ i ≤ p, 
xi = yi ∨ yi > max(x1,...,xp).  
 
Suppose x ≠ y. We claim that x,y are the first two terms of 
an infinite sequence of elements of Np, written 
x,y,w1,w2,..., such that the order types of (x,y), (y,w1), 
(w1,w2), ..., are the same. To see this, let x1’ < ... < xi’ 
and y1’ < ... < yj’ be the strictly increasing enumeration 
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of the terms of (x1,...,xp) and (y1,...,yp), respectively. 
Since (x1,...,xp) and (y1,...,yp) have the same order type, i 
= j. It is also clear that for the least k such that xk’ ≠ 
yk’, we have yk’ > xi’. Now choose w1 of the same order type 
as x,y so that its strictly increasing enumeration starts 
with the same x1’ < ... < xk-1’ and continues higher than 
yi’. Then obviously (x,y) and (y,w1) have the same order 
type. Continue in this way indefinitely.   
 
Now suppose f(x) > f(y). Then x ≠ y and we can use the 
x,y,w1,w2,... constructed in the previous paragraph. Since A 
is an SOI for f, if f(x) > f(y) then f(x) > f(y) > f(w1) > 
f(w2) ..., which is impossible. Hence f(x) ≤ f(y).  
 
Finally, suppose f(x) < f(y), and let z ∈ [0,max(x)]p. Since 
x ≠ y, we can use the x,y,w1,w2,... constructed previously. 
Note that the pairs (y,z),(w1,z),(w2,z), ... all have the 
same order type. Suppose f(y) ≤ f(z). Since A is an SOI for 
f, we see that each f(wi) ≤ f(z). Also since A is an SOI for 
f and f(x) < f(y), we have that each f(wi) < f(wi+1), and 
therefore the f(wi) are unbounded. This is a contradiction. 
QED 
 
LEMMA 4.3.5. The following is provable in ACA’. Let q ≥ 3p ≥ 
1, and f:[0,q]p → N. Assume [0,q] is a special SOI for f. 
There exists g:Np → N such that N is a special SOI for g, 
where for all x,y ∈ [0,q]p, f(x) ≤ f(y) ↔ g(x) ≤ g(y).  
 
Proof: Let p,q,f be as given. We now put a relation ≤* on Np 
as follows. Let x,y ∈ Np. Then x ≤* y if and only if there 
exists α,β ∈ [0,q]p such that  
 
i. (x,y) and (α,β) have the same order type. 
ii. f(α) ≤ f(β).  
 
Since [0,q] is an SOI for f, we have that x ≤ y* if and only 
if  
 
for all α,β ∈ [0,q]p, if (x,y) and (α,β) have the same order 

type  
then f(α) ≤ f(β). 

 
Since q ≥ 2p, every element of N2p is of the same order type 
as an element of [0,q]2p. Hence ≤* is reflexive and 
connected.  
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To see that ≤* is transitive, let x ≤* y ∧ y ≤* z. Let a1 < 
... < ar be an enumeration of the combined coordinates of 
x,y,z. Clearly 1 ≤ r ≤ 3p ≤ q. Let (x,y,z) have the same 
order type as (α,β,γ) ∈ [0,q]3p. Then f(α) ≤ f(β) and f(β) ≤ 
f(γ). Hence f(α) ≤ f(γ) and (x,z),(α,γ) have the same order 
type. Therefore x ≤* z.  
 
It is standard to define the equivalence relation of ≤* by x 
=* y ↔ (x ≤* y ∧ y ≤* x). This is obviously equivalent to 
the existence of α,β ∈ [0,q]p such that (x,y),(α,β) have the 
same order type and f(α) = f(β). This is also equivalent to: 
for all α,β ∈ [0,q]p, if (x,y) and (α,β) have the same order 
type then f(α) = f(β).  
 
We now show that the order type of ≤*, modulo its 
equivalence relation =*, is finite or ω.  
 
We first verify that ≤* is well founded. Suppose x1 >* x2 >* 
... . Apply Ramsey’s theorem to the comparison of the b-th 
coordinate of xi with the b-th coordinate of xj, b = 
1,...,p. Then we obtain an infinite subsequence y1 >* y2 >* 
... such that for all 1 ≤ b ≤ p, either the b-th coordinates 
of the y’s are constant, or strictly increasing. We can 
then pass to an infinite subsequence z1 >* z2 >* ... such 
that for all i < j, the p-tuples zi,zj satisfy the 
hypotheses in the definition of strong SOI. Let (z1,z2) and 
(α,β) have the same order type, where α,β ∈ [0,q]p. Then α,β 
satisfy the hypotheses in the definition of strong SOI. 
Therefore f(α) ≤* f(β), and hence z1 ≤* z2. This is a 
contradiction.  
 
We now verify that ≤* has no limit points. Suppose y1 <* y2 
... <* x. As before, pass to an infinite subsequence z1 <* 
z2 ... <* x, such that for all i < j the p-tuples zi,zj 
satisfy the hypotheses in the definition of strong SOI. 
Choose zi <* zi+1 such that max(zi) > max(x). Let α,β,γ ∈ 
[0,q]p, where (α,β,γ) and (x,zi,zi+1) have the same order 
type. Then β,γ satisfy the hypotheses in the definition of 
special SOI. Also f(β) < f(γ) and |α| < |β|. Since [0,q] is 
a special SOI for f, f(γ) > f(α). Hence zi+1 >* x. This is a 
contradiction.  
 
So we have now shown that the order type of ≤* is finite or 
ω. Note that ≤* is order invariant. Hence =*, <* are also 
order invariant.  
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We define g:Np → N by: g(x) is the position of x in the 
ordering ≤*, counting from 0. Obviously N is an SOI for g, 
since <* is order invariant. Hence by Lemma 4.3.4, N is a 
special SOI for g.  
 
For the final claim of Lemma 4.3.5, let x,y ∈ [0,q]p. 
Suppose f(x) ≤ f(y). Then x ≤* y, and hence g(x) ≤ g(y). 
Suppose g(x) ≤ g(y). Then x ≤* y. Let (x,y) and (α,β) have 
the same order type, α,β ∈ [0,q]p, where f(α) ≤ f(β). Then 
f(x) ≤ f(y). QED 
 
LEMMA 4.3.6. The following is provable in ACA'. Let q ≥ 3p ≥ 
1, and f:[0,q]p → N. Assume [0,q] is a special SOI for f. 
Let g:Np → N be such that N is a special SOI for g, where 
for all x,y ∈ [0,q]p, f(x) ≤ f(y) ↔ g(x) ≤ g(y). Then 
µ(p,q,ϕ) holds with f, where the universal quantifiers are 
restricted to [0,q], if and only if µ(p,q,ϕ) holds with g. 
 
Proof: Let p,q,f,g, and µ(p,q,ϕ) be as given. Assume 
µ(p,q,ϕ) holds with f, where the universal quantifiers are 
restricted to [0,q].  
 
Suppose µ(p,q,ϕ) fails with g. Let x1,...,xq ∈ N be a 
counterexample to µ(p,q,ϕ) with g.  
 
We claim that we can push this counterexample down to lie 
within [0,q], by merely choosing x1’,...,xq’ ∈ [0,q] such 
that (x1’,...,xq’) and (x1,...,xq) have the same order type. 
The reason is that ϕ is a propositional combination of 
formulas of the forms  
 

y < z 
f(y1,...,yq) < f(z1,...,zq) 

 
where y,z,y1,...,yq,z1,...,zq are among the variables 
x1,...,xq. Using the fact that N is a special SOI for g, the 
above inequalities have the same truth values as the 
inequalities 
 

y' < z' 
f(y1',...,yq') < f(z1',...,zq'). 

 
By hypothesis, we can now replace f by g in ϕ with 
x1',...,xq' ∈ [0,q], obtaining ¬µ(p,q,ϕ) with g.  
 
Conversely, suppose µ(p,q,ϕ) fails with f. Let x1,...,xq ∈ 
[0,q] be a counterexample to µ(p,q,ϕ) with f. Then by the 
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same argument, x1,...,xq is a counterexample to µ(p,q,ϕ) 
with g.  
 
It is worth noting that this argument would fail if we 
allowed inequalities of the form u < f(v1,...,vq) in ϕ. Thus 
the restriction on ϕ is important. QED 
 
LEMMA 4.3.7. The following is provable in ACA’. A sentence 
µ(p,q,ϕ), q ≥ 3p, holds if and only if there exists f:[0,q]p 
→ [0,(q+1)p] such that [0,q] is a special SOI for f, and ϕ 
holds for f (with universal quantifiers ranging over 
[0,q]).  
 
Proof: Let µ(p,q,ϕ) be given, q ≥ 3p. Let f:[0,q]p → 
[0,(q+1)p], where [0,q] is a special SOI for f, and µ(p,q,ϕ) 
holds with f, with universal quantifiers restricted to 
[0,q]. Let g be as given by Lemma 4.3.5. By Lemma 4.3.6, 
µ(p,q,ϕ) holds with g. In particular, µ(p,q,ϕ) holds. 
 
Conversely, let µ(p,q,ϕ) hold with g:Np → N. By Lemma 
4.3.4, let A ⊆ N be a special SOI for g of cardinality q+1. 
Then µ(p,q,ϕ) holds for g with universal quantifiers 
restricted to A. Note that g|Ap is isomorphic to a unique 
f:[0,q]p → N by the unique increasing bijection h from A 
onto [0,q]. (Here the isomorphism h acts only on the 
domains, and so only provides the transfer of statements of 
the form f(x1,...,xp) τ f(y1,...,yp) to g(h(x1),...,h(xp)) τ 
g(h(y1),...,h(yp)), where τ ∈ {≤,<,=}). Hence µ(p,q,ϕ) holds 
with f.  
 
Now A is a special SOI for g|Ap. We now show that [0,q] is a 
special SOI for f. By the isomorphism h from g|Ap onto f, 
clearly [0,q] is a strong SOI for f. Now let (x1,...,xp) and 
(y1,...,yp) from [0,q]p have the same order type. Suppose 
also that for all 1 ≤ i ≤ p, xi = yi ∨ yi > max(x1,...,xp). 
Suppose  
 

1) f(x1,...,xp) < f(y1,...,yp) 
|z1,...,zp| ≤ |x1,...,xp|. 

 
We must show that f(y1,...,yp) > f(z1,...,zp). Since 
|z1,...,zp| ≤ q, we can take h-1 throughout 1), and then 
apply that A is a special SOI for g|Ap.  
 
Note that we can obviously arrange that rng(f) ⊆ [0,(q+1)p] 
by counting. QED 
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THEOREM 4.3.8. There is a presentation of a primitive 
recursive function h such that the following holds. ACA’ 
proves that λ(k,n,m,R1,...,Rn-1) is true if and only if 
h(k,n,m,R1,...,Rn-1) = 1.  
 
Proof: Start with λ(k,n,m,R1,...,Rn-1). Pass to 
λ’(k’,n’,S1,...,Sn’-1) by Lemma 4.3.1. Pass to µ(p,q,ϕ), q ≥ 
3p, by Lemma 4.3.3. Now apply Lemma 4.3.7. QED 
 


