### 4.2. Proof using Strongly Mahlo Cardinals.

Recall Proposition A from the beginning of section 3.1. This is the Principal Exotic Case.

PROPOSITION A. For all f,g $\in$ ELG there exist $A, B, C \in I N F$ such that
$A \cup . f A \subseteq C \cup . g B$
$A \cup . f B \subseteq C \cup . g C$.
Recall the definitions of $N$, ELG, INF, U., fA, in Definitions 1.1.1, 1.1.2, 1.1.10, 1.3.1, and 2.1.

In this section, we prove Proposition $A$ in $S M A H^{+}$. It is convenient to prove a stronger statement.

PROPOSITION B. Let $f, g \in$ ELG and $n \geq 1$. There exist infinite sets $A_{1} \subseteq \ldots \subseteq A_{n} \subseteq \mathrm{~N}$ such that i) for all $1 \leq i<n, f A_{i} \subseteq A_{i+1} \cup$. $g A_{i+1}$; ii) $A_{1} \cap f A_{n}=\varnothing$.

LEMMA 4.2.1. The following is provable in $\mathrm{RCA}_{0}$. Proposition B implies Proposition $A$. In fact, Proposition $B$ for $n=3$ implies Proposition A.

Proof: Let f,g ELG. By Proposition $B$ for $n=3$, let $A \subseteq B$ $\subseteq C \subseteq N$ be infinite sets, where $f A \subseteq B \cup . g B, f B \subseteq C \cup$. $g C$, and $A \cap f C=\varnothing$.

Note that C,gC are disjoint. Hence C,gB are disjoint. In addition, $A, f A$ are disjoint, and $A, f B$ are disjoint. We now verify the inclusion relations.

Let $x \in A \cup f A$. If $x \in f A$ then $x \in B \cup g B \subseteq C \cup g B$. If $x \in$ $A$ then $x \in C \subseteq C \cup g B$.

Let $x \in A \cup f B$. If $x \in f B$ then $x \in C \cup g C$. If $x \in A$ then $x$ $\in C \subseteq C \cup g C . Q E D$

Recall the definition of $f \in$ ELG from section 2.1: there are rational constants $c, d>1$ such that for all but finitely many $x \in \operatorname{dom}(f), c|x| \leq f(x) \leq d|x|$.

We wish to put this in more explicit form. Assume f,c,d are as above. Let $t$ be a positive integer so large that $1+1 / t$ $<c, d<t$, and for all $x \in \operatorname{dom}(f),|x|>t \rightarrow c|x| \leq f(x) \leq$
$d|x|$. Let $b$ be an integer greater than $t$ and $\max \{f(x):|x| \leq$ t\}. Then for all $x \in \operatorname{dom}(f)$,

$$
\begin{gathered}
|x|>t \rightarrow f(x) \leq b|x| \\
|x| \leq t \rightarrow f(x) \leq b . \\
|x| \leq b \rightarrow f(x) \leq b^{2} .
\end{gathered}
$$

Hence $f \in$ ELG if and only if there exists a positive integer $b$ such that for all $x \in \operatorname{dom}(f)$,

$$
\begin{aligned}
&|x|>b \rightarrow(1+1 / b)|x| \leq f(x) \leq b|x| . \\
&|x| \leq b \rightarrow f(x) \leq b^{2} .
\end{aligned}
$$

We now fix f,g $\in$ ELG, where $f$ is p-ary and $g$ is q-ary. According to the above, we also fix a positive integer b such that for all $x \in N^{p}$ and $y \in N^{q}$,
i. if $|x|,|y|>b$ then

$$
\begin{aligned}
& (1+1 / b)|x| \leq f(x) \leq b|x| \\
& (1+1 / b)|y| \leq g(y) \leq b|y| .
\end{aligned}
$$

ii. if $|x|,|y| \leq b$ then $f(x), g(y) \leq b^{2}$.

We also fix $n \geq 1$ and a strongly $\mathrm{p}^{\mathrm{n}-1}$-Mahlo cardinal $\kappa$.
We begin with the discrete linearly ordered semigroup with extra structure, $M=(N,<, 0,1,+, f, g)$.

The plan will be to first construct a structure of the form $M^{*}=\left(N^{*},<*, 0^{*}, 1^{*},+^{*}, f^{*}, g^{*}, C_{0}{ }^{*}, \ldots\right)$, where the $C^{* \prime} s$ are indexed by N . This structure is non well founded and generated by the constants $0 *, 1 *$, and the $\mathrm{c}^{* \prime} \mathrm{~s}$. The indiscernibility of the c*'s will be with regard to atomic formulas only. The first nonstandard point in $\mathrm{M}^{*}$ will be $\mathrm{C}_{0}{ }^{*}$.

While it is obvious that we cannot embed $M^{*}$ back into $M$, we use the fact that we can embed any partial substructure of M* that is "boundedly generated" back into M.

Of course, $\mathrm{M}^{*}$ is not well founded, but we prove the well foundedness of the crucial irreflexive transitive relation

$$
s x<* y
$$

on $\mathrm{N}^{*}$, where $s>1$ is any fixed rational number.

Using the atomic indiscernibility of the c*'s, we canonically extend $\mathrm{M}^{*}$ to a structure $\mathrm{M}^{* *}=$
( $\mathrm{N}^{* *},<* *, 0 * *, 1 * *,+* *, f * *, \mathrm{~g}^{* *}, \mathrm{C}_{0} * *, \ldots, \mathrm{C}_{\alpha}^{* *}, \ldots$ ) , $\alpha<\mathrm{K}$. Many properties of $\mathrm{M}^{*}$ are preserved when passing to $\mathrm{M}^{* *}$. The appropriate embedding property asserts that any partial substructure of $\mathrm{M}^{* *}$ boundedly generated by $0 * *, 1 * *$, and a set of $\mathrm{c}^{* * ' s ~ o f ~ o r d e r ~ t y p e ~} \omega$ is embeddable back into $\mathrm{M}^{*}$ and M.

Recall that the proof of the Complementation Theorem (Theorem 1.3.1) requires that the function is strictly dominating with respect to a well founded relation <. Here we verify that $\mathrm{g}^{* *}$ is strictly dominating on the nonstandard part of $\mathrm{M}^{* *}$ with respect to the above crucial irreflexive transitive relation. This enables us to apply the Complementation Theorem 1.3.1) to g** on the nonstandard part of $\mathrm{M}^{* *}$ in order to obtain a unique set $\mathrm{W} \subseteq$ nst ( $M^{* *}$ ) such that for all $x \in$ nst ( $M^{* *}$ ), $x \in W \leftrightarrow x \notin g^{* * W .}$

We then build a Skolem hull construction of length $\omega$ consisting entirely of elements of $W$. The construction starts with the set of all c**'s. Witnesses are thrown in from $W$ that verify that values of $f * *$ at elements thrown in at previous stages do not lie in $W$ (provided they in fact do not lie in $W$ ). Only the first $n$ stages of the construction will be used.

Every element of the $n$-th stage of the Skolem hull construction has a suitable name involving $e=e(p, q)$ of the c**'s.

At this crucial point, we then apply Lemma 4.1 .6 to the large cardinal $\kappa$, with arity $n=e$, in order to obtain a suitably indiscernible set $S$ of the $c^{* * ' s ~ o f ~ o r d e r ~ t y p e ~} \omega$, with respect to this naming system.

We can redo the length n Skolem hull construction starting with $S$. This is just a restriction of the original Skolem hull construction that started with all of the c**'s.

Because of the indiscernibility, we generate a subset of $N^{* *}$ whose elements are given by terms of bounded length in $c^{* * ' s ~ o f ~ o r d e r ~ t y p e ~} \omega$. This forms a suitable partial substructure of $M^{* *}$, so that it is embeddable back into M. The image of this embedding on the $n$ stages of the Skolem hull construction will comprise the $A_{1} \subseteq \ldots \subseteq A_{n}$ satisfying
the conclusion of Proposition B. This completes the description of the plan for the proof.

We now begin the detailed proof of Proposition B. We begin with the structure $M=(N,<, 0,1,+, f, g)$ in the language $L$ consisting of the binary relation $<$, constants 0,1 , the binary function + , the p-ary function $f$, the $q$-ary function g, and equality.

DEFINITION 4.2.1. Let $V(L)=\left\{\mathrm{v}_{\mathrm{i}}: i \geq 0\right\}$ be the set of variables of $L$. Let $T M(L)$ be the set of terms of $L$, and AF (L) be the set of atomic formulas of $L$. For $t \in T M(L)$, we define lth(t) as the total number of occurrences of functions, constants, and variables, in t. For $\varphi \in A F(L)$, we also define lth $(\varphi)$ as the total number of occurrences of functions, constants, and variables, in $\varphi$.

DEFINITION 4.2.2. An M-assignment is a partial function $h: V(L) \rightarrow N$. We write Val (M,t,h) for the value of the term $t$ in $M$ at the assignment $h$. This is defined if and only if $h$ is adequate for $t$; i.e., $h$ is defined at all variables in t.

DEFINITION 4.2.3. We write Sat (M, $\varphi$,h) for atomic formulas $\varphi$. This is true if and only if $h$ is adequate for $\varphi$ and $M$ satisfies $\varphi$ at the assignment $h$. Here $h$ is adequate for $\varphi$ if and only if $h$ is defined at (at least) all variables in $\varphi$.

DEFINITION 4.2.4. We say that a partial function $h: V(L) \rightarrow N$ is increasing if and only if for all i < j, if $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{j} \in$ $\operatorname{dom}(h)$ then $h\left(v_{i}\right)<h\left(v_{j}\right)$.

LEMMA 4.2.2. There exist infinite sets $N \supseteq \mathrm{E}_{0} \supseteq \mathrm{E}_{1} \supseteq \ldots$ indexed by $N$, such that for all $i \geq 0, \varphi \in \operatorname{AF}(L)$, lth $(\varphi) \leq$ i, and increasing partial functions $h_{1}, h_{2}: V(L) \rightarrow N$ adequate for $\varphi$ with rng $\left(h_{1}\right)$, rng ( $h_{2}$ ) $\subseteq E_{i}$, we have $\operatorname{Sat}\left(M, \varphi, h_{1}\right) \leftrightarrow$ $\operatorname{Sat}\left(\mathrm{M}, \varphi, \mathrm{h}_{2}\right)$.

Proof: A straightforward application of the usual infinite Ramsey theorem, repeated infinitely many times. Each $\mathrm{E}_{\mathrm{i}+1}$ is obtained by Ramsey's theorem applied to a coloring of ituples from $\mathrm{E}_{\mathrm{i}}$. QED

DEFINITION 4.2.5. We fix the $E^{\prime}$ s in Lemma 4.2.2. In an abuse of notation, we write Sat $(M, \varphi, E)$ if and only if $\varphi \in$

AF(L) and for all increasing $h$ adequate for $\varphi$ with range included in $E_{i}$, we have $\operatorname{Sat}(\mathrm{M}, \varphi, h)$, where $\operatorname{lth}(\varphi)=i$.

Note that by Lemma 4.2.2, this is equivalent to: $\varphi \in \operatorname{AF}(L)$ and for some increasing $h$ adequate for $\varphi$ with range included in $\mathrm{E}_{\mathrm{i}}$, we have $\operatorname{Sat}(\mathrm{M}, \varphi, h)$, where $\operatorname{lth}(\varphi)=$ i. We can also use any i with $i \geq l$ lh $(\varphi)$ and get an equivalent definition of Sat (M, $\varphi, E)$.

DEFINITION 4.2.6. We now introduce constants $c_{i}, i \in N$. Let $C$ be the set of all such constants. Let $L^{*}$ be $L$ expanded by these constants. Structures for $L^{*}$ will be written $M^{*}=$ ( $\mathrm{N}^{*},<*, 0^{*}, 1^{*},+^{*}, \mathrm{f}^{*}, \mathrm{~g}^{*}, \mathrm{C}_{0}{ }^{*}, \ldots$ )... Here each $\mathrm{C}_{\mathrm{i}}$ is interpreted by $\mathrm{C}_{\mathrm{i}}{ }^{*}$.

DEFINITION 4.2.7. We let CT(L*) be the set of closed terms of $L^{*}$, and AS ( $L^{*}$ ) be the set of atomic sentences of $L^{*}$. We define lth(t), lth $(\varphi)$ for $t \in A S\left(L^{*}\right), \varphi \in A S\left(L^{*}\right)$.

DEFINITION 4.2.8. For $\varphi \in$ AS(L*), $t \in C T\left(L^{*}\right)$, we write Sat $\left(M^{*}, \varphi\right)$ and Val ( $\left.M^{*}, t\right)$ for the usual model theoretic notions.

For each $t \in C T\left(L^{*}\right)$, let $X(t) \in T M(L)$ be the result of replacing all occurrences of 'c' by 'v'. For each $\varphi \in$ AS ( $L^{*}$ ), let $X(\varphi) \in A F(L)$ be the result of replacing all occurrences of ' C ' by ' V '.

DEFINITION 4.2.9. Let $T=\left\{\varphi \in \operatorname{AS}\left(L^{*}\right): \operatorname{Sat}(\mathrm{M}, \mathrm{X}(\varphi), \mathrm{E})\right\}$.
LEMMA 4.2.3. $T$ is consistent. For all s,t $\in C T\left(L^{*}\right)$, exactly one of $s=t, s<t, t<s$ belongs to T. For all $n \in N, c_{n}<$ $\mathrm{C}_{\mathrm{n}+1} \in \mathrm{~T}$.

Proof: It suffices to show that every finite subset of $T$ is consistent. Let $\varphi_{1}, \ldots, \varphi_{k} \in T$. Then each Sat $\left(M, X\left(\varphi_{i}\right), E\right)$ holds. Let $j=\max \left(\operatorname{lth}\left(\varphi_{1}\right), \ldots, l t h\left(\varphi_{k}\right)\right)$ and $h: V(L) \rightarrow E_{j}$ be the increasing bijection. Then each Sat (M,X( $\varphi_{i}$ ),h) holds. Let $M^{\prime}$ be the expansion of $M$ that interprets each constant $\mathrm{C}_{\mathrm{n}}$ as $\mathrm{h}\left(\mathrm{V}_{\mathrm{n}}\right)$. Then each Sat $\left(\mathrm{M}^{\prime}, \varphi_{\mathrm{i}}\right)$ holds.

For the second claim, let $s, t \in C T\left(L^{*}\right)$. Let $i=l t h(s=t)$ and $h: V(L) \rightarrow E_{i}$ be the increasing bijection. Then Sat(M,X(s $=t), h)$ or $\operatorname{Sat}(M, X(s<t), h)$ or $\operatorname{Sat}(M, X(t<s), h)$. Therefore at least one of $s=t, s<t, t<s$ lies in $T$. Since at most one of Sat $(M, X(s=t), E), S a t(M, X(s<t), E)$,

Sat (M,X(t < s),E) can hold, clearly at most one of $s=t, s$ $<\mathrm{t}, \mathrm{t}<\mathrm{s}$ lies in T .

For the third claim, let $n \in N$, and let $h: V(L) \rightarrow E_{2}$ be the increasing bijection. Obviously Sat (M, $\mathrm{V}_{\mathrm{n}}<\mathrm{V}_{\mathrm{n}+1}, \mathrm{~h}$ ). Hence $\mathrm{C}_{\mathrm{n}}$ $<\mathrm{C}_{\mathrm{n}+1} \in \mathrm{~T} . \mathrm{QED}$
 model of $T$ which is generated from its constants. Such an $M^{*}$ exists by Lemma 4.2.3 and the fact that $T$ consists entirely of atomic sentences. Clearly $M^{*}$ is unique up to isomorphism.

DEFINITION 4.2.10. For $d \in N$ and $t \in C T\left(L^{*}\right)$ or $t \in T M(L)$. Define dt to be the term

$$
t+t+\ldots+t
$$

associated to the left, where there are $d$ t's. If $d=0$, then take $d t$ to be 0. Obviously $d t \in C T\left(L^{*}\right)$ or $d t \in T M(L)$, respectively.

LEMMA 4.2.4. Let $\varphi \in \operatorname{AS}\left(L^{*}\right) . \operatorname{Sat}\left(\mathrm{M}^{*}, \varphi\right)$ if and only if $\varphi \in$ $T .<*$ is a linear ordering on $N^{*}$. For all $n, d \in N, d_{n}<c_{n+1}$ $\in \mathrm{T}$.

Proof: Since $M^{*}$ satisfies $T$, the reverse direction of the first claim is immediate.

Suppose $\varphi \notin$ T. First assume $\varphi$ is of the form $s<t$. By Lemma 4.2.3, $t<s \in T$ or $s=t \in T$. Then Sat ( $\mathrm{M}^{*}, \mathrm{t}<\mathrm{s}$ ) or Sat (M*,s = t). Therefore $\operatorname{Sat}\left(\mathrm{M}^{*}, \varphi\right)$ is false. Now assume $\varphi$ is of the form $s=t$. By Lemma 4.2.3, $s<t \in T$ or $t<s \in$ T. Hence Sat ( $\left.M^{*}, s<t\right)$ or Sat ( $\left.M^{*}, t<s\right)$. Therefore Sat (M*, $\varphi$ ) is false.

The second claim follows immediately from the first claim and the second claim of Lemma 4.2.3.

For the third claim, let $i=\operatorname{lth}\left(\mathrm{dc}_{\mathrm{n}}<\mathrm{c}_{\mathrm{n}+1}\right)$. The unique increasing bijection $h: V(L) \rightarrow E_{i}$ has $d h\left(v_{n}\right)<h\left(v_{n+1}\right)$. Hence Sat $\left(M, d v_{n}<v_{n+1}, h\right)$, Sat $\left(M, d v_{n}<v_{n+1}, E\right)$, and $X\left(d c_{n}<C_{n+1}\right)=$ $d \mathrm{v}_{\mathrm{n}}<\mathrm{v}_{\mathrm{n}+1}$. Hence $\mathrm{dc}_{\mathrm{n}}<\mathrm{c}_{\mathrm{n}+1} \in \mathrm{~T}$. QED

DEFINITION 4.2.11. For $r \geq 1$, we write $M^{*}[r]$ for the set of all values in $M^{*}$ of the terms $t \in C T\left(L^{*}\right)$ of length $\leq r$.

DEFINITION 4.2.12. We say that $H$ is an r-embedding from $M *$ into $M$ if and only if
i) $H: M^{*}[r(p+q+1)] \rightarrow N$;
ii) $\mathrm{H}\left(0^{*}\right)=0, \mathrm{H}(1 *)=1$;
iii) for all $x, y \in M^{*}[r(p+q+1)], x<\star y \leftrightarrow H(x)<H(y)$;
iv) for all $x, y \in M^{*}[r], H(x+* y)=H(x)+H(y)$.
v) for all $x_{1}, \ldots, x_{p} \in M^{*}[r], H\left(f *\left(x_{1}, \ldots, x_{p}\right)\right)=$
f(H( $\left.\left.\mathrm{x}_{1}\right), \ldots, H\left(\mathrm{X}_{\mathrm{p}}\right)\right)$;
vi) for all $x_{1}, \ldots, x_{q}, \in M^{\star}[r], H\left(g^{*}\left(x_{1}, \ldots, x_{q}\right)\right)=$ $g\left(H\left(x_{1}\right), \ldots, H\left(X_{q}\right)\right)$.

Note that by the second claim of Lemma 4.2.4, iii) implies that $H$ is one-one.

LEMMA 4.2.5. For all $r \geq 1$, there exists an r-embedding $H$ from $M^{*}$ into $M$.

Proof: Let $r \geq 1$ and $h: V(L) \rightarrow E_{2 r(p+q+1)}$ be the unique increasing bijection.

We define $H: M^{*}[r(p+q+1)] \rightarrow N$ as follows. Let $x=V a l(M *, t)$, where $t \in C T\left(L^{*}\right)$, lth(t) $\leq r(p+q+1)$. Define $H(x)=$ Val (M, X (t) , h) .

To see that $H$ is well defined, let $x=\operatorname{Val}\left(M^{*}, t^{\prime}\right)$, where $t^{\prime}$ $\in C T\left(L^{*}\right), \operatorname{lth}\left(t^{\prime}\right) \leq r(p+q+1)$. We must verify that $\operatorname{Val}(M, X(t), h)=\operatorname{Val}\left(M, X\left(t^{\prime}\right), h\right)$. Since lth(t $\left.=t^{\prime}\right) \leq$ 2r(p+q+1),

$$
\begin{gathered}
\operatorname{Val}(M, X(t), h)=\operatorname{Val}\left(M, X\left(t^{\prime}\right), h\right) \leftrightarrow \\
\operatorname{Sat}\left(M, X\left(t=t^{\prime}\right), E\right) \leftrightarrow \\
t=t^{\prime} \in T \leftrightarrow \\
\operatorname{Sat}\left(M^{*}, t=t^{\prime}\right) \leftrightarrow \\
\operatorname{Val}\left(M^{*}, t\right)=\operatorname{Val}\left(M^{*}, t^{\prime}\right) \leftrightarrow \\
x=X .
\end{gathered}
$$

For ii), $H(0 *)=\operatorname{Val}(M, X(0), h)=0 . H(1 *)=\operatorname{Val}(M, X(1), h)=$ 1. Also, $C_{i} *=\operatorname{Val}\left(M^{*}, C_{i}\right), H\left(C_{i} *\right)=\operatorname{Val}\left(M, X\left(C_{i}\right), h\right)=$ $\operatorname{Val}\left(\mathrm{M}, \mathrm{V}_{\mathrm{i}}, \mathrm{h}\right)=\mathrm{h}\left(\mathrm{V}_{\mathrm{i}}\right) \in \mathrm{E}_{\mathrm{r}(\mathrm{p}+\mathrm{q}+1)}$.

For iii), we must verify that for lth(t), lth(t') $\leq r(p+q+1)$, $\operatorname{Val}\left(M^{*}, t\right)<\star \operatorname{Val}\left(M^{*}, t^{\prime}\right) \leftrightarrow \operatorname{Val}(M, X(t), h)<\operatorname{Val}\left(M, X\left(t^{\prime}\right), h\right)$. Using Lemma 4.2.4, the left side is equivalent to Sat (M*,t $\left.<t^{\prime}\right)$, and to $t<t^{\prime} \in T$. The right side is equivalent to Sat $\left(M, X\left(t<t^{\prime}\right), h\right)$, to $\operatorname{Sat}\left(M, X\left(t<t^{\prime}\right), E\right)$, and to $t<t^{\prime} \in$ T, using lth(t $\left.<t^{\prime}\right) \leq 2 r(p+q+1)$.

For iv), we must verify that for lth(t),lth(t') $\leq$ r, H(Val (M*,t) +*Val (M*, $\left.\mathrm{I}^{\prime}\right)$ ) $=\mathrm{H}\left(\operatorname{Val}\left(\mathrm{M}^{*}, \mathrm{t}\right)\right)+\mathrm{H}\left(\operatorname{Val}\left(\mathrm{M}^{*}, \mathrm{t}^{\prime}\right)\right)$. Since lth(t+t') $\leq 2 r \leq r(p+q+1)$, the left side is $\mathrm{H}\left(\operatorname{Val}\left(\mathrm{M}^{*}, \mathrm{t}+\mathrm{t}^{\prime}\right)\right)=\operatorname{Val}\left(\mathrm{M}, \mathrm{X}\left(\mathrm{t}+\mathrm{t}^{\prime}\right), \mathrm{h}\right)$. The right side is Val (M,X(t),h)+Val(M,X(t'),h). Equality is immediate.

For v), we must verify that for lth $\left(\mathrm{t}_{1}\right)$,..., lth( $\mathrm{t}_{\mathrm{p}}$ ) $\leq \mathrm{r}$, $H\left(f *\left(\operatorname{Val}\left(M^{*}, t_{1}\right), \ldots, \operatorname{Val}\left(M^{*}, t_{p}\right)\right)=\right.$
$\mathrm{f}\left(\mathrm{H}\left(\operatorname{Val}\left(\mathrm{M}^{*}, \mathrm{t}_{1}\right)\right), \ldots, \mathrm{H}\left(\operatorname{Val}\left(\mathrm{M}^{*}, \mathrm{t}_{\mathrm{p}}\right)\right)\right) . \operatorname{Since} \operatorname{lth}\left(\mathrm{f}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{p}}\right)\right) \leq$ $r(p+q+1)$, the left side is $H\left(\operatorname{Val}\left(M^{*}, f\left(t_{1}, \ldots, t_{p}\right)\right)\right)=$
$\operatorname{Val}\left(M, X\left(f\left(t_{1}, . . ., t_{p}\right)\right), h\right)$. The right side is
$f\left(\operatorname{Val}\left(\mathrm{M}, \mathrm{t}_{1}, \mathrm{~h}\right), \ldots, \operatorname{Val}\left(\mathrm{M}, \mathrm{t}_{\mathrm{p}}, \mathrm{h}\right)\right)$. Equality is immediate.
For vi), see v). QED
DEFINITION 4.2.13. For quantifier free formulas $\varphi$ in $L^{*}$, we define lth' $(\varphi)$ as the total number of occurrences of functions, constants, and variables. We do not count the occurrences of connectives for lth'.

LEMMA 4.2.6. For all $r \geq 1$, there is an $r$-embedding from $M^{*}$ into M with the following properties.
i. each $H\left(C_{i}{ }^{*}\right) \in \mathrm{E}_{2 \mathrm{r}(\mathrm{p}+\mathrm{q}+1)}$.
ii if $t \in C T\left(L^{*}\right), ~ l t h(t) \leq r(p+q+1)$, then $H\left(V a l\left(M^{*}, t\right)\right)=$ Val (M, X(t), h).
iii. if $\varphi \in \operatorname{AS}\left(L^{*}\right)$, lth $(\varphi) \leq r(p+q+1)$, then $\operatorname{Sat}\left(M^{*}, \varphi\right) \leftrightarrow$ Sat (M,X( $\varphi$ ), E).
iv. if $\varphi$ is a quantifier free sentence in $L^{\star}$, lth' $(\varphi) \leq$ $r(p+q+1)$, then $\operatorname{Sat}\left(M^{*}, \varphi\right) \leftrightarrow \operatorname{Sat}(M, X(\varphi), E)$.

Proof: Let $H: M^{*}[r(p+q+1)] \rightarrow N$ be an $r$-embedding of $M^{*}$ into $M$, constructed in the proof of Lemma 4.2.5, using the strictly increasing bijection $h: V(L) \rightarrow \mathrm{E}_{2 r(\mathrm{p}+\mathrm{q}+1)}$. Then each $H\left(C_{i} *\right) \in E_{2 r(p+q+1)}$. Let $t \in C T\left(L^{*}\right)$, lth $(t) \leq r(p+q+1)$. Then H(Val (M*,t)) = Val(M,X(t),h) by definition. Let $\varphi \in A S\left(L^{*}\right)$, $\operatorname{lth}(\varphi) \leq r(p+q+1)$. Then Sat $\left(M^{*}, s=t\right) \leftrightarrow \operatorname{Val}\left(M^{*}, s\right)=$ $\operatorname{Val}\left(M^{*}, t\right) \leftrightarrow \operatorname{Val}(M, X(s), h)=\operatorname{Val}(M, X(t), h) \leftrightarrow \operatorname{Sat}(M, X(s=$ t),E). We can use < in place of =. Finally, iv follows from iii. QED

LEMMA 4.2.7. Every universal sentence of L that holds in M holds in $M^{*}$. For any quantifier free sentence of $L^{*}$, if we replace equal $C^{* \prime}$ s by equal $C^{* \prime}$ s in a manner that is order preserving on indices, then the truth value in $M^{*}$ is preserved. The c*'s are strictly increasing and unbounded in $\mathrm{N}^{*}$.

Proof: For the first claim, let $\left(\forall V_{1}\right) \ldots\left(\forall V_{m}\right)(\varphi)$ be a universal sentence of $L$ that holds in M. Suppose it fails in $M^{*}$. Let $V_{1}, \ldots, V_{m} \in N^{*}$, where $\varphi\left(V_{1}, \ldots, V_{m}\right)$ fails in $M^{*}$. Let $t_{1}, \ldots, t_{m} \in C T\left(L^{*}\right)$ be such that each $V_{i}=\operatorname{Val}\left(M^{*}, t_{i}\right)$. Let $\operatorname{lth}\left(\varphi\left(t_{1}, \ldots, t_{m}\right)\right) \leq r$.

By Lemmas 4.2.5 and 4.2.6, let $H: M^{\star}[r] \rightarrow N$ be an $r-$ embedding of $M^{*}$ into $M$. By the final claim of Lemma 4.2.6, since not $\operatorname{sat}\left(M^{*}, \varphi\left(t_{1}, \ldots, t_{m}\right)\right)$, we have not Sat $\left(M, X\left(\varphi\left(t_{1}, \ldots, t_{m}\right)\right), E\right)$. This contradicts $\operatorname{sat}\left(M,\left(\forall V_{1}\right) \ldots\left(\forall_{V_{m}}\right)(\varphi)\right)$.

For the second claim, let $\varphi \in A S\left(L^{*}\right)$. Let $\psi$ be obtained from $\varphi$ by replacing equal $c^{\star \prime} s$ by equal $c^{\star \prime} s$ in an order preserving way. Let lth $(\varphi) \leq r$. By Lemmas 4.2.5 and 4.2.6, let $H: M^{*}[r] \rightarrow N$ be an r-embedding of $M^{*}$ into $M$. By Lemma 4.2.6,

$$
\begin{aligned}
& \operatorname{Sat}\left(M^{*}, \varphi\right) \leftrightarrow \operatorname{Sat}(M, X(\varphi), E) . \\
& \operatorname{Sat}\left(M^{*}, \psi\right)
\end{aligned}
$$

Since $X(\psi)$ is obtained from $X(\varphi)$ by replacing equal $V_{i}^{\prime \prime}$ s by equal $V_{i}^{\prime}$ s in an order preserving way, the right sides of the above two equivalences are equivalent. Hence the left sides are also equivalent.

For the third claim, let i $<j$. Let $h:\{i, j\} \rightarrow E_{2}$ be increasing. Since Sat $\left(M, X\left(C_{i}<C_{j}\right), h\right)$, we have Sat $\left(M, X\left(C_{i}<\right.\right.$ $\left.\left.C_{j}\right), E\right)$, and $\operatorname{so} C_{i}<C_{j} \in T$ and Sat $\left(M^{*}, C_{i}<C_{j}\right)$. Hence $C_{i} *<*$ $C_{j}{ }^{*}$ 。

To see that the $C^{* \prime} s$ are unbounded in $N^{*}$, let $x \in N^{*}$, and let $t \in C T\left(L^{*}\right)$ be such that $x=\operatorname{Val}\left(M^{*}, t\right)$. Let $C_{i}$ be the largest element of $C$ appearing in $t$. We claim that $t<c_{i+1}$ lies in T. To see this, let $r=l$ h ( $\quad<c_{i+1}$ ) and $h: V(L) \rightarrow$ $E_{r}$ be strictly increasing, where $h\left(v_{i+1}\right)>* \operatorname{Val}(M, t, h)$. Then Sat $\left(M, X\left(t<C_{i+1}\right), h\right)$, and so Sat $\left(M, X\left(t<C_{i+1}\right), E\right)$, and hence $t<c_{i+1} \in T$. Therefore Val $\left(M^{*}, t\right)<* c_{i+1}^{*}$. QED

DEFINITION 4.2.14. Let $C^{\prime}=\left\{C_{\alpha}: \alpha<\kappa\right\}$. $C^{\prime}$ is the set of transfinite constants. Note that $C \subseteq C^{\prime}$.

DEFINITION 4.2.15. Let $L * *$ be the language $L$ extended by constants $c_{\alpha}, \alpha<\kappa$. Note that the $c_{i}$ in $L^{*}$ are already present in $L^{\star *}$. The new constants are the $c_{\alpha}, \omega \leq \alpha<\kappa$.

DEFINITION 4.2.16. Let CT(L**) be the set of all closed terms of $L^{* *}$. Let $A S\left(L^{* *}\right)$ be the set of all atomic sentences of L**.

DEFINITION 4.2.17. A reduction is a partial function J:C' $\rightarrow$ $C$, where for all $\alpha<\beta$ and $i, j<\omega$, if $J\left(C_{\alpha}\right)=C_{i}$ and $J\left(C_{\beta}\right)=$ $C_{j}$, then $i<j$. Any reduction $J$ extends to a partial map from CT(L**) into CT(L*), and to a partial map AS(L**) into AS (L*) in the obvious way. Here $J$ is defined at a closed term or atomic sentence of $L^{\star *}$ if and only if $J$ is defined at every constant appearing in that closed term or atomic sentence.

DEFINITION 4.2.18. For $s, t \in C T\left(L^{* *}\right)$, we define $s \equiv t i f$ and only if for all reductions J defined at $s, t$, Sat (M*,J(s = t) ).

LEMMA 4.2.8. Let $s, t \in C T\left(L^{* *}\right)$ and $J, J^{\prime}$ be reductions defined at $s, t \in C T\left(L^{* *}\right)$. Then Sat (M*, J (s = t)) $\leftrightarrow$ Sat (M*, J' $(s=t))$, and Sat $\left(M^{*}, J(s<t)\right) \leftrightarrow S a t\left(M^{*}, J^{\prime}(s<\right.$ t)). $\equiv$ is an equivalence relation on CT(L**).

Proof: Let $s, t, J, J^{\prime}$ be as given. Then $J(s=t)$ and $J^{\prime}(s=$ t) are the same up to an increasing change in the c's appearing in $s, a s i n$ the second claim of Lemma 4.2.7. Hence by the second claim of Lemma 4.2.7, Sat (M*, J ( $s=t)$ ) $\leftrightarrow \operatorname{Sat}\left(\mathrm{M}^{*}, J^{\prime}(\mathrm{S}=\mathrm{t})\right)$, and $\operatorname{Sat}\left(\mathrm{M}^{*}, J(\mathrm{~S}<\mathrm{t})\right) \leftrightarrow \operatorname{Sat}\left(\mathrm{M}^{*}, \mathrm{~J}^{\prime}(\mathrm{s}<\right.$ t) ).

For the second claim, obviously $\equiv$ is reflexive and symmetric. Now suppose $s \equiv t$ and $t \equiv r$. Let $J$ be any increasing reduction defined at $s, t, r$. Then Sat ( $M^{*}, J(s=$ t)) and $\operatorname{Sat}\left(\mathrm{M}^{*}, J(t=r)\right)$. Hence $\operatorname{Sat}\left(\mathrm{M}^{*}, J(\mathrm{~S}=\mathrm{r})\right)$. Therefore $s \equiv r$. QED

DEFINITION 4.2.19. We now define the structure $\mathrm{M}^{*}$ = ( $\mathrm{N}^{* *},<{ }^{* *}, 0 * *, 1^{* *},+{ }^{+*}, \mathrm{f} * *, \mathrm{~g}^{* *}, \mathrm{C}_{0}{ }^{* *}, \ldots, \mathrm{C}_{\alpha}{ }^{* *}, \ldots$ ), $\alpha<\mathrm{K}$. Here the interpretation of < is <**, of 0 is $0 * *$, of 1 is $1 * *$, of $f$ is $f * *$, of $g$ is $g * *$, and of each $C_{\alpha}$ is $C_{\alpha}{ }^{* *}$.

DEFINITION 4.2.20. We will define $M^{* *}$ as a stretching of M*. We define $\mathrm{N}^{* *}$ to be the set of all equivalence classes of terms in CT (L**) under the $\equiv$ of Lemma 4.2.8. We define $0 * *=[0]$. We define $1 * *=[1]$. We define $C_{\alpha}{ }^{* *}=\left[C_{\alpha}\right]$.

We define [s] <** [t] if and only if Sat (M*,J(s < t)), where $J$ is any (some) reduction defined at $s, t$.

We define [s] +** [t] = [s + t].
We define $f * *\left(\left[t_{1}\right], \ldots,\left[t_{p}\right]\right)=\left[f\left(t_{1}, \ldots, t_{p}\right)\right]$.
We define $g^{* *}\left(\left[t_{1}\right], . .,\left[t_{q}\right]\right)=\left[g\left(t_{1}, \ldots, t_{q}\right)\right]$.
DEFINITION 4.2.21. For $t \in C T\left(L^{* *)}\right.$ and $d \in N$, we write $d t$ for $t+\ldots+t$, where there are $d$ t's, associated to the left. If $d=0$, then use 0 .

DEFINITION 4.2.22. For $x \in N^{* *}$ and $d \in N$, we write $d x$ for $x$ +** ... +** $x$, where there are d x's associated to the left. If $d=0$, then use 0 .

LEMMA 4.2.9. These definitions of <**, +**, f**, g** are well defined. For all $\alpha<\beta<\kappa$ and $d \in N, d c_{\alpha}^{* *}<* * \mathrm{C}_{\beta}{ }^{* *}$.

Proof: Suppose $s \equiv s^{\prime}, t \equiv t^{\prime}$. We freely use Lemma 4.2.8.
Suppose Sat(M*,J(s < t)) holds for all reductions J defined at $s, t$. Let $s \equiv s^{\prime}$ and $t \equiv t^{\prime}$. Let $J^{\prime}$ be any reduction defined at $s, s^{\prime}, t, t^{\prime}$. Then Sat ( $\left.M^{*}, J^{\prime}(s<t)\right)$, Sat ( $M^{*}, J^{\prime}(s=$ $\left.s^{\prime}\right)$ ), and Sat(M*, J' (t = $\left.\mathrm{t}^{\prime}\right)$ ). Hence Sat (M*, $\left.\mathrm{J}^{\prime}\left(\mathrm{s}^{\prime}<\mathrm{t}^{\prime}\right)\right)$. By Lemma 4.2.8, for all reductions $\mathrm{J}^{\prime \prime}$ defined at $\mathrm{s}^{\prime}, \mathrm{t}^{\prime}$, Sat (M*, J' ${ }^{\prime}(\mathrm{s}<\mathrm{t})$ ).

Suppose $s \equiv s^{\prime}, t \equiv t^{\prime}$. We want to show $s+t \equiv s^{\prime}+t^{\prime}$. Obviously for all reductions J defined at s,t,s',t', Sat (M*,J(s + t = s' + t')).

Suppose $s_{1} \equiv t_{1}, \ldots, s_{p} \equiv t_{p}$. We want to show $f\left(s_{1}, \ldots, s_{p}\right) \equiv$ $f\left(t_{1}, . . ., t_{p}\right)$. Obviously for all reductions $J$ defined at $s_{1}, \ldots, s_{p}, t_{1}, \ldots, t_{p}, \operatorname{Val}\left(M^{*}, J\left(f\left(s_{1}, \ldots, s_{p}\right)\right)\right)=$ $\operatorname{Val}\left(M^{*}, J\left(f\left(t_{1}, \ldots, t_{p}\right)\right)\right)$. Hence $f\left(s_{1}, \ldots, S_{p}\right) \equiv f\left(t_{1}, \ldots, t_{p}\right)$.

The remaining case with $g$ is handled analogously.
For the second claim, let $\alpha<\beta<\kappa, d \in N$, and $J$ be any reduction defined at $\mathrm{dc}_{\alpha}<\mathrm{C}_{\beta}$, where $J\left(\mathrm{C}_{\alpha}\right)=\mathrm{C}_{\mathrm{n}}$ and $J\left(\mathrm{C}_{\beta}\right)=$ $\mathrm{c}_{\mathrm{m}}, \mathrm{n}<\mathrm{m}$. Then $\mathrm{dc}_{\alpha} * *<* * \mathrm{C}_{\beta} * * \leftrightarrow\left[\mathrm{dc}_{\alpha}\right]<* *\left[\mathrm{c}_{\beta}\right] \leftrightarrow$ Sat ( $\left.M^{*}, J\left(d_{\alpha}<C_{\beta}\right)\right) \leftrightarrow \operatorname{Sat}\left(M^{*}, d_{n}<C_{m}\right)$, which holds by Lemma 4.2.4. QED

We write $\mathrm{M}^{* *}=$
( $\mathrm{N} * *,<* *, 0 * *, 1 * *,+* *, f * *, g * *, \mathrm{C}_{0}{ }^{* *}, \ldots, \mathrm{C}_{\alpha}^{* *}, \ldots$ ) , $\alpha<\kappa$.

The terms $t \in C T\left(L^{* *)}\right.$ play a dual role. We used them to define $\mathrm{N}^{* *}$ as the set of all [t], $t \in C T\left(L^{* *}\right)$, under the equivalence relation $\equiv$.

However, now that we have defined the structure $M * *$, we can use the terms $t \in C T\left(L^{* *}\right)$ in the expression Val (M**,t).

LEMMA 4.2.10. For all $t \in C T(L * *), \operatorname{Val}\left(M^{* *}, t\right)=[t] . \operatorname{In}$ particular, every element of $\mathrm{N}^{* *}$ is generated in $\mathrm{M}^{* *}$ from the set of all constants of $M^{* *}$, which is $C^{\prime} U\{0,1\}$.

Proof: By induction on lth(t). QED
DEFINITION 4.2.23. Let $S \subseteq \kappa$. The $S$-constants are the $C_{\alpha}, \alpha$ $\in S$. The $S$-terms are the $t \in C T\left(L^{* *)}\right.$, where all transfinite constants in $t$ are $S$-constants.

LEMMA 4.2.11. Let $S \subseteq \kappa$. \{[t]: t is an $S$-term\} contains $0 * *, 1 * *$, the $C_{\alpha}{ }^{* *}, \alpha \in S$, and is closed under +**, $f * *$, ${ }^{* *}$.

Proof: Let $S \subseteq \kappa$. Since $0,1, C_{\alpha}, \alpha \in S$, are $S$-terms, we can obviously form [0], [1],[cca, $\alpha \in S$, which are, respectively, $0 * *, 1 * *, c_{\alpha}{ }^{* *}, \alpha \in S$. Now let $s, t$ be S-terms. Then [s] +** [t] $=[s+t]$, and $s+t$ is an S-term. The f**,g** cases are treated in the same way. QED

By Lemma 4.2.11, we let $M^{* *}\langle S>$ be the substructure of $M * *$ whose domain is \{[t]: $t$ is an S-term\}, where only the interpretations of $S$-constants are retained. By Lemma 4.2.11, $\mathrm{M}^{* *<S>}$ is a structure.

DEFINITION 4.2.24. Let $N^{* *}\langle S\rangle=\operatorname{dom}\left(M^{* *}\langle S\rangle\right)=\{[t]: t$ is an S-term\}.

LEMMA 4.2.12. Let $S \subseteq \kappa$ have order type $\omega$. Then there is a unique isomorphism from $M^{* *}<S>$ onto $M^{*}$ which maps the $C_{\alpha}{ }^{* *}$, $\alpha \in S$, onto the $\mathrm{C}_{\mathrm{n}}{ }^{*}, \mathrm{n} \in \mathrm{N}$.

Proof: Let $J$ be the unique reduction from the $S$-constants onto C. Define $h: N^{* *}\langle S\rangle \rightarrow N^{*}$ as follows. Let $t$ be an $S-$ term. Set h([t]) = Val(M*,J(t)).

To see that $h$ is well defined, let [t] = [t'], where $t, t^{\prime}$ are S-terms. Since $J$ is a reduction defined at $t, t^{\prime}$, we have $\operatorname{Val}\left(\mathrm{M}^{*}, \mathrm{~J}\left(\mathrm{t}=\mathrm{t}^{\prime}\right)\right)$, and $\mathrm{so} \operatorname{Val}\left(\mathrm{M}^{*}, \mathrm{~J}(\mathrm{t})\right)=$ Val (M*, J (t')).

For $\alpha \in S, h\left(C_{\alpha}{ }^{* *}\right)=h\left(\left[C_{\alpha}\right]\right)=\operatorname{Val}\left(M^{*}, J\left(C_{\alpha}\right)\right)=J\left(C_{\alpha}\right) *$. This establishes that $h$ maps the $C_{\alpha}{ }^{* *}, \alpha \in S$, onto the $C_{n} *, n \in$ N .

We now verify that $h$ is an isomorphism from $M^{* *}<S>$ onto $M^{*}$.
Suppose h([s]) = h([t]), where s,t are S-terms. Then Val (M*,J(s)) = Val(M*,J(t)). Hence Sat (M*,J(s = t)), and so $s \equiv t,[s]=[t]$, using Lemma 4.2.8. Hence $h$ is one-one.

Let $x \in N^{*}$, and write $x=\operatorname{Val}\left(M^{*}, t\right), t \in C T\left(L^{*}\right)$. By the construction of $J$, let $t^{\prime}$ be the unique $S$-term such that $J\left(t^{\prime}\right)=t . T h e n h\left(\left[t^{\prime}\right]\right)=\operatorname{Val}\left(M^{*}, J\left(t^{\prime}\right)\right)=\operatorname{Val}\left(M^{*}, t\right)=x$. Hence $h$ is onto $N^{*}$.

Let $s, t$ be $S$-terms. Then [s] <** [t] $\leftrightarrow \operatorname{Val}\left(\mathrm{M}^{*}, \mathrm{~J}(\mathrm{~s})\right)<*$ Val (M*, J(t)) $\leftrightarrow h([s])<* h([t])$.

$$
\begin{gathered}
h([s]+* *[t])=h([s+t])=\operatorname{Val}\left(M^{*}, J(s+t)\right)= \\
\operatorname{Val}\left(M^{*}, J(s)+J(t)\right)=\operatorname{Val}\left(M^{*}, J(s)\right)+\star \operatorname{Val}\left(M^{*}, J(t)\right) \\
=h([s])+^{*} h([t]) . \\
h\left(f^{* *}\left(\left[t_{1}\right], \ldots,\left[t_{p}\right]\right)\right)=h\left(\left[f\left(t_{1}, \ldots, t_{p}\right)\right]\right)= \\
\operatorname{Val}\left(M^{*}, J\left(f\left(t_{1}, \ldots, t_{p}\right)\right)\right)=\operatorname{Val}\left(M^{\star}, f\left(J\left(t_{1}\right), \ldots, J\left(t_{p}\right)\right)\right)= \\
f^{*}\left(\operatorname{Val}\left(M^{*}, J\left(t_{1}\right)\right), \ldots, \operatorname{Val}\left(M^{*}, J\left(t_{p}\right)\right)\right)= \\
f^{*}\left(h\left(\left[t_{1}\right]\right), \ldots, h\left(\left[t_{p}\right]\right)\right) .
\end{gathered}
$$

The g** case is handled analogously.
Finally,

$$
\begin{aligned}
& h(0 * *)=h[0]=\operatorname{Val}\left(M^{*}, J(0)\right)=0 . \\
& h(1 * *)=h[1]=\operatorname{Val}\left(M^{*}, J(1)\right)=1 .
\end{aligned}
$$

The uniqueness of $h$ follows from the fact that the $0 * *$, $1 * *$ and $C_{\alpha}{ }^{* *}, \alpha \in S$, generate $N^{* *}\left\langle S>\right.$ in $M^{* *}\langle S>$, and the $0 *$, 1* and $\mathrm{C}_{\mathrm{n}}{ }^{*}, \mathrm{n} \in \mathrm{N}$, generate $\mathrm{N}^{*}$ in $\mathrm{M}^{*}$. QED

DEFINITION 4.2.25. For $S \subseteq \kappa$ and $r \geq 1$, we write $M * *[S, r]=$ $\left\{\operatorname{Val}\left(M^{* *}, t\right): t\right.$ is an $S$-term of length $\left.\leq r\right\}$.

DEFINITION 4.2.26. We say that $H$ is an $S, r$-embedding from M** into $M$ if and only if
i) $\mathrm{H}: \mathrm{M}^{*} *[\mathrm{~S}, \mathrm{r}(\mathrm{p}+\mathrm{q}+1)] \rightarrow \mathrm{N}$;
ii) $\mathrm{H}(0 * *)=0, \mathrm{H}(1 * *)=1$;
iii) for all $x, y \in M^{* *}[S, r(p+q+1)], x<* * y \leftrightarrow H(x)<H(y) ;$ iv) for all $x, y \in M^{* *}[S, r], H(x+* y)=H(x)+H(y)$.
v) for all $x_{1}, \ldots, x_{p} \in M^{* *}[S, r], H\left(f * *\left(x_{1}, \ldots, x_{p}\right)\right)=$ f(H( $\left.\left.x_{1}\right), \ldots, H\left(x_{p}\right)\right)$;
vi) for all $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{q}}, \in \mathrm{M}^{* *}[\mathrm{~S}, \mathrm{r}], \mathrm{H}\left(\mathrm{g}^{* *}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{q}}\right)\right)=$ $g\left(H\left(x_{1}\right), \ldots, H\left(x_{q}\right)\right)$.

LEMMA 4.2.13. Let $S \subseteq \kappa$ be of order type $\omega$ and $r \geq 1$. There is an S,r-embedding from $M * *$ into M. Every universal sentence of $L$ that holds in $M$ holds in $M^{* *}$. For any atomic sentence of $L^{* *}$, if we replace equal transfinite constants by equal transfinite constants in a manner that is order preserving on indices, then the truth value in $M * *$ is preserved. The $\mathrm{C}_{\alpha}{ }^{* *}, \alpha \in \mathrm{~S}$, are unbounded in $\mathrm{M}^{* *}[\mathrm{~S}, \mathrm{r}]$.

Proof: By Lemma 4.2.12, let h be the unique isomorphism h from $M^{* *}<S>$ onto $M^{*}$ which maps the $C_{\alpha}{ }^{* *}, \alpha \in S$, onto the $\mathrm{C}_{\mathrm{n}}{ }^{*}, \mathrm{n} \in \mathrm{N}$. By Lemma 4.2.5, there is an $r$-embedding from $\mathrm{M}^{*}$ into M. By composing these two mappings, we obtain the desired S,r-embedding from M** into M. The remaining claims follow from Lemma 4.2.7 by the isomorphism h. QED

We refer to the second claim of Lemma 4.2.13 as universal sentence preservation (from M to $\mathrm{M}^{* *}$ ). We refer to the third claim of Lemma 4.2.13 as atomic indiscernibility.

DEFINITION 4.2.27. For $m \in N$, we write $\mathrm{m}^{\wedge}$ for the term $1+\ldots .+1$ with $m 1^{\prime} s$, where $0^{\wedge}$ is 0 . We say that $x \in N^{* *}$ is standard if and only if it is the value in $M^{*} *$ of some $\mathrm{m}^{\wedge}$, $m \geq 0$. We say that $x \in N^{* *}$ is nonstandard if and only if $x$ is not standard. We write st (M**) for the standard elements of $N^{* *}$, and nst ( $M^{* *}$ ) for the nonstandard elements of $N^{* *}$.

LEMMA 4.2.14. Let $\mathrm{x} \in \mathrm{nst}\left(\mathrm{M}^{* *}\right)$ and $\mathrm{m} \in \mathrm{N}$. Then $\mathrm{x}>^{* *} \mathrm{~m}^{\wedge}$. $\mathrm{C}_{0}{ }^{* *} \in \operatorname{nst}\left(\mathrm{M}^{* *}\right)$.

Proof: Let $m<\omega$. Then $(\forall x)(x \leq m \rightarrow(x=0 \wedge v \ldots v x=$ $\left.m^{\wedge}\right)$ ) holds in $M$. By universal sentence preservation, it holds in $M^{* *}$. Let $x$ be nonstandard in $M^{* *}$. Then $x \leq^{* *} m^{\wedge}$ is impossible by the above, and hence $x>^{* *} \mathrm{~m}^{\wedge}$.

Suppose $\mathrm{C}_{0}{ }^{* *}$ is standard, and let $\mathrm{C}_{0}{ }^{* *}=\mathrm{m}^{\wedge}$. By atomic indiscernibility in $M^{* *}$, for all $n \in N, c_{n} * *=m$. This is impossible, since $\alpha<\beta \rightarrow \mathrm{c}_{\alpha}{ }^{* *}<\mathrm{c}_{\beta}{ }^{* *}$. QED

Obviously, ( $\mathrm{n} / \mathrm{m}$ ) x generally makes no sense in $\mathrm{M}^{* *}$, where $n, m \in N, m \neq 0$. We have no division operation in $M * *$, and
certainly there is no $1 / 2$ (there is no $1 / 2$ in M). However, we can make perfectly good sense, in $M^{* *}$, of equations and inequalities

$$
\begin{gathered}
(\mathrm{n} / \mathrm{m}) \mathrm{x}=\left(\mathrm{n}^{\prime} / \mathrm{m}^{\prime}\right) \mathrm{x} \\
(\mathrm{n} / \mathrm{m}) \mathrm{x}<\star *\left(\mathrm{n}^{\prime} / \mathrm{m}^{\prime}\right) \mathrm{x} \\
(\mathrm{n} / \mathrm{m}) \mathrm{x} \leq^{* *}\left(\mathrm{n}^{\prime} / \mathrm{m}^{\prime}\right) \mathrm{x}
\end{gathered}
$$

by interpreting them as

$$
\begin{gathered}
n m^{\prime} x=n^{\prime} m x \\
n m^{\prime} x<* * n^{\prime} m x \\
n m^{\prime} x \leq * * n^{\prime} m x .
\end{gathered}
$$

Universal sentence preservation can be used to support natural reasoning in $M * *$ involving such equations and inequalities.

We have been using | | for the sup norm, or max, for elements of $\mathrm{N}^{\mathrm{t}}, \mathrm{t} \geq 1$.

DEFINITION 4.2.28. We now use | $\mid$ for elements of $\mathrm{N}^{* *}=$ dom (M**).

LEMMA 4.2.15. Let $x_{1}, \ldots, x_{p}, Y_{1}, \ldots, y_{q} \in N^{* *}$, where $\left|x_{1}, \ldots, x_{p}\right|,\left|y_{1}, \ldots, y_{q}\right|>* * b^{\wedge}$. Then
$(1+1 / b)\left|x_{1}, \ldots, x_{p}\right| \leq * * f *\left(x_{1}, \ldots, x_{p}\right) \leq * * b\left|x_{1}, \ldots, x_{p}\right|$.
$(1+1 / b)\left|y_{1}, \ldots, y_{q}\right| \leq * * g^{* *}\left(y_{1}, \ldots, y_{q}\right) \leq x^{* *} b\left|y_{1}, \ldots, y_{q}\right|$.
If $\left|x_{1}, \ldots, x_{p}\right|,\left|y_{1}, \ldots, y_{q}\right| \leq^{* *} b^{\wedge}$, then

$$
f\left(x_{1}, \ldots, x_{p}\right), g\left(y_{1}, \ldots, y_{q}\right) \leq b^{2 \wedge} .
$$

Proof: Recall the choice of $b \in N \backslash\{0,1\}$ made at the beginning of this section. These inequalities are purely universal, and hold in M. Hence they hold in M** by universal sentence preservation. QED

DEFINITION 4.2.29. Let $t \in C T\left(L^{* *}\right)$. We write \#(t) for the transfinite constant of greatest index that appears in $t$. If none appears, then we take \#(t) to be -1.

LEMMA 4.2.16. Let $t \in C T\left(L^{* *}\right) . \#(t)=-1 \leftrightarrow \operatorname{Val}(M * *, t)$ is standard. There exists a positive integer $d$ such that the following holds. Suppose \#(t) $=\mathrm{C}_{\alpha}$. Then $\mathrm{C}_{\alpha}{ }^{\star *} \mathbf{s}^{* *} \operatorname{Val}\left(\mathrm{M}^{*}, \mathrm{t}\right)$ $<* * \mathrm{dc}_{\alpha}{ }^{* *}<* * \mathrm{c}_{\alpha+1}{ }^{* *}$.

Proof: We first claim the following. Suppose \#(t) = $\mathrm{C}_{\alpha}$. Then $\mathrm{C}_{a}{ }^{* *}$ s** Val (M**,t). This follows easily using Lemmas 4.2.14, 4.2.15, and the monotonicity of + .

Now suppose \#(t) = -1. Since no transfinite constants appear in $t$, compute $\operatorname{Val}(M, t)=m \in N$. Hence $t=m^{\wedge}$ holds in M. By universal sentence preservation, $t=m^{\wedge}$ holds in $M^{* *}$, and so Val (M**,t) $=m^{\wedge}$. Now suppose \#(t) $\neq-1$, and let \# (t) $=C_{\alpha}$. By the first claim in the previous paragraph, $C_{\alpha}{ }^{* *} \leq \operatorname{Val}\left(M^{* *}, t\right)$, and so Val( $\left.M^{* *}, t\right)$ is nonstandard.

We now prove by induction on $t \in C T\left(L^{* *)}\right.$ that there exists $d \in N \backslash\{0\}$ such that for all $\alpha<\kappa$, if \#(t) $=c_{\alpha}$ then $\operatorname{Val}\left(\mathrm{M}^{* *}, \mathrm{t}\right)<* * \mathrm{dc}_{\alpha}{ }^{* *}$.

This is clearly true if $t$ is a constant of $L^{* *}$. Let \#(s + t) $=c_{\alpha}$. Then \#(s), \#(t) $\leq c_{\alpha}$. By the induction hypothesis, let $d \in N \backslash\{0\}$ be such that \#(s) $=C_{\alpha} \rightarrow \operatorname{Val}\left(M^{* *}, s\right)<* *$ $\mathrm{dc}_{\alpha}{ }^{* *}$, and \#(t) $=\mathrm{C}_{\alpha} \rightarrow \operatorname{Val}(\mathrm{M} * *, \mathrm{t})<* * \mathrm{dc}_{\alpha}{ }^{* *}$. Then \#(s+t) = $\mathrm{C}_{\alpha} \rightarrow \operatorname{Val}\left(\mathrm{M}^{* *}, s+\mathrm{t}\right)<* * 2 \mathrm{dc}_{\alpha}{ }^{* *}$.

Let \#(f( $\left.\left.t_{1}, \ldots, t_{p}\right)\right)=c_{\alpha}$. Then \# $\left(t_{1}\right), \ldots, \#\left(t_{p}\right) \leq c_{\alpha}$. By the induction hypothesis, let $\mathrm{d} \in \mathrm{N} \backslash\{0\}$ be such that for all 1 $\leq i \leq p, \#\left(t_{i}\right)=C_{\alpha} \rightarrow \operatorname{Val}\left(M^{* *}, t_{i}\right)<* * d_{\alpha}{ }^{* *}$. Let \#(f(t1,...,tp)) $=C_{\alpha}$. By Lemma 4.2.15, Val (M**,f( $\left.t_{1}, \ldots, t_{p}\right)$ ) <** $\mathrm{bdc}_{\alpha} * *$. The case of $g\left(t_{1}, \ldots, t_{q}\right)$ is argued in the same way. This completes the argument by induction.

We also need to establish that for all $d \in N$ and $\alpha<\kappa$, $\mathrm{dc}_{\alpha}{ }^{* *}<* * \mathrm{C}_{\alpha+1}{ }^{* *}$. This is from Lemma 4.2.9. QED

LEMMA 4.2.17. $C_{0}{ }^{* *}$ is the least element of nst (M**).
Proof: By Lemma 4.2.14, $\mathrm{C}_{0}{ }^{* *} \in \mathrm{nst}\left(\mathrm{M}^{* *}\right)$. Suppose $\mathrm{x}<\mathrm{C}^{*} \mathrm{C}_{0}{ }^{* *}$. Write $x=\operatorname{Val}\left(M^{* *}, t\right), t \in C T\left(L^{* *}\right)$. By Lemma 4.2.16, \#(t) = -1. By Lemma 4.2.16, $x$ is standard. QED

LEMMA 4.2.18. Let $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}} \in \mathrm{N}^{* *}$ and $\alpha<\kappa$. Then
$\mathrm{f} * *\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}}\right)<* * \mathrm{C}_{\alpha}{ }^{* *} \leftrightarrow \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}}<* * \mathrm{C}_{\alpha}{ }^{* *}$. Let $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{q}} \in$ $\mathrm{N}^{* *}$ and $\alpha<\kappa$. Then $\mathrm{g}^{* *}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{q}}\right)<* * \mathrm{C}_{\alpha}{ }^{* *} \leftrightarrow \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{q}}<* *$ $C_{\alpha}{ }^{* *}$. Let $x, y \in N^{* *}$ and $\alpha<\kappa$. Then $x+y<* * C_{\alpha}{ }^{* *} \leftrightarrow x, y<$ $\mathrm{C}_{\alpha}{ }^{\star *}$.

Proof: Let $x_{1}, \ldots, x_{p} \in N^{* *}$ and $\alpha<\kappa$. Let $t_{1}, \ldots, t_{p} \in$ CT(L**), where each $\mathrm{x}_{\mathrm{i}}=\operatorname{Val}\left(\mathrm{M}^{* *}, \mathrm{t}_{\mathrm{i}}\right)$.

First suppose that $f * *\left(x_{1}, \ldots, x_{p}\right)<C_{\alpha}{ }^{* *}$. By Lemma 4.2.16, \# $\left(f\left(t_{1}, \ldots, t_{p}\right)\right)<c_{\alpha}$ or \#(f( $\left.\left.t_{1}, \ldots, t_{p}\right)\right)=-1$. Hence for all i, \#( $t_{i}$ ) $<c_{\alpha}$ or \# $\left(t_{i}\right)=-1$. Fix i. Then \# $\left(t_{i}\right)=-1$ or for some $\beta<\alpha$, \# $\left(t_{i}\right)=c_{\beta}$. In the former case, by Lemma 4.2.16, $\operatorname{Val}\left(M^{* *}, t_{i}\right)$ is standard, and so is $<c_{\alpha}{ }^{* *}$, by Lemma 4.2.17. In the latter case, Val $\left(\mathrm{M}^{* *}, \mathrm{t}_{\mathrm{i}}\right)<* * \mathrm{C}_{\beta+1} \leq^{* *} \mathrm{C}_{\alpha}{ }^{* *}$, by Lemma 4.2.16.

For the converse, assume $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}}<* * \mathrm{c}_{\alpha}{ }^{* *}$. Then $\operatorname{Val}\left(M^{*}, t_{1}\right), \ldots, \operatorname{Val}\left(M^{*}, t_{p}\right)<* * c_{\alpha}{ }^{* *}$. If $\alpha=0$ then by Lemmas 4.2.16 and 4.2.17, \#(f( $\left.\left.t_{1}, \ldots, t_{p}\right)\right)=-1$, and so

Val (M**,f( $\left.t_{1}, \ldots, t_{p}\right)$ ) is standard. So we can assume that $\alpha>$ 0 . By Lemma 4.2.16, none of \#( $t_{1}$ ),..., \#( $t_{p}$ ) is $\geq c_{\alpha}$. Hence $\#\left(t_{1}\right), \ldots, \#\left(t_{p}\right)<c_{\alpha}$. Let $\beta<\alpha$, where \#( $t_{1}$ ),..., \#( $t_{p}$ ) $\leq c_{\beta}$. By Lemma 4.2.16, $\operatorname{Val}\left(M^{*}, f\left(t_{1}, \ldots, t_{p}\right)\right)<* * C_{\beta+1} * * \leq C_{\alpha}{ }^{* *}$.

The remaining two claims are established analogously. QED
DEFINITION 4.2.30. Let $s$ be a rational number. We write $<_{s} * *$ for the relation on $N^{* *}$ given by $x<_{s} * * y \leftrightarrow s x<* * y$.

LEMMA 4.2.19. Let $s$ be a rational number $>$ 1. There exists $\mathrm{k} \geq 1$ such that for all $\mathrm{x}_{1}<_{\mathrm{s}} * * \mathrm{x}_{2}<_{\mathrm{s}} * * \ldots .<_{\mathrm{s}} * * \mathrm{x}_{\mathrm{k}}$, we have $2 \mathrm{x}_{1}<* * \mathrm{x}_{\mathrm{k}}$.

Proof: Fix s as given, and let $k \geq 1$. Using universal sentence preservation, we see that for all $x_{1}, \ldots, x_{k} \in N^{* *}$, if $\mathrm{x}_{1}<_{\mathrm{s}} * * \mathrm{x}_{2}<_{\mathrm{s}} * * \ldots<_{\mathrm{s}} * * \mathrm{x}_{\mathrm{k}}$ then $\mathrm{x}_{1}<_{\mathrm{s}^{\prime}} * * \mathrm{x}_{\mathrm{k}}$, where $\mathrm{s}^{\prime}$ is $s^{k-1}$. Choose $k$ large enough so that $s^{k-1} \geq 2$. QED

LEMMA 4.2.20. Let $s$ be a rational number > 1. The relation $<_{s}{ }^{* *}$ on $\mathrm{N}^{* *}$ is transitive, irreflexive, and well founded.

Proof: Transitivity and irreflexivity follow from universal sentence preservation. By well foundedness, we mean that every nonempty subset of $\mathrm{N}^{* *}$ has a $<_{s} * *$ minimal element. This is equivalent to: there is no infinite $\mathrm{x}_{1}>_{\mathrm{s}} * *>_{\mathrm{s}} * * \mathrm{x}_{2}$ $>_{s}{ }^{* *} \mathrm{x}_{3} \ldots$..

By Lemma 4.2.19, if $<_{2} * *$ is well founded then $<_{s} * *$ is well founded. We now show that $<_{2} * *$ is well founded.

Let $Y$ be a nonempty subset of $\mathrm{N}^{* *}$. Choose $\mathrm{t} \in \mathrm{CT}\left(\mathrm{L}^{* *}\right)$ such that \#(t) is least with Val (M**,t) $\in Y$. If \#( $t$ ) $=-1$ then $Y$ has a standard element. Let $x$ be the least standard element of $Y$. Then $x$ is $a<_{2} * *$ minimal element of $S$. Therefore, we
can assume without loss of generality that $Y$ has no standard elements, and \#(t) $\geq 0$.

Let \#(t) $=C_{\alpha}$ and assume $Y$ has no $<_{2} * *$ minimal element. By Lemma 4.2.16, fix $d \in N \backslash\{0\}$ such that $\operatorname{Val}\left(M^{* *}, t\right)<* * d_{\alpha}{ }^{* *}$. Let $t=t_{1}, \ldots, t_{d+1} \in C T\left(L^{* *}\right)$ be such that $\operatorname{Val}\left(M^{* *}, t_{1}\right)>_{2} * *$ $\ldots>_{2} * * \operatorname{Val}\left(M^{* *}, t_{d+1}\right)$, where $\operatorname{Val}\left(M^{* *}, t_{1}\right), \ldots, \operatorname{Val}\left(M^{* *}, t_{d+1}\right) \in$ Y. Then dVal (M**, $\mathrm{t}_{\mathrm{d}+1}$ ) <** Val (M**,t) <** $\mathrm{dc}_{\alpha}{ }^{* *}$, and so Val ( $\mathrm{M}^{* *}, \mathrm{t}_{\mathrm{d}+1}$ ) <** $\mathrm{c}_{\alpha}{ }^{* *}$. Since Y has no standard elements, $\alpha$ > 0 . By Lemma 4.2.16, \# $\left(t_{d+1}\right)<c_{\alpha}$, which contradicts the choice of $t, \alpha$. QED

DEFINITION 4.2.31. It is convenient to set $s=1+1 / 2 b$ for using Lemma 4.2.20.

We now apply the well foundedness of $<_{s} * *$ in an essential way.

LEMMA 4.2.21. There is a unique set $W$ such that $W=\{x \in$ nst (M**): x $\notin \mathrm{g} * * \mathrm{~W}\}$. For all $\alpha<\kappa, \mathrm{C}_{\alpha}{ }^{* *} \notin$ $r n g(f * *), r n g\left(g^{* *}\right)$. In particular, each $c_{\alpha} * * \in W$.

Proof: By Lemma 4.2.15,

$$
\begin{aligned}
& g^{* *}\left(x_{1}, \ldots, x_{q}\right) \geq_{1+(1 / b)} \star *\left|x_{1}, \ldots, x_{q}\right| \\
& g^{* *}\left(x_{1}, \ldots, x_{q}\right)>_{s}^{* *}\left|x_{1}, \ldots, x_{q}\right|
\end{aligned}
$$

holds for all $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{q}} \in \mathrm{nst}\left(\mathrm{M}^{* *}\right)$. Hence $\mathrm{g}^{* *}$ is strictly dominating on nst(M**). By Lemma 4.2.20, <s** is well founded on nst (M**). Hence we can apply the Complementation Theorem (for well founded relations), Theorem 1.3.1. Let W be the unique set such that $W=\left\{x \in \operatorname{nst}\left(M^{* *}\right): x \notin g^{* * W}\right\}$.

For the second claim, write $C_{\alpha}{ }^{* *}=f * *\left(x_{1}, \ldots, x_{p}\right)$. By Lemma 4.2.15, each $\mathrm{x}_{\mathrm{i}}<* * \mathrm{c}_{\mathrm{a}}{ }^{* *}$. By Lemma 4.2.18, $\mathrm{f} * *\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}}\right)<* *$ $c_{\alpha} * *$. This is a contradiction. The same argument applies to g**.

The third claim follows immediately from the second claim. QED

We fix the unique $W$ from Lemma 4.2.21. We will use q choice functions $F_{1}, \ldots, F_{q}: N^{* *} \rightarrow W$ such that for all $x \in g^{* *} W$,

$$
x=g * *\left(F_{1}(x), \ldots, F_{q}(x)\right)
$$

and for all x $\notin \mathrm{g} * * \mathrm{~W}$,

$$
\mathrm{F}_{1}(\mathrm{x})=\ldots=\mathrm{F}_{\mathrm{q}}(\mathrm{x})=\mathrm{C}_{0}^{* *}
$$

We now come to the Skolem hull construction.
DEFINITION 4.2.32. Let $E \subseteq \kappa$. Define $E[1]=\left\{c_{\alpha}{ }^{* *}: \alpha \in E\right\}$. Suppose $E[1] \subseteq \ldots \subseteq E[k] \subseteq \kappa$ have been defined, $k \geq 1$. Define $E[k+1]=E[k] \cup(W \cap f * * E[k]) \cup F_{1} f * * E[k] \cup \ldots U$ $\mathrm{F}_{\mathrm{q}} \mathrm{f} * * \mathrm{E}[\mathrm{k}]$ 。

LEMMA 4.2.22. Let $\mathrm{E} \subseteq \kappa$ and $i \geq 1 . \mathrm{E}[\mathrm{i}] \subseteq \mathrm{E}[\mathrm{i}+1] \subseteq \mathrm{W}$. $f * * E[i] \subseteq E[i+1] \cup . g^{* * E[i+1] . E[1] ~} \cap f * * E[i]=\varnothing$.

Proof: Let $E \subseteq \kappa$ and $i \geq 1 . E[i] \subseteq E[i+1] \subseteq W$ is obvious by construction and the third claim of Lemma 4.2.21. Let $x \in$ $\mathrm{f} * * \mathrm{E}[\mathrm{i}]$. Since $\mathrm{E}[\mathrm{i}] \subseteq$ nst $\left(\mathrm{M}^{* *}\right)$, by Lemma 4.2.15, we have x $\in \operatorname{nst}\left(\mathrm{M}^{* *}\right)$.
case 1. $x \in W$. Then $x \in E[i+1]$.
case $2 . \mathrm{x} \notin \mathrm{W}$. Since $\mathrm{x} \in \mathrm{nst}\left(\mathrm{M}^{* *}\right)$, we have $\mathrm{x} \in \mathrm{g} * * \mathrm{~W}$. Hence $x=g^{* *}\left(F_{1}(x), \ldots, F_{q}(x)\right)$. Now each $F_{i}(x) \in E[i+1]$ since $x \in$ $f * * E[i]$. Hence $x \in g * * E[i+1]$.

We have thus established that f**E[i] $\subseteq$ E[i+1] U g**E[i+1].
$E[i+1] \cap g^{* * E}[i+1]=\varnothing$ follows from $W \cap g^{* *} W=\varnothing$.
$E[1] \cap f * * E[i]=\varnothing$ follows from the second claim of Lemma 4.2.21. QED

Note that Proposition B is essentially the same as Lemma 4.2.22, for $1 \leq i<n$. However Proposition $B$ lives in $N$ and Lemma 4.2.22 lives way up in $M^{* *}$. The remainder of the proof of Proposition B surrounds the choice of a suitable E such that $E[n]$ can be suitably embedded back into M.

Recall the positive integer $e=p^{n-1}$ fixed at the beginning of this section, where $\kappa$ is strongly e-Mahlo. Recall that we have also fixed $n \geq 1$.

LEMMA 4.2.23. There is an integer $m$ depending only on $p, n$, such that the following holds. There exist finitely many functions $G_{1}, G_{2}, \ldots, G_{m}: \kappa^{e} \rightarrow W$, such that for all $E \subseteq \kappa$, $E[n]$ $=G_{1} E \cup \ldots \cup G_{m} E$.

Proof: We show by induction on $1 \leq i \leq n$ that there exist finitely many functions $G_{1}, G_{2}, \ldots, G_{m}$, where each $G_{i}$ is a multivariate function from $\kappa$ into $W$ of various arities $\leq p^{i-}$ ${ }^{1}$, with the desired property.

For $i=1$, take $G_{1}: \kappa \rightarrow W$, where $G_{1}(\alpha)=C_{\alpha}{ }^{* *}$.
Suppose $G_{1}, \ldots, G_{m}$ works for fixed $1 \leq i<n$, with arities $\leq$ $p^{i-1}$. For $i+1$, we start with $G_{1}, \ldots, G_{m}$ in order to generate E[i] from E. In order to generate $W$ ( $\cap$ **E[i], we need finitely many functions, each built from f** composed with p of the $\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{m}}$. The element $\mathrm{c}_{0} * * \in \mathrm{~W}$ is used to make sure that only values in $W$ are generated. Each of these finitely many functions have arity at most $p\left(p^{i-1}\right)=p^{i}$. Each of $F_{j} f * *\left[E_{i}\right], 1 \leq j \leq q, ~ a r e ~ g e n e r a t e d ~ s i m i l a r l y . ~$

So arities $\leq p^{n-1}$ are sufficient for the case $i=n$. We can obviously arrange for all of these functions to have arity $\mathrm{e}=\mathrm{p}^{\mathrm{n}-1}$ by adding dummy variables. QED

We fix the functions $G_{1}, . ., G_{m}$ given by Lemma 4.2.23.

We now define "term decomposition" functions $H_{i}: W \rightarrow \kappa$, indexed by the natural numbers. Let $x \in W$.

DEFINITION 4.2.33. To define the $H_{i}(x)$, first choose $t \in$ $C T(L * *) ~ s u c h ~ t h a t ~ V a l\left(M^{* *}, t\right)=x$. Let $C_{\alpha_{-} 1}, C_{\alpha_{-} 2}, \ldots, C_{\alpha_{-} s}$ be a listing of all transfinite constants appearing in $t$ from left to right, with repetitions allowed.

DEFINITION 4.2.34. For $x \in W$, set $H_{0}(x)=$ lth(t). For $1 \leq i$ $\leq s$, set $H_{i}(x)=\alpha_{i}$. For $i>s$, set $H_{i}(x)=0$.

DEFINITION 4.2.35. Finally, define functions $J_{i, j}: \kappa^{e} \rightarrow \kappa$, i $\geq 0,1 \leq j \leq m$, by $J_{i, j}\left(\alpha_{1}, \ldots, \alpha_{e}\right)=H_{i}\left(G_{j}\left(\alpha_{1}, \ldots, \alpha_{e}\right)\right)$.

LEMMA 4.2.24. Let $E \subseteq \kappa$. Every element of $E[n]$ is of the form Val (M**, t$)$, where the length of $\mathrm{t} \in \mathrm{CT}\left(\mathrm{L}^{* *}\right)$ lies in $\cup\left\{J_{0, j} E: 1 \leq j \leq m\right\}$ and the transfinite constants of $t$ have subscripts lying in $\cup\left\{J_{i, j} E: 1 \leq i \leq l t h(t) \wedge 1 \leq j \leq m\right\}$.

Proof: Let $E \subseteq \kappa$ and $x \in E[n]$. By Lemma 4.2.23, let $x \in$ $G_{j} E, 1 \leq j \leq m$. Let $t \in C T\left(L^{* *}\right)$ be the term used to write $x$ $=$ Val ( $M^{* *}, t$ ) in the definition of the $H_{i}(x)$. Write $x=$ $G_{j}\left(\alpha_{1}, \ldots, \alpha_{e}\right), \alpha_{1}, \ldots, \alpha_{e} \in E$. Then $J_{0, j}\left(\alpha_{1}, \ldots, \alpha_{e}\right)=H_{0}(x)=$ lth $(t)$, and $J_{1, j}\left(\alpha_{1}, \ldots, \alpha_{e}\right), J_{2, j}\left(\alpha_{1}, \ldots, \alpha_{e}\right), \ldots$,
$J_{\text {lth }(t), j}\left(\alpha_{1}, \ldots, \alpha_{e}\right)$ enumerates at least the subscripts of transfinite constants of t. QED

LEMMA 4.2.25. There exists $E \subseteq S \subseteq \kappa$, E,S of order type $\omega$, and a positive integer $r$, such that $E[n] \subseteq M * *[S, r]$.

Proof: We apply Lemma 4.1.6 to the following two sequences of functions. The first is the $J_{i, j}: \kappa^{e} \rightarrow \kappa$, where $i \geq 1$ and $1 \leq j \leq m$ (here $m$ is as given by Lemma 4.2.23, and depends only on $p, k$. . The first can be construed as an infinite sequence of functions from $\kappa^{e}$ into $\kappa$, and the second can also be construed as an infinite sequence of functions from $\kappa$ into $\omega$ by infinite repetition.

By Lemma 4.1.6, let $E \subseteq \kappa$ be of order type $\omega$ such that for all $i \geq 1$ and $1 \leq j \leq m, J_{i, j} E$ is either a finite subset of sup (E), or has order type $\omega$ with the same sup as $E$, and $J_{0, j} E$ is finite.

Let $r=\max \left(J_{0,1} E \cup \ldots \cup J_{0, m} E\right)$. By Lemma 4.2.24, every element of $E[n]$ is the value in $M * *$ of a closed term $t$ of length at most $r$, whose transfinite constants have subscripts lying in $S=U\left\{J_{i j} E: 1 \leq i \leq l \ln (t) \wedge 1 \leq j \leq m\right\}$. I.e., E[n] $\subseteq M^{* *}[S, r]$. Note that $S$ is a finite union of sets of ordinals, each of which is either a finite subset of sup(E), or is of order type $\omega$ with the same sup as E. Since $E \subseteq S$, we see that $S$ is of order type $\omega$. QED

DEFINITION 4.2.36. We fix E, S, r as given by Lemma 4.2.25.

THEOREM 4.2.26. Proposition B is provable in SMAH ${ }^{+}$. In fact, it is provable in $M A H^{+}$.

Proof: By Lemma 4.2.22, for all $1 \leq i<n, f * * E[i] \subseteq E[i+1]$ U. $g^{* * E[i+1], ~ a n d E[1] \cap f * * E[n]=\varnothing . B y ~ L e m m a ~ 4.2 .13, ~}$ there is an $S$,r-embedding $T$ from $M * *$ into $M$. Note that $f * *[E[n]] \cup g^{* *}[E[n]] \subseteq M * *[S, r(p+q)]=\operatorname{dom}(T)$.

For $1 \leq i \leq n$, let $A_{i}=T E[i] . S i n c e E[1] \subseteq \ldots \subseteq[n]$, we have $A_{1} \subseteq \ldots \subseteq A_{n} \subseteq N$. By Lemma 4.2.25, $E[n] \subseteq M^{*} \star[S, r]$.

We first claim that for all $1 \leq i<n, f A_{i} \subseteq A_{i+1} \cup g A_{i+1}$.

Let $1 \leq i<n$, and $x \in f A_{i}$. Write $x=f\left(T Y_{1}, \ldots, T Y_{p}\right)$, $Y_{1}, \ldots, y_{p} \in E[i]$. Hence $T f * *\left(y_{1}, \ldots, Y_{p}\right)=f\left(T y_{1}, \ldots, T y_{p}\right)=x$.

By Lemma 4.2.22, f** $\left.\left(y_{1}, \ldots, y_{p}\right) \in E[i+1] \cup g * * E i+1\right]$. First suppose $f * *\left(y_{1}, \ldots, y_{p}\right) \in E[i+1]$. Then $T f * *\left(y_{1}, \ldots, y_{p}\right)=x \in$ $A_{i+1}$.

Secondly suppose $f * *\left(y_{1}, \ldots, y_{p}\right) \in g * * E[i+1]$, and write $f^{* *}\left(y_{1}, \ldots, y_{p}\right)=g^{* *}\left(z_{1}, \ldots, z_{q}\right)$, where $z_{1}, \ldots, z_{q} \in E[i+1]$. Then Tf** $\left(y_{1}, \ldots, y_{p}\right)=T g * *\left(z_{1}, \ldots, z_{q}\right)=g\left(T z_{1}, \ldots, T z_{q}\right)=$ $f\left(T y_{1}, . . ., T y_{p}\right)=x$. Hence $x \in$ gA $_{i+1}$.

We next claim that for all $1 \leq i<n, A_{i+1} \cap \mathrm{gA}_{\mathrm{i}+1}=\varnothing$. We must verify that $T E[i+1] \cap \operatorname{TE}[i+1]=\varnothing$. Let $x, y_{1}, \ldots, y_{q} \in$ $E[i+1], T(x)=g\left(T y_{1}, \ldots, \mathrm{Ty}_{q}\right) . C l e a r l y \mathrm{~T}(\mathrm{x})=$
 $\mathrm{E}[i+1] \cap \mathrm{g} * \mathrm{E}[i+1]=\varnothing$.

We finally claim that $A_{1} \cap \mathrm{fA}_{n}=\varnothing$. Let $\mathrm{x} \in \mathrm{A}_{1}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{p}} \in$ $A_{n}, x=f\left(y_{1}, \ldots, y_{p}\right)$. Let $x^{\prime} \in E[1], y_{1}^{\prime}, \ldots, y_{p}^{\prime} \in E[n]$, where $x=T\left(x^{\prime}\right)$, and $y_{1}, \ldots, y_{p}=T\left(y_{1}{ }^{\prime}\right), \ldots, T\left(y_{p}^{\prime}\right)$ respectively. Note that Tf** ( $\mathrm{y}_{1}^{\prime}, \ldots, \mathrm{yp}^{\prime}$ ) $=$ $f\left(T\left(y_{1}^{\prime}\right), \ldots, T\left(y_{p}^{\prime}\right)\right)=f\left(y_{1}, \ldots, y_{p}\right)=x=T\left(x^{\prime}\right)$. Therefore $x^{\prime}$ $=f * *\left(y_{1}{ }^{\prime}, \ldots, y_{p}^{\prime}\right)$, contradicting the last claim of Lemma 4.2.22.

The second claim in the Lemma follows from the first by Theorem 4.1.7. This is because Proposition B is obviously in $\Pi^{1}{ }_{2}$ form. QED

Obviously the proof of Theorem 4.2 .26 gives an upper bound on the order of strongly Mahlo cardinal sufficient to prove Proposition $B$ that depends exponentially on the arity of $f$ and the length of the tower. Without attempting to optimize the level, we have shown the following.

COROLLARY 4.2.27. The following is provable in ZFC. Let p,n $\geq 1$. If there exists a strongly $\mathrm{p}^{\mathrm{n}-1}$-Mahlo cardinal then Proposition $B$ holds for p-ary f, multivariate $g$, and $n$. If there exists a strongly $p^{2}$-Mahlo cardinal, then Proposition A holds for p-ary $f$ and multivariate $g$. Furthermore, we can drop "strongly" from both results.

Corollary 4.2.27 is far from optimal. For instance, if $n=$ 2 then Proposition $B$ is provable in $R^{\prime} A_{0}$, as we shall see now.

THEOREM 4.2.28. The following is provable in $R C A_{0}$. For all $\mathrm{f}, \mathrm{g} \in \mathrm{ELG}$ there exist infinite $\mathrm{A} \subseteq \mathrm{B} \subseteq \mathrm{N}$ such that
$f A \subseteq B \cup \cdot g B$
$A \cap f B=\varnothing$.
Proof: Let $f, g \in \operatorname{EVSD}$. Let $n$ be sufficiently large. By Theorem 3.2.5, let $A \subseteq[n, \infty)$ be infinite where $A \cap g(A \cup$ $\mathrm{fA})=\varnothing$. By Lemma 3.3.3, let $B$ be unique such that $B \subseteq A \cup$ $f A \subseteq B \cup . g B$. Then $A \cap g B \subseteq A \cap g(A \cup f A)=\varnothing$, and hence $A$ $\subseteq B$. Also $A \cap f B \subseteq A \cap f(A \cup f A)=\varnothing$, and $f A \subseteq B \cup$. $\quad$ B. QED

