
 1 

4.2. Proof using Strongly Mahlo Cardinals. 
 
Recall Proposition A from the beginning of section 3.1. 
This is the Principal Exotic Case.  
 
PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that 

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
Recall the definitions of N, ELG, INF, ∪., fA, in 
Definitions 1.1.1, 1.1.2, 1.1.10, 1.3.1, and 2.1.   
 
In this section, we prove Proposition A in SMAH+. It is 
convenient to prove a stronger statement. 
 
PROPOSITION B. Let f,g ∈ ELG and n ≥ 1. There exist 
infinite sets A1 ⊆ ... ⊆ An ⊆ N such that  
i) for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪. gAi+1; 
ii) A1 ∩ fAn = ∅. 
 
LEMMA 4.2.1. The following is provable in RCA0. Proposition 
B implies Proposition A. In fact, Proposition B for n = 3 
implies Proposition A. 
 
Proof: Let f,g ∈ ELG. By Proposition B for n = 3, let A ⊆ B 
⊆ C ⊆ N be infinite sets, where fA ⊆ B ∪. gB, fB ⊆ C ∪. 
gC, and A ∩ fC = ∅.  
 
Note that C,gC are disjoint. Hence C,gB are disjoint. In 
addition, A,fA are disjoint, and A,fB are disjoint. We now 
verify the inclusion relations. 
 
Let x ∈ A ∪ fA. If x ∈ fA then x ∈ B ∪ gB ⊆ C ∪ gB. If x ∈ 
A then x ∈ C ⊆ C ∪ gB. 
 
Let x ∈ A ∪ fB. If x ∈ fB then x ∈ C ∪ gC. If x ∈ A then x 
∈ C ⊆ C ∪ gC. QED 
 
Recall the definition of f ∈ ELG from section 2.1: there 
are rational constants c,d > 1 such that for all but 
finitely many x ∈ dom(f), c|x| ≤ f(x) ≤ d|x|. 
 
We wish to put this in more explicit form. Assume f,c,d are 
as above. Let t be a positive integer so large that 1 + 1/t 
< c,d < t, and for all x ∈ dom(f), |x| > t → c|x| ≤ f(x) ≤ 
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d|x|. Let b be an integer greater than t and max{f(x): |x| ≤ 
t}. Then for all x ∈ dom(f),  
 

|x| > t → f(x) ≤ b|x|. 
|x| ≤ t → f(x) ≤ b. 
|x| ≤ b → f(x) ≤ b2. 

 
Hence f ∈ ELG if and only if there exists a positive 
integer b such that for all x ∈ dom(f),  
 

|x| > b → (1 + 1/b)|x| ≤ f(x) ≤ b|x|. 
|x| ≤ b → f(x) ≤ b2. 

 
We now fix f,g ∈ ELG, where f is p-ary and g is q-ary. 
According to the above, we also fix a positive integer b 
such that for all x ∈ Np and y ∈ Nq,  
 
i. if |x|,|y| > b then  
 

(1 + 1/b)|x| ≤ f(x) ≤ b|x| 
 (1 + 1/b)|y| ≤ g(y) ≤ b|y|. 

 
ii. if |x|,|y| ≤ b then f(x),g(y) ≤ b2.  
 
We also fix n ≥ 1 and a strongly pn-1-Mahlo cardinal κ.  
 
We begin with the discrete linearly ordered semigroup with 
extra structure, M = (N,<,0,1,+,f,g).  
 
The plan will be to first construct a structure of the form 
M* = (N*,<*,0*,1*,+*,f*,g*,c0*,...), where the c*’s are 
indexed by N. This structure is non well founded and 
generated by the constants 0*,1*, and the c*’s. The 
indiscernibility of the c*’s will be with regard to atomic 
formulas only. The first nonstandard point in M* will be 
c0*.  
 
While it is obvious that we cannot embed M* back into M, we 
use the fact that we can embed any partial substructure of 
M* that is “boundedly generated” back into M.  
 
Of course, M* is not well founded, but we prove the well 
foundedness of the crucial irreflexive transitive relation  
 

sx <* y 
 
on N*, where s > 1 is any fixed rational number.  
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Using the atomic indiscernibility of the c*’s, we 
canonically extend M* to a structure M** = 
(N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...), α < κ. Many 
properties of M* are preserved when passing to M**. The 
appropriate embedding property asserts that any partial 
substructure of M** boundedly generated by 0**,1**, and a 
set of c**’s of order type ω is embeddable back into M* and 
M.   
 
Recall that the proof of the Complementation Theorem 
(Theorem 1.3.1) requires that the function is strictly 
dominating with respect to a well founded relation <. Here 
we verify that g** is strictly dominating on the 
nonstandard part of M** with respect to the above crucial 
irreflexive transitive relation. This enables us to apply 
the Complementation Theorem 1.3.1) to g** on the 
nonstandard part of M** in order to obtain a unique set W ⊆ 
nst(M**) such that for all x ∈ nst(M**), x ∈ W ↔ x ∉ g**W.  
 
We then build a Skolem hull construction of length ω 
consisting entirely of elements of W. The construction 
starts with the set of all c**’s. Witnesses are thrown in 
from W that verify that values of f** at elements thrown in 
at previous stages do not lie in W (provided they in fact 
do not lie in W). Only the first n stages of the 
construction will be used. 
 
Every element of the n-th stage of the Skolem hull 
construction has a suitable name involving e = e(p,q) of 
the c**’s.  
 
At this crucial point, we then apply Lemma 4.1.6 to the 
large cardinal κ, with arity n = e, in order to obtain a 
suitably indiscernible set S of the c**’s of order type ω, 
with respect to this naming system. 
 
We can redo the length n Skolem hull construction starting 
with S. This is just a restriction of the original Skolem 
hull construction that started with all of the c**'s.  
 
Because of the indiscernibility, we generate a subset of 
N** whose elements are given by terms of bounded length in 
c**'s of order type ω. This forms a suitable partial 
substructure of M**, so that it is embeddable back into M. 
The image of this embedding on the n stages of the Skolem 
hull construction will comprise the A1 ⊆ ... ⊆ An satisfying 
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the conclusion of Proposition B. This completes the 
description of the plan for the proof. 
 
We now begin the detailed proof of Proposition B. We begin 
with the structure M = (N,<,0,1,+,f,g) in the language L 
consisting of the binary relation <, constants 0,1, the 
binary function +, the p-ary function f, the q-ary function 
g, and equality.  
 
DEFINITION 4.2.1. Let V(L) = {vi: i ≥ 0} be the set of 
variables of L. Let TM(L) be the set of terms of L, and 
AF(L) be the set of atomic formulas of L. For t ∈ TM(L), we 
define lth(t) as the total number of occurrences of 
functions, constants, and variables, in t. For ϕ ∈ AF(L), 
we also define lth(ϕ) as the total number of occurrences of 
functions, constants, and variables, in ϕ. 
 
DEFINITION 4.2.2. An M-assignment is a partial function 
h:V(L) → N. We write Val(M,t,h) for the value of the term t 
in M at the assignment h. This is defined if and only if h 
is adequate for t; i.e., h is defined at all variables in 
t.  
 
DEFINITION 4.2.3. We write Sat(M,ϕ,h) for atomic formulas 
ϕ. This is true if and only if h is adequate for ϕ and M 
satisfies ϕ at the assignment h. Here h is adequate for ϕ 
if and only if h is defined at (at least) all variables in 
ϕ. 
 
DEFINITION 4.2.4. We say that a partial function h:V(L) → N 
is increasing if and only if for all i < j, if vi,vj ∈ 
dom(h) then h(vi) < h(vj). 
 
LEMMA 4.2.2. There exist infinite sets N ⊇ E0 ⊇ E1 ⊇ ... 
indexed by N, such that for all i ≥ 0, ϕ ∈ AF(L), lth(ϕ) ≤ 
i, and increasing partial functions h1,h2:V(L) → N adequate 
for ϕ with rng(h1),rng(h2) ⊆ Ei, we have Sat(M,ϕ,h1) ↔ 
Sat(M,ϕ,h2). 
 
Proof: A straightforward application of the usual infinite 
Ramsey theorem, repeated infinitely many times. Each Ei+1 is 
obtained by Ramsey’s theorem applied to a coloring of i-
tuples from Ei. QED 
 
DEFINITION 4.2.5. We fix the E’s in Lemma 4.2.2. In an 
abuse of notation, we write Sat(M,ϕ,E) if and only if ϕ ∈ 
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AF(L) and for all increasing h adequate for ϕ with range 
included in Ei, we have Sat(M,ϕ,h), where lth(ϕ) = i.  
 
Note that by Lemma 4.2.2, this is equivalent to: ϕ ∈ AF(L) 
and for some increasing h adequate for ϕ with range 
included in Ei, we have Sat(M,ϕ,h), where lth(ϕ) = i. We can 
also use any i with i ≥ lth(ϕ) and get an equivalent 
definition of Sat(M,ϕ,E). 
 
DEFINITION 4.2.6. We now introduce constants ci, i ∈ N. Let 
C be the set of all such constants. Let L* be L expanded by 
these constants. Structures for L* will be written M* = 
(N*,<*,0*,1*,+*,f*,g*,c0*,...). Here each ci is interpreted 
by ci*.  
 
DEFINITION 4.2.7. We let CT(L*) be the set of closed terms 
of L*, and AS(L*) be the set of atomic sentences of L*. We 
define lth(t), lth(ϕ) for t ∈ AS(L*), ϕ ∈ AS(L*).  
 
DEFINITION 4.2.8. For ϕ ∈ AS(L*), t ∈ CT(L*), we write 
Sat(M*,ϕ) and Val(M*,t) for the usual model theoretic 
notions.  
 
For each t ∈ CT(L*), let X(t) ∈ TM(L) be the result of 
replacing all occurrences of ‘c’ by ‘v’. For each ϕ ∈ 
AS(L*), let X(ϕ) ∈ AF(L) be the result of replacing all 
occurrences of ‘c’ by ‘v’.  
 
DEFINITION 4.2.9. Let T = {ϕ ∈ AS(L*): Sat(M,X(ϕ),E)}.  
 
LEMMA 4.2.3. T is consistent. For all s,t ∈ CT(L*), exactly 
one of s = t, s < t, t < s belongs to T. For all n ∈ N, cn < 
cn+1 ∈ T. 
 
Proof: It suffices to show that every finite subset of T is 
consistent. Let ϕ1,...,ϕk ∈ T. Then each Sat(M,X(ϕi),E) 
holds. Let j = max(lth(ϕ1),...,lth(ϕk)) and h:V(L) → Ej be 
the increasing bijection. Then each Sat(M,X(ϕi),h) holds. 
Let M’ be the expansion of M that interprets each constant 
cn as h(vn). Then each Sat(M',ϕi) holds. 
 
For the second claim, let s,t ∈ CT(L*). Let i = lth(s = t) 
and h:V(L) → Ei be the increasing bijection. Then Sat(M,X(s 
= t),h) or Sat(M,X(s < t),h) or Sat(M,X(t < s),h). 
Therefore at least one of s = t, s < t, t < s lies in T. 
Since at most one of Sat(M,X(s = t),E), Sat(M,X(s < t),E), 



 6 

Sat(M,X(t < s),E) can hold, clearly at most one of s = t, s 
< t, t < s lies in T.  
 
For the third claim, let n ∈ N, and let h:V(L) → E2 be the 
increasing bijection. Obviously Sat(M,vn < vn+1,h). Hence cn 
< cn+1 ∈ T. QED 
 
We now fix M* = (N*,0*,1*,<*,+*,f*,g*,c0*,...) to be any 
model of T which is generated from its constants. Such an 
M* exists by Lemma 4.2.3 and the fact that T consists 
entirely of atomic sentences. Clearly M* is unique up to 
isomorphism.  
 
DEFINITION 4.2.10. For d ∈ N and t ∈ CT(L*) or t ∈ TM(L). 
Define dt to be the term  
 

t + t + ... + t 
 
associated to the left, where there are d t’s. If d = 0, 
then take dt to be 0. Obviously dt ∈ CT(L*) or dt ∈ TM(L), 
respectively. 
 
LEMMA 4.2.4. Let ϕ ∈ AS(L*). Sat(M*,ϕ) if and only if ϕ ∈ 
T. <* is a linear ordering on N*. For all n,d ∈ N, dcn < cn+1 
∈ T.  
 
Proof: Since M* satisfies T, the reverse direction of the 
first claim is immediate.  
 
Suppose ϕ ∉ T. First assume ϕ is of the form s < t. By 
Lemma 4.2.3, t < s ∈ T or s = t ∈ T. Then Sat(M*,t < s) or 
Sat(M*,s = t). Therefore Sat(M*,ϕ) is false. Now assume ϕ 
is of the form s = t. By Lemma 4.2.3, s < t ∈ T or t < s ∈ 
T. Hence Sat(M*,s < t) or Sat(M*,t < s). Therefore 
Sat(M*,ϕ) is false.  
 
The second claim follows immediately from the first claim 
and the second claim of Lemma 4.2.3. 
 
For the third claim, let i = lth(dcn < cn+1). The unique 
increasing bijection h:V(L) → Ei has dh(vn) < h(vn+1). Hence 
Sat(M,dvn < vn+1,h), Sat(M,dvn < vn+1,E), and X(dcn < cn+1) = 
dvn < vn+1. Hence dcn < cn+1 ∈ T. QED 
  
DEFINITION 4.2.11. For r ≥ 1, we write M*[r] for the set of 
all values in M* of the terms t ∈ CT(L*) of length ≤ r.  
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DEFINITION 4.2.12. We say that H is an r-embedding from M* 
into M if and only if  
 
i) H:M*[r(p+q+1)] → N; 
ii) H(0*) = 0, H(1*) = 1; 
iii) for all x,y ∈ M*[r(p+q+1)], x <* y ↔ H(x) < H(y); 
iv) for all x,y ∈ M*[r], H(x+*y) = H(x)+H(y).  
v) for all x1,...,xp ∈ M*[r], H(f*(x1,...,xp)) = 
f(H(x1),...,H(xp)); 
vi) for all x1,...,xq, ∈ M*[r], H(g*(x1,...,xq)) = 
g(H(x1),...,H(xq)). 
 
Note that by the second claim of Lemma 4.2.4, iii) implies 
that H is one-one.  
 
LEMMA 4.2.5. For all r ≥ 1, there exists an r-embedding H 
from M* into M.  
 
Proof: Let r ≥ 1 and h:V(L) → E2r(p+q+1) be the unique 
increasing bijection.  
 
We define H:M*[r(p+q+1)] → N as follows. Let x = Val(M*,t), 
where t ∈ CT(L*), lth(t) ≤ r(p+q+1). Define H(x) = 
Val(M,X(t),h).  
 
To see that H is well defined, let x = Val(M*,t’), where t’ 
∈ CT(L*), lth(t’) ≤ r(p+q+1). We must verify that 
Val(M,X(t),h) = Val(M,X(t’),h). Since lth(t = t’) ≤ 
2r(p+q+1),  
 

Val(M,X(t),h) = Val(M,X(t’),h) ↔ 
Sat(M,X(t = t’),E) ↔ 

t = t’ ∈ T ↔ 
Sat(M*,t = t’) ↔ 

Val(M*,t) = Val(M*,t’) ↔ 
x = x. 

 
For ii), H(0*) = Val(M,X(0),h) = 0. H(1*) = Val(M,X(1),h) = 
1. Also, ci* = Val(M*,ci), H(ci*) = Val(M,X(ci),h) = 
Val(M,vi,h) = h(vi) ∈ Er(p+q+1). 
 
For iii), we must verify that for lth(t),lth(t') ≤ r(p+q+1), 
Val(M*,t) <* Val(M*,t’) ↔ Val(M,X(t),h) < Val(M,X(t’),h). 
Using Lemma 4.2.4, the left side is equivalent to Sat(M*,t 
< t’), and to t < t’ ∈ T. The right side is equivalent to 
Sat(M,X(t < t’),h), to Sat(M,X(t < t’),E), and to t < t’ ∈ 
T, using lth(t < t') ≤ 2r(p+q+1).  
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For iv), we must verify that for lth(t),lth(t') ≤ r, 
H(Val(M*,t)+*Val(M*,t')) = H(Val(M*,t))+H(Val(M*,t')). 
Since lth(t+t') ≤ 2r ≤ r(p+q+1), the left side is 
H(Val(M*,t+t')) = Val(M,X(t+t'),h). The right side is 
Val(M,X(t),h)+Val(M,X(t'),h). Equality is immediate.   
 
For v), we must verify that for lth(t1),...,lth(tp) ≤ r, 
H(f*(Val(M*,t1),...,Val(M*,tp)) = 
f(H(Val(M*,t1)),...,H(Val(M*,tp))). Since lth(f(t1,...,tp)) ≤ 
r(p+q+1), the left side is H(Val(M*,f(t1,...,tp))) = 
Val(M,X(f(t1,...,tp)),h). The right side is 
f(Val(M,t1,h),...,Val(M,tp,h)). Equality is immediate.  
 
For vi), see v). QED 
 
DEFINITION 4.2.13. For quantifier free formulas ϕ in L*, we 
define lth'(ϕ) as the total number of occurrences of 
functions, constants, and variables. We do not count the 
occurrences of connectives for lth'. 
 
LEMMA 4.2.6. For all r ≥ 1, there is an r-embedding from M* 
into M with the following properties.  
i. each H(ci*) ∈ E2r(p+q+1). 
ii if t ∈ CT(L*), lth(t) ≤ r(p+q+1), then H(Val(M*,t)) = 
Val(M,X(t),h). 
iii. if ϕ ∈ AS(L*), lth(ϕ) ≤ r(p+q+1), then Sat(M*,ϕ) ↔ 
Sat(M,X(ϕ),E). 
iv. if ϕ is a quantifier free sentence in L*, lth'(ϕ) ≤ 
r(p+q+1), then Sat(M*,ϕ) ↔ Sat(M,X(ϕ),E). 
 
Proof: Let H:M*[r(p+q+1)] → N be an r-embedding of M* into 
M, constructed in the proof of Lemma 4.2.5, using the 
strictly increasing bijection h:V(L) → E2r(p+q+1). Then each 
H(ci*) ∈ E2r(p+q+1). Let t ∈ CT(L*), lth(t) ≤ r(p+q+1). Then 
H(Val(M*,t)) = Val(M,X(t),h) by definition. Let ϕ ∈ AS(L*), 
lth(ϕ) ≤ r(p+q+1). Then Sat(M*,s = t) ↔ Val(M*,s) = 
Val(M*,t) ↔ Val(M,X(s),h) = Val(M,X(t),h) ↔ Sat(M,X(s = 
t),E). We can use < in place of =. Finally, iv follows from 
iii. QED  
 
LEMMA 4.2.7. Every universal sentence of L that holds in M 
holds in M*. For any quantifier free sentence of L*, if we 
replace equal c*’s by equal c*’s in a manner that is order 
preserving on indices, then the truth value in M* is 
preserved. The c*’s are strictly increasing and unbounded 
in N*. 



 9 

 
Proof: For the first claim, let (∀v1)...(∀vm)(ϕ) be a 
universal sentence of L that holds in M. Suppose it fails 
in M*. Let v1,...,vm ∈ N*, where ϕ(v1,...,vm) fails in M*. 
Let t1,...,tm ∈ CT(L*) be such that each vi = Val(M*,ti). Let 
lth(ϕ(t1,...,tm)) ≤ r.  
 
By Lemmas 4.2.5 and 4.2.6, let H:M*[r] → N be an r-
embedding of M* into M. By the final claim of Lemma 4.2.6, 
since not Sat(M*,ϕ(t1,...,tm)), we have not 
Sat(M,X(ϕ(t1,...,tm)),E). This contradicts 
Sat(M,(∀v1)...(∀vm)(ϕ)). 
 
For the second claim, let ϕ ∈ AS(L*). Let ψ be obtained 
from ϕ by replacing equal c*’s by equal c*’s in an order 
preserving way. Let lth(ϕ) ≤ r. By Lemmas 4.2.5 and 4.2.6, 
let H:M*[r] → N be an r-embedding of M* into M. By Lemma 
4.2.6,   
 

Sat(M*,ϕ) ↔ Sat(M,X(ϕ),E). 
Sat(M*,ψ) ↔ Sat(M,X(ψ),E). 

 
Since X(ψ) is obtained from X(ϕ) by replacing equal vi’s by 
equal vi’s in an order preserving way, the right sides of 
the above two equivalences are equivalent. Hence the left 
sides are also equivalent.   
 
For the third claim, let i < j. Let h:{i,j} → E2 be 
increasing. Since Sat(M,X(ci < cj),h), we have Sat(M,X(ci < 
cj),E), and so ci < cj ∈ T and Sat(M*,ci < cj). Hence ci* <* 
cj*.  
 
To see that the c*’s are unbounded in N*, let x ∈ N*, and 
let t ∈ CT(L*) be such that x = Val(M*,t). Let ci be the 
largest element of C appearing in t. We claim that t < ci+1 
lies in T. To see this, let r = lth(t < ci+1) and h:V(L) → 
Er be strictly increasing, where h(vi+1) >* Val(M,t,h). Then 
Sat(M,X(t < ci+1),h), and so Sat(M,X(t < ci+1),E), and hence 
t < ci+1 ∈ T. Therefore Val(M*,t) <* ci+1*. QED  
 
DEFINITION 4.2.14. Let C’ = {cα: α < κ}. C’ is the set of 
transfinite constants. Note that C ⊆ C’. 
 
DEFINITION 4.2.15. Let L** be the language L extended by 
constants cα, α < κ. Note that the ci in L* are already 
present in L**. The new constants are the cα, ω ≤ α < κ. 
 



 10 

DEFINITION 4.2.16. Let CT(L**) be the set of all closed 
terms of L**. Let AS(L**) be the set of all atomic 
sentences of L**.  
 
DEFINITION 4.2.17. A reduction is a partial function J:C’ → 
C, where for all α < β and i,j < ω, if J(cα) = ci and J(cβ) = 
cj, then i < j. Any reduction J extends to a partial map 
from CT(L**) into CT(L*), and to a partial map AS(L**) into 
AS(L*) in the obvious way. Here J is defined at a closed 
term or atomic sentence of L** if and only if J is defined 
at every constant appearing in that closed term or atomic 
sentence. 
 
DEFINITION 4.2.18. For s,t ∈ CT(L**), we define s ≡ t if 
and only if for all reductions J defined at s,t, Sat(M*,J(s 
= t)). 
 
LEMMA 4.2.8. Let s,t ∈ CT(L**) and J,J’ be reductions 
defined at s,t ∈ CT(L**). Then Sat(M*,J(s = t)) ↔ 
Sat(M*,J’(s = t)), and Sat(M*,J(s < t)) ↔ Sat(M*,J’(s < 
t)). ≡ is an equivalence relation on CT(L**). 
 
Proof: Let s,t,J,J’ be as given. Then J(s = t) and J’(s = 
t) are the same up to an increasing change in the c’s 
appearing in s, as in the second claim of Lemma 4.2.7. 
Hence by the second claim of Lemma 4.2.7, Sat(M*,J(s = t)) 
↔ Sat(M*,J’(s = t)), and Sat(M*,J(s < t)) ↔ Sat(M*,J’(s < 
t)). 
 
For the second claim, obviously ≡ is reflexive and 
symmetric. Now suppose s ≡ t and t ≡ r. Let J be any 
increasing reduction defined at s,t,r. Then Sat(M*,J(s = 
t)) and Sat(M*,J(t = r)). Hence Sat(M*,J(s = r)). Therefore 
s ≡ r. QED 
 
DEFINITION 4.2.19. We now define the structure M** = 
(N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...), α < κ. Here 
the interpretation of < is <**, of 0 is 0**, of 1 is 1**, 
of f is f**, of g is g**, and of each cα is cα**. 
 
DEFINITION 4.2.20. We will define M** as a stretching of 
M*. We define N** to be the set of all equivalence classes 
of terms in CT(L**) under the ≡ of Lemma 4.2.8. We define 
0** = [0]. We define 1** = [1]. We define cα** = [cα].  
 
We define [s] <** [t] if and only if Sat(M*,J(s < t)), 
where J is any (some) reduction defined at s,t.  
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We define [s] +** [t] = [s + t].  
 
We define f**([t1],...,[tp]) = [f(t1,...,tp)].  
 
We define g**([t1],...,[tq]) = [g(t1,...,tq)].  
 
DEFINITION 4.2.21. For t ∈ CT(L**) and d ∈ N, we write dt 
for t + ... + t, where there are d t’s, associated to the 
left. If d = 0, then use 0. 
 
DEFINITION 4.2.22. For x ∈ N** and d ∈ N, we write dx for x 
+** ... +** x, where there are d x’s associated to the 
left. If d = 0, then use 0.  
 
LEMMA 4.2.9. These definitions of <**, +**, f**, g** are 
well defined. For all α < β < κ and d ∈ N, dcα** <** cβ**.  
 
Proof: Suppose s ≡ s’, t ≡ t’. We freely use Lemma 4.2.8. 
 
Suppose Sat(M*,J(s < t)) holds for all reductions J defined 
at s,t. Let s ≡ s’ and t ≡ t’. Let J’ be any reduction 
defined at s,s’,t,t’. Then Sat(M*,J’(s < t)), Sat(M*,J’(s = 
s’)), and Sat(M*,J’(t = t’)). Hence Sat(M*,J’(s’ < t’)). By 
Lemma 4.2.8, for all reductions J’’ defined at s’,t’, 
Sat(M*,J’’(s < t)).  
 
Suppose s ≡ s’, t ≡ t’. We want to show s + t ≡ s’ + t’. 
Obviously for all reductions J defined at s,t,s’,t’, 
Sat(M*,J(s + t = s’ + t’)).  
 
Suppose s1 ≡ t1, ..., sp ≡ tp. We want to show f(s1,...,sp) ≡ 
f(t1,...,tp). Obviously for all reductions J defined at 
s1,...,sp,t1,...,tp, Val(M*,J(f(s1,...,sp))) = 
Val(M*,J(f(t1,...,tp))). Hence f(s1,...,sp) ≡ f(t1,...,tp). 
 
The remaining case with g is handled analogously.  
 
For the second claim, let α < β < κ, d ∈ N, and J be any 
reduction defined at dcα < cβ, where J(cα) = cn and J(cβ) = 
cm, n < m. Then dcα** <** cβ** ↔ [dcα] <** [cβ] ↔ 
Sat(M*,J(dcα < cβ)) ↔ Sat(M*,dcn < cm), which holds by Lemma 
4.2.4. QED 
 
We write M** = 
(N**,<**,0**,1**,+**,f**,g**,c0**,...,cα**,...), α < κ.  
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The terms t ∈ CT(L**) play a dual role. We used them to 
define N** as the set of all [t], t ∈ CT(L**), under the 
equivalence relation ≡.  
 
However, now that we have defined the structure M**, we can 
use the terms t ∈ CT(L**) in the expression Val(M**,t).  
 
LEMMA 4.2.10. For all t ∈ CT(L**), Val(M**,t) = [t]. In 
particular, every element of N** is generated in M** from 
the set of all constants of M**, which is C’ ∪ {0,1}. 
 
Proof: By induction on lth(t). QED  
 
DEFINITION 4.2.23. Let S ⊆ κ. The S-constants are the cα, α 
∈ S. The S-terms are the t ∈ CT(L**), where all transfinite 
constants in t are S-constants. 
 
LEMMA 4.2.11. Let S ⊆ κ. {[t]: t is an S-term} contains 
0**, 1**, the cα**, α ∈ S, and is closed under +**, f**, 
g**. 
 
Proof: Let S ⊆ κ. Since 0,1,cα, α ∈ S, are S-terms, we can 
obviously form [0],[1],[cα], α ∈ S, which are, respectively, 
0**,1**,cα**, α ∈ S. Now let s,t be S-terms. Then [s] +** 
[t] = [s + t], and s + t is an S-term. The f**,g** cases 
are treated in the same way. QED  
 
By Lemma 4.2.11, we let M**<S> be the substructure of M** 
whose domain is {[t]: t is an S-term}, where only the 
interpretations of S-constants are retained. By Lemma 
4.2.11, M**<S> is a structure. 
 
DEFINITION 4.2.24. Let N**<S> = dom(M**<S>) = {[t]: t is an 
S-term}. 
 
LEMMA 4.2.12. Let S ⊆ κ have order type ω. Then there is a 
unique isomorphism from M**<S> onto M* which maps the cα**, 
α ∈ S, onto the cn*, n ∈ N.  
 
Proof: Let J be the unique reduction from the S-constants 
onto C. Define h:N**<S> → N* as follows. Let t be an S-
term. Set h([t]) = Val(M*,J(t)).  
 
To see that h is well defined, let [t] = [t’], where t,t’ 
are S-terms. Since J is a reduction defined at t,t’, we 
have Val(M*,J(t = t’)), and so Val(M*,J(t)) = 
Val(M*,J(t’)). 
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For α ∈ S, h(cα**) = h([cα]) = Val(M*,J(cα)) = J(cα)*. This 
establishes that h maps the cα**, α ∈ S, onto the cn*, n ∈ 
N. 
 
We now verify that h is an isomorphism from M**<S> onto M*.  
 
Suppose h([s]) = h([t]), where s,t are S-terms. Then 
Val(M*,J(s)) = Val(M*,J(t)). Hence Sat(M*,J(s = t)), and so 
s ≡ t, [s] = [t], using Lemma 4.2.8. Hence h is one-one. 
 
Let x ∈ N*, and write x = Val(M*,t), t ∈ CT(L*). By the 
construction of J, let t’ be the unique S-term such that 
J(t’) = t. Then h([t’]) = Val(M*,J(t’)) = Val(M*,t) = x. 
Hence h is onto N*. 
 
Let s,t be S-terms. Then [s] <** [t] ↔ Val(M*,J(s)) <* 
Val(M*,J(t)) ↔ h([s]) <* h([t]).  
 

h([s] +** [t]) = h([s + t]) = Val(M*,J(s + t)) =  
Val(M*,J(s) + J(t)) = Val(M*,J(s)) +* Val(M*,J(t))  

= h([s]) +* h([t]). 
 

h(f**([t1],...,[tp])) = h([f(t1,...,tp)]) =  
Val(M*,J(f(t1,...,tp))) = Val(M*,f(J(t1),...,J(tp))) = 

f*(Val(M*,J(t1)),...,Val(M*,J(tp))) = 
f*(h([t1]),...,h([tp])). 

 
The g** case is handled analogously. 
 
Finally, 
 

h(0**) = h[0] = Val(M*,J(0)) = 0. 
h(1**) = h[1] = Val(M*,J(1)) = 1. 

 
The uniqueness of h follows from the fact that the 0**, 1** 
and cα**, α ∈ S, generate N**<S> in M**<S>, and the 0*, 1* 
and cn*, n ∈ N, generate N* in M*. QED 
 
DEFINITION 4.2.25. For S ⊆ κ and r ≥ 1, we write M**[S,r] = 
{Val(M**,t): t is an S-term of length ≤ r}.  
 
DEFINITION 4.2.26. We say that H is an S,r-embedding from 
M** into M if and only if  
 
i) H:M**[S,r(p+q+1)] → N; 
ii) H(0**) = 0, H(1**) = 1; 
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iii) for all x,y ∈ M**[S,r(p+q+1)], x <** y ↔ H(x) < H(y); 
iv) for all x,y ∈ M**[S,r], H(x+*y) = H(x)+H(y).  
v) for all x1,...,xp ∈ M**[S,r], H(f**(x1,...,xp)) = 
f(H(x1),...,H(xp)); 
vi) for all x1,...,xq, ∈ M**[S,r], H(g**(x1,...,xq)) = 
g(H(x1),...,H(xq)). 
 
LEMMA 4.2.13. Let S ⊆ κ be of order type ω and r ≥ 1. There 
is an S,r-embedding from M** into M. Every universal 
sentence of L that holds in M holds in M**. For any atomic 
sentence of L**, if we replace equal transfinite constants 
by equal transfinite constants in a manner that is order 
preserving on indices, then the truth value in M** is 
preserved. The cα**, α ∈ S, are unbounded in M**[S,r].  
 
Proof: By Lemma 4.2.12, let h be the unique isomorphism h 
from M**<S> onto M* which maps the cα**, α ∈ S, onto the 
cn*, n ∈ N. By Lemma 4.2.5, there is an r-embedding from M* 
into M. By composing these two mappings, we obtain the 
desired S,r-embedding from M** into M. The remaining claims 
follow from Lemma 4.2.7 by the isomorphism h. QED 
 
We refer to the second claim of Lemma 4.2.13 as universal 
sentence preservation (from M to M**). We refer to the 
third claim of Lemma 4.2.13 as atomic indiscernibility. 
 
DEFINITION 4.2.27. For m ∈ N, we write m^ for the term 
1+...+1 with m 1’s, where 0^ is 0. We say that x ∈ N** is 
standard if and only if it is the value in M** of some m^, 
m ≥ 0. We say that x ∈ N** is nonstandard if and only if x 
is not standard. We write st(M**) for the standard elements 
of N**, and nst(M**) for the nonstandard elements of N**. 
 
LEMMA 4.2.14. Let x ∈ nst(M**) and m ∈ N. Then x >** m^. 
c0** ∈ nst(M**).  
 
Proof: Let m < ω. Then (∀x)(x ≤ m → (x = 0^ ∨ ... ∨ x = 
m^)) holds in M. By universal sentence preservation, it 
holds in M**. Let x be nonstandard in M**. Then x ≤** m^ is 
impossible by the above, and hence x >** m^.  
 
Suppose c0** is standard, and let c0** = m^. By atomic 
indiscernibility in M**, for all n ∈ N, cn** = m^. This is 
impossible, since α < β → cα** < cβ**. QED    
 
Obviously, (n/m)x generally makes no sense in M**, where 
n,m ∈ N, m ≠ 0. We have no division operation in M**, and 
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certainly there is no 1/2 (there is no 1/2 in M). However, 
we can make perfectly good sense, in M**, of equations and 
inequalities  
 

(n/m)x = (n’/m’)x 
(n/m)x <** (n’/m’)x 
(n/m)x ≤** (n’/m’)x 

 
by interpreting them as 
 

nm’x = n’mx 
nm’x <** n’mx 
nm’x ≤** n’mx. 

 
Universal sentence preservation can be used to support 
natural reasoning in M** involving such equations and 
inequalities. 
 
We have been using | | for the sup norm, or max, for 
elements of Nt, t ≥ 1.  
 
DEFINITION 4.2.28. We now use | | for elements of N** = 
dom(M**). 
 
LEMMA 4.2.15. Let x1,...,xp,y1,...,yq ∈ N**, where 
|x1,...,xp|,|y1,...,yq| >** b^. Then  
 

(1 + 1/b)|x1,...,xp| ≤** f**(x1,...,xp) ≤** b|x1,...,xp|. 
(1 + 1/b)|y1,...,yq| ≤** g**(y1,...,yq) ≤** b|y1,...,yq|. 

 
If |x1,...,xp|,|y1,...,yq| ≤** b^, then  
 

f(x1,...,xp),g(y1,...,yq) ≤ b2^. 
 
Proof: Recall the choice of b ∈ N\{0,1} made at the 
beginning of this section. These inequalities are purely 
universal, and hold in M. Hence they hold in M** by 
universal sentence preservation. QED 
 
DEFINITION 4.2.29. Let t ∈ CT(L**). We write #(t) for the 
transfinite constant of greatest index that appears in t. 
If none appears, then we take #(t) to be -1.  
 
LEMMA 4.2.16. Let t ∈ CT(L**). #(t) = -1 ↔ Val(M**,t) is 
standard. There exists a positive integer d such that the 
following holds. Suppose #(t) = cα. Then cα** ≤** Val(M**,t) 
<** dcα** <** cα+1**.  
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Proof: We first claim the following. Suppose #(t) = cα. Then 
cα** ≤** Val(M**,t). This follows easily using Lemmas 
4.2.14, 4.2.15, and the monotonicity of +. 
 
Now suppose #(t) = -1. Since no transfinite constants 
appear in t, compute Val(M,t) = m ∈ N. Hence t = m^ holds 
in M. By universal sentence preservation, t = m^ holds in 
M**, and so Val(M**,t) = m^. Now suppose #(t) ≠ -1, and let 
#(t) = cα. By the first claim in the previous paragraph, 
cα** ≤ Val(M**,t), and so Val(M**,t) is nonstandard.  
 
We now prove by induction on t ∈ CT(L**) that there exists 
d ∈ N\{0} such that for all α < κ, if #(t) = cα then 
Val(M**,t) <** dcα**.  
 
This is clearly true if t is a constant of L**. Let #(s + 
t) = cα. Then #(s),#(t) ≤ cα. By the induction hypothesis, 
let d ∈ N\{0} be such that #(s) = cα → Val(M**,s) <** 
dcα**, and #(t) = cα → Val(M**,t) <** dcα**. Then #(s + t) = 
cα → Val(M**,s + t) <** 2dcα**.  
 
Let #(f(t1,...,tp)) = cα. Then #(t1),...,#(tp) ≤ cα. By the 
induction hypothesis, let d ∈ N\{0} be such that for all 1 
≤ i ≤ p, #(ti) = cα → Val(M**,ti) <** dcα**. Let 
#(f(t1,...,tp)) = cα. By Lemma 4.2.15, Val(M**,f(t1,...,tp)) 
<** bdcα**. The case of g(t1,...,tq) is argued in the same 
way. This completes the argument by induction. 
 
We also need to establish that for all d ∈ N and α < κ, 
dcα** <** cα+1**. This is from Lemma 4.2.9. QED   
 
LEMMA 4.2.17. c0** is the least element of nst(M**).  
 
Proof: By Lemma 4.2.14, c0** ∈ nst(M**). Suppose x <** c0**. 
Write x = Val(M**,t), t ∈ CT(L**). By Lemma 4.2.16, #(t) = 
-1. By Lemma 4.2.16, x is standard. QED 
 
LEMMA 4.2.18. Let x1,...,xp ∈ N** and α < κ. Then 
f**(x1,...,xp) <** cα** ↔ x1,...,xp <** cα**. Let x1,...,xq ∈ 
N** and α < κ. Then g**(x1,...,xq) <** cα** ↔ x1,...,xq <** 
cα**. Let x,y ∈ N** and α < κ. Then x + y <** cα** ↔ x,y < 
cα**.  
 
Proof: Let x1,...,xp ∈ N** and α < κ. Let t1,...,tp ∈ 
CT(L**), where each xi = Val(M**,ti).  
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First suppose that f**(x1,...,xp) < cα**. By Lemma 4.2.16, 
#(f(t1,...,tp)) < cα or #(f(t1,...,tp)) = -1. Hence for all 
i, #(ti) < cα or #(ti) = -1. Fix i. Then #(ti) = -1 or for 
some β < α, #(ti) = cβ. In the former case, by Lemma 4.2.16, 
Val(M**,ti) is standard, and so is < cα**, by Lemma 4.2.17. 
In the latter case, Val(M**,ti) <** cβ+1 ≤** cα**, by Lemma 
4.2.16.  
 
For the converse, assume x1,...,xp <** cα**. Then 
Val(M*,t1),...,Val(M*,tp) <** cα**. If α = 0 then by Lemmas 
4.2.16 and 4.2.17, #(f(t1,...,tp)) = -1, and so 
Val(M**,f(t1,...,tp)) is standard. So we can assume that α > 
0. By Lemma 4.2.16, none of #(t1),...,#(tp) is ≥ cα. Hence 
#(t1),...,#(tp) < cα. Let β < α, where #(t1),...,#(tp) ≤ cβ. 
By Lemma 4.2.16, Val(M*,f(t1,...,tp)) <** cβ+1** ≤ cα**.  
 
The remaining two claims are established analogously. QED 
 
DEFINITION 4.2.30. Let s be a rational number. We write <s** 
for the relation on N** given by x <s** y ↔ sx <** y. 
 
LEMMA 4.2.19. Let s be a rational number > 1. There exists 
k ≥ 1 such that for all x1 <s** x2 <s** ... <s** xk, we have 
2x1 <** xk. 
 
Proof: Fix s as given, and let k ≥ 1. Using universal 
sentence preservation, we see that for all x1,...,xk ∈ N**, 
if x1 <s** x2 <s** ... <s** xk then x1 <s’** xk, where s’ is 
sk-1. Choose k large enough so that sk-1 ≥ 2. QED  
 
LEMMA 4.2.20. Let s be a rational number > 1. The relation 
<s** on N** is transitive, irreflexive, and well founded.  
 
Proof: Transitivity and irreflexivity follow from universal 
sentence preservation. By well foundedness, we mean that 
every nonempty subset of N** has a <s** minimal element. 
This is equivalent to: there is no infinite x1 >s** >s** x2 
>s** x3 ... . 
 
By Lemma 4.2.19, if <2** is well founded then <s** is well 
founded. We now show that <2** is well founded.  
 
Let Y be a nonempty subset of N**. Choose t ∈ CT(L**) such 
that #(t) is least with Val(M**,t) ∈ Y. If #(t) = -1 then Y 
has a standard element. Let x be the least standard element 
of Y. Then x is a <2** minimal element of S. Therefore, we 
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can assume without loss of generality that Y has no 
standard elements, and #(t) ≥ 0.  
 
Let #(t) = cα and assume Y has no <2** minimal element. By 
Lemma 4.2.16, fix d ∈ N\{0} such that Val(M**,t) <** dcα**. 
Let t = t1,...,td+1 ∈ CT(L**) be such that Val(M**,t1) >2** 
... >2** Val(M**,td+1), where Val(M**,t1),...,Val(M**,td+1) ∈ 
Y. Then dVal(M**,td+1) <** Val(M**,t) <** dcα**, and so 
Val(M**,td+1) <** cα**. Since Y has no standard elements, α > 
0. By Lemma 4.2.16, #(td+1) < cα, which contradicts the 
choice of t, α. QED   
 
DEFINITION 4.2.31. It is convenient to set s = 1 + 1/2b for 
using Lemma 4.2.20.  
 
We now apply the well foundedness of <s** in an essential 
way.  
 
LEMMA 4.2.21. There is a unique set W such that W = {x ∈ 
nst(M**): x ∉ g**W}. For all α < κ, cα** ∉ 
rng(f**),rng(g**). In particular, each cα** ∈ W.  
 
Proof: By Lemma 4.2.15,  
 

g**(x1,...,xq) ≥1+(1/b)** |x1,...,xq| 
g**(x1,...,xq) >s** |x1,...,xq| 

 
holds for all x1,...,xq ∈ nst(M**). Hence g** is strictly 
dominating on nst(M**). By Lemma 4.2.20, <s** is well 
founded on nst(M**). Hence we can apply the Complementation 
Theorem (for well founded relations), Theorem 1.3.1. Let W 
be the unique set such that W = {x ∈ nst(M**): x ∉ g**W}. 
  
For the second claim, write cα** = f**(x1,...,xp). By Lemma  
4.2.15, each xi <** cα**. By Lemma 4.2.18, f**(x1,...,xp) <** 
cα**. This is a contradiction. The same argument applies to 
g**.  
 
The third claim follows immediately from the second claim. 
QED 
 
We fix the unique W from Lemma 4.2.21. We will use q choice 
functions F1,...,Fq:N** → W such that for all x ∈ g**W,  
 

x = g**(F1(x),...,Fq(x)) 
 
and for all x ∉ g**W, 



 19 

 
F1(x) = ... = Fq(x) = c0**. 

 
We now come to the Skolem hull construction.  
 
DEFINITION 4.2.32. Let E ⊆ κ. Define E[1] = {cα**: α ∈ E}. 
Suppose E[1] ⊆ ... ⊆ E[k] ⊆ κ have been defined, k ≥ 1. 
Define E[k+1] = E[k] ∪ (W ∩ f**E[k]) ∪ F1f**E[k] ∪ ... ∪ 
Fqf**E[k].  
 
LEMMA 4.2.22. Let E ⊆ κ and i ≥ 1. E[i] ⊆ E[i+1] ⊆ W. 
f**E[i] ⊆ E[i+1] ∪. g**E[i+1]. E[1] ∩ f**E[i] = ∅. 
 
Proof: Let E ⊆ κ and i ≥ 1. E[i] ⊆ E[i+1] ⊆ W is obvious by 
construction and the third claim of Lemma 4.2.21. Let x ∈ 
f**E[i]. Since E[i] ⊆ nst(M**), by Lemma 4.2.15,  we have x 
∈ nst(M**).  
 
case 1. x ∈ W. Then x ∈ E[i+1].  
 
case 2. x ∉ W. Since x ∈ nst(M**), we have x ∈ g**W. Hence 
x = g**(F1(x),...,Fq(x)). Now each Fi(x) ∈ E[i+1] since x ∈ 
f**E[i]. Hence x ∈ g**E[i+1]. 
 
We have thus established that f**E[i] ⊆ E[i+1] ∪ g**E[i+1].  
 
E[i+1] ∩ g**E[i+1] = ∅ follows from W ∩ g**W = ∅.  
 
E[1] ∩ f**E[i] = ∅ follows from the second claim of Lemma 
4.2.21. QED 
 
Note that Proposition B is essentially the same as Lemma 
4.2.22, for 1 ≤ i < n. However Proposition B lives in N and 
Lemma 4.2.22 lives way up in M**. The remainder of the 
proof of Proposition B surrounds the choice of a suitable E 
such that E[n] can be suitably embedded back into M.  
 
Recall the positive integer e = pn-1 fixed at the beginning 
of this section, where κ is strongly e-Mahlo. Recall that we 
have also fixed n ≥ 1.  
 
LEMMA 4.2.23. There is an integer m depending only on p,n, 
such that the following holds. There exist finitely many 
functions G1,G2,...,Gm:κe → W, such that for all E ⊆ κ, E[n] 
= G1E ∪ ... ∪ GmE.  
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Proof: We show by induction on 1 ≤ i ≤ n that there exist 
finitely many functions G1,G2,...,Gm, where each Gi is a 
multivariate function from κ into W of various arities ≤ pi-
1, with the desired property.  
 
For i = 1, take G1:κ → W, where G1(α) = cα**.  
 
Suppose G1,...,Gm works for fixed 1 ≤ i < n, with arities ≤ 
pi-1. For i+1, we start with G1,...,Gm in order to generate 
E[i] from E. In order to generate W ∩ f**E[i], we need 
finitely many functions, each built from f** composed with 
p of the G1,...,Gm. The element c0** ∈ W is used to make 
sure that only values in W are generated. Each of these 
finitely many functions have arity at most p(pi-1) = pi. Each 
of Fjf**[Ei], 1 ≤ j ≤ q, are generated similarly.  
 
So arities ≤ pn-1 are sufficient for the case i = n. We can 
obviously arrange for all of these functions to have arity 
e = pn-1 by adding dummy variables. QED   
 
We fix the functions G1,...,Gm given by Lemma 4.2.23. 
 
We now define “term decomposition” functions Hi:W → κ, 
indexed by the natural numbers. Let x ∈ W.  
 
DEFINITION 4.2.33. To define the Hi(x), first choose t ∈ 
CT(L**) such that Val(M**,t) = x. Let cα_1,cα_2,...,cα_s be a 
listing of all transfinite constants appearing in t from 
left to right, with repetitions allowed. 
 
DEFINITION 4.2.34. For x ∈ W, set H0(x) = lth(t). For 1 ≤ i 
≤ s, set Hi(x) = αi. For i > s, set Hi(x) = 0.  
 
DEFINITION 4.2.35. Finally, define functions Ji,j:κe → κ, i 
≥ 0, 1 ≤ j ≤ m, by Ji,j(α1,...,αe) = Hi(Gj(α1,...,αe)).  
 
LEMMA 4.2.24. Let E ⊆ κ. Every element of E[n] is of the 
form Val(M**,t), where the length of t ∈ CT(L**) lies in 
∪{J0,jE: 1 ≤ j ≤ m} and the transfinite constants of t have 
subscripts lying in ∪{Ji,jE: 1 ≤ i ≤ lth(t) ∧ 1 ≤ j ≤ m}.  
 
Proof: Let E ⊆ κ and x ∈ E[n]. By Lemma 4.2.23, let x ∈ 
GjE, 1 ≤ j ≤ m. Let t ∈ CT(L**) be the term used to write x 
= Val(M**,t) in the definition of the Hi(x). Write x = 
Gj(α1,...,αe), α1,...,αe ∈ E. Then J0,j(α1,...,αe) = H0(x) = 
lth(t), and J1,j(α1,...,αe),J2,,j(α1,...,αe),..., 
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Jlth(t),j(α1,...,αe) enumerates at least the subscripts of 
transfinite constants of t. QED   
 
LEMMA 4.2.25. There exists E ⊆ S ⊆ κ, E,S of order type ω, 
and a positive integer r, such that E[n] ⊆ M**[S,r].  
 
Proof: We apply Lemma 4.1.6 to the following two sequences 
of functions. The first is the Ji,j:κe → κ, where i ≥ 1 and 
1 ≤ j ≤ m (here m is as given by Lemma 4.2.23, and depends 
only on p,k). The first can be construed as an infinite 
sequence of functions from κe into κ, and the second can 
also be construed as an infinite sequence of functions from 
κ into ω by infinite repetition.  
 
By Lemma 4.1.6, let E ⊆ κ be of order type ω such that for 
all i ≥ 1 and 1 ≤ j ≤ m, Ji,jE is either a finite subset of 
sup(E), or has order type ω with the same sup as E, and 
J0,jE is finite.  
 
Let r = max(J0,1E ∪ ... ∪ J0,mE). By Lemma 4.2.24, every 
element of E[n] is the value in M** of a closed term t of 
length at most r, whose transfinite constants have 
subscripts lying in S = ∪{JijE: 1 ≤ i ≤ lth(t) ∧ 1 ≤ j ≤ m}. 
I.e., E[n] ⊆ M**[S,r]. Note that S is a finite union of 
sets of ordinals, each of which is either a finite subset 
of sup(E), or is of order type ω with the same sup as E. 
Since E ⊆ S, we see that S is of order type ω. QED 
 
DEFINITION 4.2.36. We fix E,S,r as given by Lemma 4.2.25. 
 
THEOREM 4.2.26. Proposition B is provable in SMAH+. In fact, 
it is provable in MAH+. 
 
Proof: By Lemma 4.2.22, for all 1 ≤ i < n, f**E[i] ⊆ E[i+1] 
∪. g**E[i+1], and E[1] ∩ f**E[n] = ∅. By Lemma 4.2.13, 
there is an S,r-embedding T from M** into M. Note that 
f**[E[n]] ∪ g**[E[n]] ⊆ M**[S,r(p+q)] = dom(T).  
 
For 1 ≤ i ≤ n, let Ai = TE[i]. Since E[1] ⊆ ... ⊆ E[n], we 
have A1 ⊆ ... ⊆ An ⊆ N. By Lemma 4.2.25, E[n] ⊆ M**[S,r]. 
 
We first claim that for all 1 ≤ i < n, fAi ⊆ Ai+1 ∪ gAi+1.  
 
Let 1 ≤ i < n, and x ∈ fAi. Write x = f(Ty1,...,Typ), 
y1,...,yp ∈ E[i]. Hence Tf**(y1,...,yp) = f(Ty1,...,Typ) = x.  
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By Lemma 4.2.22, f**(y1,...,yp) ∈ E[i+1] ∪ g**E[i+1]. First 
suppose f**(y1,...,yp) ∈ E[i+1]. Then Tf**(y1,...,yp) = x ∈ 
Ai+1.  
 
Secondly suppose f**(y1,...,yp) ∈ g**E[i+1], and write 
f**(y1,...,yp) = g**(z1,...,zq), where z1,...,zq  ∈ E[i+1]. 
Then Tf**(y1,...,yp) = Tg**(z1,...,zq) = g(Tz1,...,Tzq) = 
f(Ty1,...,Typ) = x. Hence x ∈ gAi+1.  
 
We next claim that for all 1 ≤ i < n, Ai+1 ∩ gAi+1 = ∅. We 
must verify that TE[i+1] ∩ gTE[i+1] = ∅. Let x,y1,...,yq ∈ 
E[i+1], T(x) = g(Ty1,...,Tyq). Clearly T(x) = 
Tg**(y1,...,yq), and so x = g**(y1,...,yq). This contradicts 
E[i+1] ∩ g**E[i+1] = ∅.  
 
We finally claim that A1 ∩ fAn = ∅. Let x ∈ A1, y1,...,yp ∈ 
An, x = f(y1,...,yp). Let x’ ∈ E[1], y1’,...,yp’ ∈ E[n], 
where x = T(x’), and y1,...,yp = T(y1’),...,T(yp’) 
respectively. Note that Tf**(y1’,...,yp’) = 
f(T(y1’),...,T(yp’)) = f(y1,...,yp) = x = T(x’). Therefore x’ 
= f**(y1’,...,yp’), contradicting the last claim of Lemma 
4.2.22.  
 
The second claim in the Lemma follows from the first by 
Theorem 4.1.7. This is because Proposition B is obviously 
in Π1

2 form. QED 
 
Obviously the proof of Theorem 4.2.26 gives an upper bound 
on the order of strongly Mahlo cardinal sufficient to prove 
Proposition B that depends exponentially on the arity of f 
and the length of the tower. Without attempting to optimize 
the level, we have shown the following. 
 
COROLLARY 4.2.27. The following is provable in ZFC. Let p,n 
≥ 1. If there exists a strongly pn-1-Mahlo cardinal then 
Proposition B holds for p-ary f, multivariate g, and n. If 
there exists a strongly p2-Mahlo cardinal, then Proposition 
A holds for p-ary f and multivariate g. Furthermore, we can 
drop "strongly" from both results.   
 
Corollary 4.2.27 is far from optimal. For instance, if n = 
2 then Proposition B is provable in RCA0, as we shall see 
now. 
 
THEOREM 4.2.28. The following is provable in RCA0. For all 
f,g ∈ ELG there exist infinite A ⊆ B ⊆ N such that  
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fA ⊆ B ∪. gB 
A ∩ fB = ∅. 

 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Theorem 3.2.5, let A ⊆ [n,∞) be infinite where A ∩ g(A ∪ 
fA) = ∅. By Lemma 3.3.3, let B be unique such that B ⊆ A ∪ 
fA ⊆ B ∪. gB. Then A ∩ gB ⊆ A ∩ g(A ∪ fA) = ∅, and hence A 
⊆ B. Also A ∩ fB ⊆ A ∩ f(A ∪ fA) = ∅, and fA ⊆ B ∪. gB. 
QED 
 


