4.2. Proof using Strongly Mahlo Cardinals.

Recall Proposition A from the beginning of section 3.1. This is the Principal Exotic Case.

PROPOSITION A. For all f,g \in ELG there exist A,B,C \in INF such that

A U. fA \subseteq C U. gB A U. fB \subseteq C U. qC.

Recall the definitions of N, ELG, INF, U., fA, in Definitions 1.1.1, 1.1.2, 1.1.10, 1.3.1, and 2.1.

In this section, we prove Proposition A in $SMAH^+$. It is convenient to prove a stronger statement.

PROPOSITION B. Let f,g \in ELG and n \geq 1. There exist infinite sets $A_1 \subseteq \ldots \subseteq A_n \subseteq N$ such that i) for all $1 \leq i < n$, $fA_i \subseteq A_{i+1} \cup gA_{i+1}$; ii) $A_1 \cap fA_n = \emptyset$.

LEMMA 4.2.1. The following is provable in RCA_0 . Proposition B implies Proposition A. In fact, Proposition B for n=3 implies Proposition A.

Proof: Let f,g \in ELG. By Proposition B for n = 3, let A \subseteq B \subseteq C \subseteq N be infinite sets, where fA \subseteq B U. gB, fB \subseteq C U. gC, and A \cap fC = \emptyset .

Note that C,gC are disjoint. Hence C,gB are disjoint. In addition, A,fA are disjoint, and A,fB are disjoint. We now verify the inclusion relations.

Let $x \in A \cup fA$. If $x \in fA$ then $x \in B \cup gB \subseteq C \cup gB$. If $x \in A$ then $x \in C \subseteq C \cup gB$.

Let $x \in A \cup fB$. If $x \in fB$ then $x \in C \cup gC$. If $x \in A$ then $x \in C \subseteq C \cup gC$. QED

Recall the definition of $f \in ELG$ from section 2.1: there are rational constants c,d > 1 such that for all but finitely many $x \in dom(f)$, $c|x| \le f(x) \le d|x|$.

We wish to put this in more explicit form. Assume f,c,d are as above. Let t be a positive integer so large that 1 + 1/t < c,d < t, and for all $x \in dom(f)$, $|x| > t \rightarrow c|x| \le f(x) \le f(x)$

d|x|. Let b be an integer greater than t and $\max\{f(x): |x| \le t\}$. Then for all $x \in \text{dom}(f)$,

$$|x| > t \rightarrow f(x) \le b|x|$$
.
 $|x| \le t \rightarrow f(x) \le b$.
 $|x| \le b \rightarrow f(x) \le b^2$.

Hence $f \in ELG$ if and only if there exists a positive integer b such that for all $x \in dom(f)$,

$$|x| > b \rightarrow (1 + 1/b) |x| \le f(x) \le b|x|$$
.
 $|x| \le b \rightarrow f(x) \le b^2$.

We now fix f,g \in ELG, where f is p-ary and g is q-ary. According to the above, we also fix a positive integer b such that for all $x \in N^p$ and $y \in N^q$,

i. if |x|, |y| > b then

$$(1 + 1/b) |x| \le f(x) \le b|x|$$

 $(1 + 1/b) |y| \le g(y) \le b|y|$.

ii. if $|x|, |y| \le b$ then $f(x), g(y) \le b^2$.

We also fix $n \ge 1$ and a strongly p^{n-1} -Mahlo cardinal κ .

We begin with the discrete linearly ordered semigroup with extra structure, M = (N, <, 0, 1, +, f, g).

The plan will be to first construct a structure of the form $M^* = (N^*, <^*, 0^*, 1^*, +^*, f^*, g^*, c_0^*, \ldots)$, where the c*'s are indexed by N. This structure is non well founded and generated by the constants $0^*, 1^*$, and the c*'s. The indiscernibility of the c*'s will be with regard to atomic formulas only. The first nonstandard point in M^* will be c_0^* .

While it is obvious that we cannot embed M^* back into M, we use the fact that we can embed any partial substructure of M^* that is "boundedly generated" back into M.

Of course, M* is not well founded, but we prove the well foundedness of the crucial irreflexive transitive relation

on N^* , where s > 1 is any fixed rational number.

Using the atomic indiscernibility of the c*'s, we canonically extend M* to a structure M** = $(N^**,<^**,0^**,1^{**},+^**,f^{**},g^{**},c_0^{**},\ldots,c_\alpha^{**},\ldots)$, $\alpha<\kappa$. Many properties of M* are preserved when passing to M**. The appropriate embedding property asserts that any partial substructure of M** boundedly generated by 0**,1**, and a set of c**'s of order type ω is embeddable back into M* and M.

Recall that the proof of the Complementation Theorem (Theorem 1.3.1) requires that the function is strictly dominating with respect to a well founded relation <. Here we verify that g^{**} is strictly dominating on the nonstandard part of M^{**} with respect to the above crucial irreflexive transitive relation. This enables us to apply the Complementation Theorem 1.3.1) to g^{**} on the nonstandard part of M^{**} in order to obtain a unique set $W \subseteq \text{nst}(M^{**})$ such that for all $x \in \text{nst}(M^{**})$, $x \in W \leftrightarrow x \notin g^{**}W$.

We then build a Skolem hull construction of length ω consisting entirely of elements of W. The construction starts with the set of all c**'s. Witnesses are thrown in from W that verify that values of f** at elements thrown in at previous stages do not lie in W (provided they in fact do not lie in W). Only the first n stages of the construction will be used.

Every element of the n-th stage of the Skolem hull construction has a suitable name involving e = e(p,q) of the c^{**} s.

At this crucial point, we then apply Lemma 4.1.6 to the large cardinal κ , with arity n = e, in order to obtain a suitably indiscernible set S of the c**'s of order type ω , with respect to this naming system.

We can redo the length n Skolem hull construction starting with S. This is just a restriction of the original Skolem hull construction that started with all of the c**'s.

Because of the indiscernibility, we generate a subset of N** whose elements are given by terms of bounded length in c**'s of order type ω . This forms a suitable partial substructure of M**, so that it is embeddable back into M. The image of this embedding on the n stages of the Skolem hull construction will comprise the $A_1 \subseteq \ldots \subseteq A_n$ satisfying

the conclusion of Proposition B. This completes the description of the plan for the proof.

We now begin the detailed proof of Proposition B. We begin with the structure M = (N, <, 0, 1, +, f, g) in the language L consisting of the binary relation <, constants 0, 1, the binary function +, the p-ary function f, the q-ary function g, and equality.

DEFINITION 4.2.1. Let V(L) = {v_i: i ≥ 0} be the set of variables of L. Let TM(L) be the set of terms of L, and AF(L) be the set of atomic formulas of L. For t \in TM(L), we define lth(t) as the total number of occurrences of functions, constants, and variables, in t. For $\phi \in$ AF(L), we also define lth(ϕ) as the total number of occurrences of functions, constants, and variables, in ϕ .

DEFINITION 4.2.2. An M-assignment is a partial function $h:V(L) \to N$. We write Val(M,t,h) for the value of the term t in M at the assignment h. This is defined if and only if h is adequate for t; i.e., h is defined at all variables in t.

DEFINITION 4.2.3. We write Sat(M, ϕ , h) for atomic formulas ϕ . This is true if and only if h is adequate for ϕ and M satisfies ϕ at the assignment h. Here h is adequate for ϕ if and only if h is defined at (at least) all variables in ϕ .

DEFINITION 4.2.4. We say that a partial function $h\colon\! V(L)\to N$ is increasing if and only if for all i< j, if $v_i,v_j\in dom(h)$ then $h(v_i)< h(v_j)$.

LEMMA 4.2.2. There exist infinite sets $N \supseteq E_0 \supseteq E_1 \supseteq \ldots$ indexed by N, such that for all $i \ge 0$, $\varphi \in AF(L)$, $lth(\varphi) \le i$, and increasing partial functions $h_1, h_2 \colon V(L) \to N$ adequate for φ with $rng(h_1), rng(h_2) \subseteq E_i$, we have $Sat(M, \varphi, h_1) \leftrightarrow Sat(M, \varphi, h_2)$.

Proof: A straightforward application of the usual infinite Ramsey theorem, repeated infinitely many times. Each E_{i+1} is obtained by Ramsey's theorem applied to a coloring of ituples from E_i . QED

DEFINITION 4.2.5. We fix the E's in Lemma 4.2.2. In an abuse of notation, we write Sat(M, ϕ ,E) if and only if ϕ \in

AF(L) and for all increasing h adequate for φ with range included in E_i , we have Sat(M, φ ,h), where lth(φ) = i.

Note that by Lemma 4.2.2, this is equivalent to: $\phi \in AF(L)$ and for some increasing h adequate for ϕ with range included in E_i , we have $Sat(M,\phi,h)$, where $lth(\phi)=i$. We can also use any i with $i \geq lth(\phi)$ and get an equivalent definition of $Sat(M,\phi,E)$.

DEFINITION 4.2.6. We now introduce constants c_i , $i \in N$. Let C be the set of all such constants. Let L* be L expanded by these constants. Structures for L* will be written M* = $(N^*, <^*, 0^*, 1^*, +^*, f^*, g^*, c_0^*, \ldots)$. Here each c_i is interpreted by c_i^* .

DEFINITION 4.2.7. We let CT(L*) be the set of closed terms of L*, and AS(L*) be the set of atomic sentences of L*. We define lth(t), lth(ϕ) for t \in AS(L*), ϕ \in AS(L*).

DEFINITION 4.2.8. For $\phi \in AS(L^*)$, $t \in CT(L^*)$, we write $Sat(M^*,\phi)$ and $Val(M^*,t)$ for the usual model theoretic notions.

For each $t \in CT(L^*)$, let $X(t) \in TM(L)$ be the result of replacing all occurrences of 'c' by 'v'. For each $\phi \in AS(L^*)$, let $X(\phi) \in AF(L)$ be the result of replacing all occurrences of 'c' by 'v'.

DEFINITION 4.2.9. Let $T = \{ \varphi \in AS(L^*) : Sat(M,X(\varphi),E) \}$.

LEMMA 4.2.3. T is consistent. For all s,t \in CT(L*), exactly one of s = t, s < t, t < s belongs to T. For all n \in N, c_n < c_{n+1} \in T.

Proof: It suffices to show that every finite subset of T is consistent. Let $\phi_1,\ldots,\phi_k\in T.$ Then each Sat(M,X(ϕ_i),E) holds. Let $j=\max(lth(\phi_1),\ldots,lth(\phi_k))$ and $h:V(L)\to E_j$ be the increasing bijection. Then each Sat(M,X(ϕ_i),h) holds. Let M' be the expansion of M that interprets each constant c_n as $h(v_n)$. Then each Sat(M', ϕ_i) holds.

For the second claim, let $s,t \in CT(L^*)$. Let i = lth(s = t) and $h:V(L) \rightarrow E_i$ be the increasing bijection. Then Sat(M,X(s = t),h) or Sat(M,X(s < t),h) or Sat(M,X(t < s),h). Therefore at least one of s = t, s < t, t < s lies in T. Since at most one of Sat(M,X(s = t),E), Sat(M,X(s < t),E),

Sat(M,X(t < s),E) can hold, clearly at most one of s = t, s < t, t < s lies in T.

For the third claim, let $n\in N$, and let $h\colon\! V(L)\to E_2$ be the increasing bijection. Obviously Sat(M,v_n < v_{n+1},h). Hence c_n < c_{n+1}\in T. QED

We now fix $M^* = (N^*, 0^*, 1^*, <^*, +^*, f^*, g^*, c_0^*, ...)$ to be any model of T which is generated from its constants. Such an M^* exists by Lemma 4.2.3 and the fact that T consists entirely of atomic sentences. Clearly M^* is unique up to isomorphism.

DEFINITION 4.2.10. For $d \in N$ and $t \in CT(L^*)$ or $t \in TM(L)$. Define dt to be the term

t + t + ... + t

associated to the left, where there are d t's. If d = 0, then take dt to be 0. Obviously dt \in CT(L*) or dt \in TM(L), respectively.

LEMMA 4.2.4. Let $\phi \in AS(L^*)$. Sat(M*, ϕ) if and only if $\phi \in T$. <* is a linear ordering on N*. For all n,d \in N, dc_n < c_{n+1} $\in T$.

Proof: Since M^* satisfies T, the reverse direction of the first claim is immediate.

Suppose $\phi \notin T$. First assume ϕ is of the form s < t. By Lemma 4.2.3, $t < s \in T$ or $s = t \in T$. Then Sat(M*,t < s) or Sat(M*,s = t). Therefore Sat(M*, ϕ) is false. Now assume ϕ is of the form s = t. By Lemma 4.2.3, $s < t \in T$ or $t < s \in T$. Hence Sat(M*,s < t) or Sat(M*,t < s). Therefore Sat(M*, ϕ) is false.

The second claim follows immediately from the first claim and the second claim of Lemma 4.2.3.

For the third claim, let i = lth(dc_n < c_{n+1}). The unique increasing bijection h:V(L) \rightarrow E_i has dh(v_n) < h(v_{n+1}). Hence Sat(M,dv_n < v_{n+1},h), Sat(M,dv_n < v_{n+1},E), and X(dc_n < c_{n+1}) = dv_n < v_{n+1}. Hence dc_n < c_{n+1} \in T. QED

DEFINITION 4.2.11. For $r \ge 1$, we write $M^*[r]$ for the set of all values in M^* of the terms $t \in CT(L^*)$ of length $\le r$.

DEFINITION 4.2.12. We say that H is an r-embedding from M^* into M if and only if

```
i) H:M^*[r(p+q+1)] \rightarrow N;

ii) H(0^*) = 0, H(1^*) = 1;

iii) for all x,y \in M^*[r(p+q+1)], x <^* y \leftrightarrow H(x) < H(y);

iv) for all x,y \in M^*[r], H(x+^*y) = H(x)+H(y).

v) for all x_1, \dots, x_p \in M^*[r], H(f^*(x_1, \dots, x_p)) = f(H(x_1), \dots, H(x_p));

vi) for all x_1, \dots, x_q, \in M^*[r], H(g^*(x_1, \dots, x_q)) = g(H(x_1), \dots, H(x_q)).
```

Note that by the second claim of Lemma 4.2.4, iii) implies that H is one-one.

LEMMA 4.2.5. For all r \geq 1, there exists an r-embedding H from M* into M.

Proof: Let $r \ge 1$ and $h:V(L) \to E_{2r(p+q+1)}$ be the unique increasing bijection.

We define $H:M^*[r(p+q+1)] \rightarrow N$ as follows. Let $x = Val(M^*,t)$, where $t \in CT(L^*)$, $lth(t) \le r(p+q+1)$. Define H(x) = Val(M,X(t),h).

To see that H is well defined, let $x = Val(M^*, t')$, where $t' \in CT(L^*)$, lth(t') $\leq r(p+q+1)$. We must verify that Val(M, X(t), h) = Val(M, X(t'), h). Since lth(t = t') $\leq 2r(p+q+1)$,

```
Val(M,X(t),h) = Val(M,X(t'),h) \Leftrightarrow
Sat(M,X(t = t'),E) \Leftrightarrow
t = t' \in T \Leftrightarrow
Sat(M^*,t = t') \Leftrightarrow
Val(M^*,t) = Val(M^*,t') \Leftrightarrow
x = x.
```

For ii), $H(0^*) = Val(M, X(0), h) = 0$. $H(1^*) = Val(M, X(1), h) = 1$. Also, $c_i^* = Val(M^*, c_i)$, $H(c_i^*) = Val(M, X(c_i), h) = Val(M, v_i, h) = h(v_i) \in E_{r(D+G+1)}$.

For iii), we must verify that for lth(t), lth(t') \leq r(p+q+1), Val(M*,t) <* Val(M*,t') \leftrightarrow Val(M,X(t),h) < Val(M,X(t'),h). Using Lemma 4.2.4, the left side is equivalent to Sat(M*,t < t'), and to t < t' \in T. The right side is equivalent to Sat(M,X(t < t'),h), to Sat(M,X(t < t'),E), and to t < t' \in T, using lth(t < t') \leq 2r(p+q+1).

For iv), we must verify that for lth(t), $lth(t') \le r$, $H(Val(M^*,t)+^*Val(M^*,t')) = H(Val(M^*,t))+H(Val(M^*,t'))$. Since $lth(t+t') \le 2r \le r(p+q+1)$, the left side is $H(Val(M^*,t+t')) = Val(M,X(t+t'),h)$. The right side is Val(M,X(t),h)+Val(M,X(t'),h). Equality is immediate.

For v), we must verify that for $lth(t_1), \ldots, lth(t_p) \le r$, $H(f^*(Val(M^*,t_1),\ldots,Val(M^*,t_p)) = f(H(Val(M^*,t_1)),\ldots,H(Val(M^*,t_p)))$. Since $lth(f(t_1,\ldots,t_p)) \le r(p+q+1)$, the left side is $H(Val(M^*,f(t_1,\ldots,t_p))) = Val(M,X(f(t_1,\ldots,t_p)),h)$. The right side is $f(Val(M,t_1,h),\ldots,Val(M,t_p,h))$. Equality is immediate.

For vi), see v). QED

DEFINITION 4.2.13. For quantifier free formulas ϕ in L*, we define lth'(ϕ) as the total number of occurrences of functions, constants, and variables. We do not count the occurrences of connectives for lth'.

LEMMA 4.2.6. For all $r \ge 1$, there is an r-embedding from M* into M with the following properties.

i. each $H(c_i^*) \in E_{2r(p+q+1)}$.

- ii if $t \in CT(L^*)$, $lth(t) \le r(p+q+1)$, then $H(Val(M^*,t)) = Val(M,X(t),h)$.
- iii. if $\phi \in AS(L^*)$, lth $(\phi) \le r(p+q+1)$, then $Sat(M^*,\phi) \leftrightarrow Sat(M,X(\phi),E)$.
- iv. if ϕ is a quantifier free sentence in L*, lth'(ϕ) \leq r(p+q+1), then Sat(M*, ϕ) \Leftrightarrow Sat(M,X(ϕ),E).

Proof: Let $H:M^*[r(p+q+1)] \to N$ be an r-embedding of M^* into M, constructed in the proof of Lemma 4.2.5, using the strictly increasing bijection $h:V(L) \to E_{2r(p+q+1)}$. Then each $H(c_i^*) \in E_{2r(p+q+1)}$. Let $t \in CT(L^*)$, lth $(t) \le r(p+q+1)$. Then $H(Val(M^*,t)) = Val(M,X(t),h)$ by definition. Let $\phi \in AS(L^*)$, lth $(\phi) \le r(p+q+1)$. Then $Sat(M^*,s=t) \leftrightarrow Val(M^*,s) = Val(M^*,t) \leftrightarrow Val(M,X(s),h) = Val(M,X(t),h) \leftrightarrow Sat(M,X(s=t),E)$. We can use < in place of =. Finally, iv follows from iii. QED

LEMMA 4.2.7. Every universal sentence of L that holds in M holds in M*. For any quantifier free sentence of L*, if we replace equal c^* 's by equal c^* 's in a manner that is order preserving on indices, then the truth value in M* is preserved. The c^* 's are strictly increasing and unbounded in N*.

Proof: For the first claim, let $(\forall v_1) \dots (\forall v_m)$ (ϕ) be a universal sentence of L that holds in M. Suppose it fails in M*. Let $v_1, \dots, v_m \in N^*$, where $\phi(v_1, \dots, v_m)$ fails in M*. Let $t_1, \dots, t_m \in CT(L^*)$ be such that each $v_i = Val(M^*, t_i)$. Let $lth(\phi(t_1, \dots, t_m)) \leq r$.

By Lemmas 4.2.5 and 4.2.6, let $H:M^*[r] \to N$ be an rembedding of M^* into M. By the final claim of Lemma 4.2.6, since not $Sat(M^*,\phi(t_1,\ldots,t_m))$, we have not $Sat(M,X(\phi(t_1,\ldots,t_m)),E)$. This contradicts $Sat(M,(\forall v_1)\ldots(\forall v_m)(\phi))$.

For the second claim, let $\phi \in AS(L^*)$. Let ψ be obtained from ϕ by replacing equal c*'s by equal c*'s in an order preserving way. Let lth(ϕ) \leq r. By Lemmas 4.2.5 and 4.2.6, let H:M*[r] \rightarrow N be an r-embedding of M* into M. By Lemma 4.2.6,

Sat(M*,
$$\phi$$
) \leftrightarrow Sat(M,X(ϕ),E).
Sat(M*, ψ) \leftrightarrow Sat(M,X(ψ),E).

Since $X(\psi)$ is obtained from $X(\phi)$ by replacing equal v_i 's by equal v_i 's in an order preserving way, the right sides of the above two equivalences are equivalent. Hence the left sides are also equivalent.

For the third claim, let i < j. Let h:{i,j} \rightarrow E₂ be increasing. Since Sat(M,X(c_i < c_j),h), we have Sat(M,X(c_i < c_j),E), and so c_i < c_j \in T and Sat(M*,c_i < c_j). Hence c_i* <* c_j*.

To see that the c*'s are unbounded in N*, let $x \in N^*$, and let $t \in CT(L^*)$ be such that $x = Val(M^*,t)$. Let c_i be the largest element of C appearing in t. We claim that $t < c_{i+1}$ lies in T. To see this, let $r = lth(t < c_{i+1})$ and $h:V(L) \rightarrow E_r$ be strictly increasing, where $h(v_{i+1}) >^* Val(M,t,h)$. Then Sat(M,X(t < c_{i+1}),h), and so Sat(M,X(t < c_{i+1}),E), and hence $t < c_{i+1} \in T$. Therefore Val(M*,t) <* c_{i+1} *. QED

DEFINITION 4.2.14. Let $C' = \{c_\alpha : \alpha < \kappa\}$. C' is the set of transfinite constants. Note that $C \subseteq C'$.

DEFINITION 4.2.15. Let L** be the language L extended by constants c_{α} , $\alpha < \kappa$. Note that the c_i in L* are already present in L**. The new constants are the c_{α} , $\omega \leq \alpha < \kappa$.

DEFINITION 4.2.16. Let $CT(L^{**})$ be the set of all closed terms of L^{**} . Let $AS(L^{**})$ be the set of all atomic sentences of L^{**} .

DEFINITION 4.2.17. A reduction is a partial function J:C' \rightarrow C, where for all $\alpha < \beta$ and i,j $< \omega$, if $J(c_{\alpha}) = c_{i}$ and $J(c_{\beta}) = c_{j}$, then i < j. Any reduction J extends to a partial map from CT(L**) into CT(L*), and to a partial map AS(L**) into AS(L*) in the obvious way. Here J is defined at a closed term or atomic sentence of L** if and only if J is defined at every constant appearing in that closed term or atomic sentence.

DEFINITION 4.2.18. For s,t \in CT(L**), we define s = t if and only if for all reductions J defined at s,t, Sat(M*,J(s = t)).

LEMMA 4.2.8. Let s,t \in CT(L**) and J,J' be reductions defined at s,t \in CT(L**). Then Sat(M*,J(s = t)) \leftrightarrow Sat(M*,J'(s = t)), and Sat(M*,J(s < t)) \leftrightarrow Sat(M*,J'(s < t)). \equiv is an equivalence relation on CT(L**).

Proof: Let s,t,J,J' be as given. Then J(s = t) and J'(s = t) are the same up to an increasing change in the c's appearing in s, as in the second claim of Lemma 4.2.7. Hence by the second claim of Lemma 4.2.7, $Sat(M^*,J(s = t)) \Leftrightarrow Sat(M^*,J'(s = t))$, and $Sat(M^*,J(s < t)) \Leftrightarrow Sat(M^*,J'(s < t))$.

For the second claim, obviously \equiv is reflexive and symmetric. Now suppose $s \equiv t$ and $t \equiv r$. Let J be any increasing reduction defined at s,t,r. Then Sat(M*,J(s = t)) and Sat(M*,J(t = r)). Hence Sat(M*,J(s = r)). Therefore $s \equiv r$. QED

DEFINITION 4.2.19. We now define the structure M** = $(N^{**},<^{**},0^{**},1^{**},+^{**},f^{**},g^{**},c_0^{**},\ldots,c_\alpha^{**},\ldots)$, $\alpha<\kappa$. Here the interpretation of < is <**, of 0 is 0**, of 1 is 1**, of f is f**, of g is g**, and of each c_α is c_α^{**} .

DEFINITION 4.2.20. We will define M** as a stretching of M*. We define N** to be the set of all equivalence classes of terms in CT(L**) under the \equiv of Lemma 4.2.8. We define 0** = [0]. We define 1** = [1]. We define c_{α} ** = $[c_{\alpha}]$.

We define [s] < ** [t] if and only if Sat(M*, J(s < t)), where J is any (some) reduction defined at s,t.

We define [s] + ** [t] = [s + t].

We define $f^{**}([t_1], ..., [t_p]) = [f(t_1, ..., t_p)].$

We define $g^{**}([t_1], ..., [t_q]) = [g(t_1, ..., t_q)].$

DEFINITION 4.2.21. For $t \in CT(L^{**})$ and $d \in N$, we write dt for $t + \ldots + t$, where there are d t's, associated to the left. If d = 0, then use 0.

DEFINITION 4.2.22. For $x \in N^{**}$ and $d \in N$, we write dx for x + ** ... +** x, where there are $d \times s$ associated to the left. If d = 0, then use 0.

LEMMA 4.2.9. These definitions of <**, +**, f**, g** are well defined. For all $\alpha < \beta < \kappa$ and d \in N, dc $_{\alpha}$ ** <** c $_{\beta}$ **.

Proof: Suppose s = s', t = t'. We freely use Lemma 4.2.8.

Suppose Sat(M*,J(s < t)) holds for all reductions J defined at s,t. Let s = s' and t = t'. Let J' be any reduction defined at s,s',t,t'. Then Sat(M*,J'(s < t)), Sat(M*,J'(s = s')), and Sat(M*,J'(t = t')). Hence Sat(M*,J'(s' < t')). By Lemma 4.2.8, for all reductions J'' defined at s',t', Sat(M*,J''(s < t)).

Suppose $s \equiv s'$, $t \equiv t'$. We want to show $s + t \equiv s' + t'$. Obviously for all reductions J defined at s,t,s',t', Sat $(M^*,J(s+t=s'+t'))$.

Suppose $s_1 \equiv t_1$, ..., $s_p \equiv t_p$. We want to show $f(s_1, \ldots, s_p) \equiv f(t_1, \ldots, t_p)$. Obviously for all reductions J defined at $s_1, \ldots, s_p, t_1, \ldots, t_p$, Val $(M^*, J(f(s_1, \ldots, s_p))) = Val(M^*, J(f(t_1, \ldots, t_p)))$. Hence $f(s_1, \ldots, s_p) \equiv f(t_1, \ldots, t_p)$.

The remaining case with g is handled analogously.

For the second claim, let $\alpha < \beta < \kappa$, $d \in \mathbb{N}$, and J be any reduction defined at $dc_{\alpha} < c_{\beta}$, where $J(c_{\alpha}) = c_n$ and $J(c_{\beta}) = c_m$, n < m. Then $dc_{\alpha}^{**} <^{**} c_{\beta}^{**} \leftrightarrow [dc_{\alpha}] <^{**} [c_{\beta}] \leftrightarrow Sat(M^*, J(dc_{\alpha} < c_{\beta})) \leftrightarrow Sat(M^*, dc_n < c_m)$, which holds by Lemma 4.2.4. QED

We write M** = $(N^{**}, <^{**}, 0^{**}, 1^{**}, +^{**}, f^{**}, g^{**}, c_0^{**}, \ldots, c_\alpha^{**}, \ldots), \alpha < \kappa.$

The terms $t \in CT(L^{**})$ play a dual role. We used them to define N** as the set of all [t], $t \in CT(L^{**})$, under the equivalence relation \equiv .

However, now that we have defined the structure M^{**} , we can use the terms $t \in CT(L^{**})$ in the expression $Val(M^{**},t)$.

LEMMA 4.2.10. For all $t \in CT(L^{**})$, $Val(M^{**},t) = [t]$. In particular, every element of N** is generated in M** from the set of all constants of M**, which is C' \cup {0,1}.

Proof: By induction on lth(t). QED

DEFINITION 4.2.23. Let $S \subseteq \kappa$. The S-constants are the c_{α} , $\alpha \in S$. The S-terms are the $t \in CT(L^{**})$, where all transfinite constants in t are S-constants.

LEMMA 4.2.11. Let $S \subseteq \kappa$. {[t]: t is an S-term} contains 0**, 1**, the c_{α}^{**} , $\alpha \in S$, and is closed under +**, f**, g**.

Proof: Let $S \subseteq \kappa$. Since 0,1, c_{α} , $\alpha \in S$, are S-terms, we can obviously form [0],[1], $[c_{\alpha}]$, $\alpha \in S$, which are, respectively, 0^{**} , 1^{**} , c_{α}^{**} , $\alpha \in S$. Now let s,t be S-terms. Then [s] +** [t] = [s+t], and s+t is an S-term. The f^{**} , g^{**} cases are treated in the same way. QED

By Lemma 4.2.11, we let $M^{**}<S>$ be the substructure of M^{**} whose domain is {[t]: t is an S-term}, where only the interpretations of S-constants are retained. By Lemma 4.2.11, $M^{**}<S>$ is a structure.

DEFINITION 4.2.24. Let $N^* < S > = dom(M^* < S >) = \{[t]: t is an S-term\}.$

LEMMA 4.2.12. Let S $\subseteq \kappa$ have order type ω . Then there is a unique isomorphism from M**<S> onto M* which maps the c_{α}^{**} , $\alpha \in S$, onto the c_n^{*} , $n \in N$.

Proof: Let J be the unique reduction from the S-constants onto C. Define $h:N^**<S> \rightarrow N^*$ as follows. Let t be an S-term. Set $h([t]) = Val(M^*,J(t))$.

To see that h is well defined, let [t] = [t'], where t,t' are S-terms. Since J is a reduction defined at t,t', we have $Val(M^*,J(t=t'))$, and so $Val(M^*,J(t)) = Val(M^*,J(t'))$.

For $\alpha \in S$, $h(c_{\alpha}^{**}) = h([c_{\alpha}]) = Val(M^*, J(c_{\alpha})) = J(c_{\alpha})^*$. This establishes that h maps the c_{α}^{**} , $\alpha \in S$, onto the c_{n}^{*} , $n \in N$.

We now verify that h is an isomorphism from M^* <5> onto M^* .

Suppose h([s]) = h([t]), where s,t are S-terms. Then $Val(M^*,J(s)) = Val(M^*,J(t))$. Hence $Sat(M^*,J(s=t))$, and so s = t, [s] = [t], using Lemma 4.2.8. Hence h is one-one.

Let $x \in N^*$, and write $x = Val(M^*,t)$, $t \in CT(L^*)$. By the construction of J, let t' be the unique S-term such that J(t') = t. Then $h([t']) = Val(M^*,J(t')) = Val(M^*,t) = x$. Hence h is onto N*.

Let s,t be S-terms. Then $[s] <** [t] \leftrightarrow Val(M*,J(s)) <* Val(M*,J(t)) <math>\leftrightarrow$ h([s]) <* h([t]).

$$h([s] +** [t]) = h([s + t]) = Val(M*, J(s + t)) = Val(M*, J(s)) + J(t)) = Val(M*, J(s)) +* Val(M*, J(t)) = h([s]) +* h([t]).$$

The g** case is handled analogously.

Finally,

$$h(0^{**}) = h[0] = Val(M^*, J(0)) = 0.$$

 $h(1^{**}) = h[1] = Val(M^*, J(1)) = 1.$

The uniqueness of h follows from the fact that the 0**, 1** and c_{α}^{**} , $\alpha \in S$, generate N**<S> in M**<S>, and the 0*, 1* and c_{n}^{*} , $n \in N$, generate N* in M*. QED

DEFINITION 4.2.25. For $S \subseteq \kappa$ and $r \ge 1$, we write $M^*[S,r] = \{Val(M^*,t): t \text{ is an } S-\text{term of length } \le r\}$.

DEFINITION 4.2.26. We say that H is an S,r-embedding from M^{**} into M if and only if

```
i) H:M**[S,r(p+q+1)] \rightarrow N;
```

ii)
$$H(0**) = 0$$
, $H(1**) = 1$;

- iii) for all $x,y \in M^{**}[S,r(p+q+1)], x <^{**} y \leftrightarrow H(x) < H(y);$ iv) for all $x,y \in M^{**}[S,r], H(x+^*y) = H(x)+H(y).$ v) for all $x_1, \ldots, x_p \in M^{**}[S,r], H(f^{**}(x_1, \ldots, x_p)) = f(H(x_1), \ldots, H(x_p));$ vi) for all $x_1, \ldots, x_q, \in M^{**}[S,r], H(g^{**}(x_1, \ldots, x_q)) = g(H(x_1), \ldots, H(x_q)).$
- LEMMA 4.2.13. Let $S \subseteq \kappa$ be of order type ω and $r \ge 1$. There is an S,r-embedding from M^{**} into M. Every universal sentence of L that holds in M holds in M^{**} . For any atomic sentence of L^{**} , if we replace equal transfinite constants by equal transfinite constants in a manner that is order preserving on indices, then the truth value in M^{**} is preserved. The C_0^{**} , $\alpha \in S$, are unbounded in $M^{**}[S,r]$.
- Proof: By Lemma 4.2.12, let h be the unique isomorphism h from M**<S> onto M* which maps the c_{α}^{**} , $\alpha \in S$, onto the c_{n}^{*} , $n \in N$. By Lemma 4.2.5, there is an r-embedding from M* into M. By composing these two mappings, we obtain the desired S,r-embedding from M** into M. The remaining claims follow from Lemma 4.2.7 by the isomorphism h. QED

We refer to the second claim of Lemma 4.2.13 as universal sentence preservation (from M to M**). We refer to the third claim of Lemma 4.2.13 as atomic indiscernibility.

DEFINITION 4.2.27. For $m \in N$, we write m^* for the term 1+...+1 with m 1's, where 0^* is 0. We say that $x \in N^{**}$ is standard if and only if it is the value in M^{**} of some m^* , $m \ge 0$. We say that $x \in N^{**}$ is nonstandard if and only if x is not standard. We write $st(M^{**})$ for the standard elements of N^{**} , and $nst(M^{**})$ for the nonstandard elements of N^{**} .

LEMMA 4.2.14. Let $x \in nst(M^{**})$ and $m \in N$. Then $x > ** m^{\cdot}$. $c_0^{**} \in nst(M^{**})$.

Proof: Let $m < \omega$. Then $(\forall x)$ ($x \le m \to (x = 0^{\circ} v ... v x = m^{\circ})$) holds in M. By universal sentence preservation, it holds in M**. Let x be nonstandard in M**. Then $x \le ** m^{\circ}$ is impossible by the above, and hence $x > ** m^{\circ}$.

Suppose c_0^{**} is standard, and let $c_0^{**}=m^{\circ}$. By atomic indiscernibility in M**, for all $n\in \mathbb{N}$, $c_n^{**}=m^{\circ}$. This is impossible, since $\alpha<\beta\to c_\alpha^{**}< c_\beta^{**}$. QED

Obviously, $(n/m) \times generally makes no sense in M**, where <math>n,m \in \mathbb{N}, m \neq 0$. We have no division operation in M**, and

certainly there is no 1/2 (there is no 1/2 in M). However, we can make perfectly good sense, in M**, of equations and inequalities

$$(n/m) x = (n'/m') x$$

 $(n/m) x < ** (n'/m') x$
 $(n/m) x \le ** (n'/m') x$

by interpreting them as

Universal sentence preservation can be used to support natural reasoning in M^{**} involving such equations and inequalities.

We have been using | | for the sup norm, or max, for elements of N^t , $t \ge 1$.

DEFINITION 4.2.28. We now use | | for elements of $N^{**} = dom(M^{**})$.

LEMMA 4.2.15. Let $x_1, ..., x_p, y_1, ..., y_q \in N^**$, where $|x_1, ..., x_p|, |y_1, ..., y_q| >^** b^*$. Then

$$(1 + 1/b) | x_1, ..., x_p | \le ** f ** (x_1, ..., x_p) \le ** b | x_1, ..., x_p | .$$
 $(1 + 1/b) | y_1, ..., y_q | \le ** g ** (y_1, ..., y_q) \le ** b | y_1, ..., y_q | .$

If $|x_1, ..., x_p|, |y_1, ..., y_q| \le ** b^*$, then

$$f(x_1, ..., x_p), g(y_1, ..., y_q) \le b^2$$
.

Proof: Recall the choice of $b \in N \setminus \{0,1\}$ made at the beginning of this section. These inequalities are purely universal, and hold in M. Hence they hold in M** by universal sentence preservation. QED

DEFINITION 4.2.29. Let $t \in CT(L^{**})$. We write #(t) for the transfinite constant of greatest index that appears in t. If none appears, then we take #(t) to be -1.

LEMMA 4.2.16. Let $t \in CT(L^{**})$. $\#(t) = -1 \leftrightarrow Val(M^{**},t)$ is standard. There exists a positive integer d such that the following holds. Suppose $\#(t) = c_{\alpha}$. Then $c_{\alpha}^{**} \leq^{**} Val(M^{**},t) <^{**} dc_{\alpha}^{**} <^{**} c_{\alpha+1}^{**}$.

Proof: We first claim the following. Suppose $\#(t) = c_{\alpha}$. Then $c_{\alpha}^{**} \leq^{**} \text{Val}(M^{**},t)$. This follows easily using Lemmas 4.2.14, 4.2.15, and the monotonicity of +.

Now suppose #(t) = -1. Since no transfinite constants appear in t, compute $Val(M,t) = m \in N$. Hence $t = m^n$ holds in M. By universal sentence preservation, $t = m^n$ holds in M**, and so $Val(M^*,t) = m^n$. Now suppose $\#(t) \neq -1$, and let $\#(t) = c_\alpha$. By the first claim in the previous paragraph, $c_\alpha^* \leq Val(M^*,t)$, and so $Val(M^*,t)$ is nonstandard.

We now prove by induction on $t \in CT(L^{**})$ that there exists $d \in N \setminus \{0\}$ such that for all $\alpha < \kappa$, if $\#(t) = c_{\alpha}$ then $Val(M^{**},t) <^{**} dc_{\alpha}^{**}$.

This is clearly true if t is a constant of L**. Let $\#(s + t) = c_{\alpha}$. Then $\#(s), \#(t) \le c_{\alpha}$. By the induction hypothesis, let $d \in \mathbb{N} \setminus \{0\}$ be such that $\#(s) = c_{\alpha} \to \mathbb{Val}(\mathbb{M}^{**}, s) <^{**} dc_{\alpha}^{**}$, and $\#(t) = c_{\alpha} \to \mathbb{Val}(\mathbb{M}^{**}, t) <^{**} dc_{\alpha}^{**}$. Then $\#(s + t) = c_{\alpha} \to \mathbb{Val}(\mathbb{M}^{**}, s + t) <^{**} 2dc_{\alpha}^{**}$.

Let $\#(f(t_1,\ldots,t_p))=c_\alpha$. Then $\#(t_1),\ldots,\#(t_p)\leq c_\alpha$. By the induction hypothesis, let $d\in N\setminus\{0\}$ be such that for all $1\leq i\leq p$, $\#(t_i)=c_\alpha\to Val(M^{**},t_i)<^{**}dc_\alpha^{**}$. Let $\#(f(t_1,\ldots,t_p))=c_\alpha$. By Lemma 4.2.15, $Val(M^{**},f(t_1,\ldots,t_p))<^{**}dc_\alpha^{**}$. The case of $g(t_1,\ldots,t_q)$ is argued in the same way. This completes the argument by induction.

We also need to establish that for all d \in N and α < κ , dc $_{\alpha}^{**}$ <** c $_{\alpha+1}^{**}$. This is from Lemma 4.2.9. QED

LEMMA 4.2.17. c_0^{**} is the least element of nst(M**).

Proof: By Lemma 4.2.14, $c_0^{**} \in \text{nst}(M^{**})$. Suppose $x <^{**} c_0^{**}$. Write $x = \text{Val}(M^{**}, t)$, $t \in \text{CT}(L^{**})$. By Lemma 4.2.16, #(t) = -1. By Lemma 4.2.16, $x \in \text{Standard}$. QED

LEMMA 4.2.18. Let $x_1,\ldots,x_p\in\mathbb{N}^*$ and $\alpha<\kappa$. Then $f^{**}(x_1,\ldots,x_p)<^{**}c_\alpha^{**}\leftrightarrow x_1,\ldots,x_p<^{**}c_\alpha^{**}.$ Let $x_1,\ldots,x_q\in\mathbb{N}^*$ and $\alpha<\kappa$. Then $g^{**}(x_1,\ldots,x_q)<^{**}c_\alpha^{**}\leftrightarrow x_1,\ldots,x_q<^{**}c_\alpha^{**}.$ Let $x,y\in\mathbb{N}^*$ and $\alpha<\kappa$. Then $x+y<^{**}c_\alpha^{**}\leftrightarrow x,y< c_\alpha^{**}.$

Proof: Let $x_1, \ldots, x_p \in \mathbb{N}^{**}$ and $\alpha < \kappa$. Let $t_1, \ldots, t_p \in \mathbb{CT}(\mathbb{L}^{**})$, where each $x_i = \mathrm{Val}(\mathbb{M}^{**}, t_i)$.

First suppose that $f^{**}(x_1,\ldots,x_p) < c_{\alpha}^{**}$. By Lemma 4.2.16, $\#(f(t_1,\ldots,t_p)) < c_{\alpha}$ or $\#(f(t_1,\ldots,t_p)) = -1$. Hence for all i, $\#(t_i) < c_{\alpha}$ or $\#(t_i) = -1$. Fix i. Then $\#(t_i) = -1$ or for some $\beta < \alpha$, $\#(t_i) = c_{\beta}$. In the former case, by Lemma 4.2.16, Val (M^{**},t_i) is standard, and so is $< c_{\alpha}^{**}$, by Lemma 4.2.17. In the latter case, Val $(M^{**},t_i) < c_{\beta+1} \le c_{\alpha}^{**}$, by Lemma 4.2.16.

For the converse, assume $x_1, \ldots, x_p <^{**} c_\alpha^{**}$. Then $\text{Val}(M^*, t_1), \ldots, \text{Val}(M^*, t_p) <^{**} c_\alpha^{**}$. If $\alpha = 0$ then by Lemmas 4.2.16 and 4.2.17, $\#(f(t_1, \ldots, t_p)) = -1$, and so $\text{Val}(M^{**}, f(t_1, \ldots, t_p))$ is standard. So we can assume that $\alpha > 0$. By Lemma 4.2.16, none of $\#(t_1), \ldots, \#(t_p)$ is $\geq c_\alpha$. Hence $\#(t_1), \ldots, \#(t_p) < c_\alpha$. Let $\beta < \alpha$, where $\#(t_1), \ldots, \#(t_p) \leq c_\beta$. By Lemma 4.2.16, $\text{Val}(M^*, f(t_1, \ldots, t_p)) <^{**} c_{\beta+1}^{**} \leq c_\alpha^{**}$.

The remaining two claims are established analogously. QED

DEFINITION 4.2.30. Let s be a rational number. We write $<_s**$ for the relation on N** given by x $<_s**$ y \leftrightarrow sx <** y.

LEMMA 4.2.19. Let s be a rational number > 1. There exists $k \ge 1$ such that for all $x_1 <_s ** x_2 <_s ** \dots <_s ** x_k$, we have $2x_1 <^* x_k$.

Proof: Fix s as given, and let $k \ge 1$. Using universal sentence preservation, we see that for all $x_1, \ldots, x_k \in \mathbb{N}^{**}$, if $x_1 <_s^{**} x_2 <_s^{**} \ldots <_s^{**} x_k$ then $x_1 <_s^{**} x_k$, where s' is s^{k-1} . Choose k large enough so that $s^{k-1} \ge 2$. QED

LEMMA 4.2.20. Let s be a rational number > 1. The relation $<_s^*$ on N** is transitive, irreflexive, and well founded.

Proof: Transitivity and irreflexivity follow from universal sentence preservation. By well foundedness, we mean that every nonempty subset of N** has a $<_s$ ** minimal element. This is equivalent to: there is no infinite $x_1 >_s$ ** $>_s$ ** $x_2 >_s$ ** $x_3 \ldots$.

By Lemma 4.2.19, if $<_2$ ** is well founded then $<_s$ ** is well founded. We now show that $<_2$ ** is well founded.

Let Y be a nonempty subset of N**. Choose $t \in CT(L^{**})$ such that #(t) is least with $Val(M^{**},t) \in Y$. If #(t) = -1 then Y has a standard element. Let x be the least standard element of Y. Then x is a $<_2$ ** minimal element of S. Therefore, we

can assume without loss of generality that Y has no standard elements, and $\#(t) \ge 0$.

Let $\#(t) = c_{\alpha}$ and assume Y has no $<_2$ ** minimal element. By Lemma 4.2.16, fix $d \in N \setminus \{0\}$ such that $Val(M^*,t) <^** dc_{\alpha}^**$. Let $t = t_1, \ldots, t_{d+1} \in CT(L^{**})$ be such that $Val(M^*,t_1) >_2^** \ldots >_2^** Val(M^*,t_{d+1})$, where $Val(M^*,t_1),\ldots,Val(M^*,t_{d+1}) \in Y$. Then $dVal(M^*,t_{d+1}) <^** Val(M^*,t_1) <^** dc_{\alpha}^**$, and so $Val(M^*,t_{d+1}) <^** c_{\alpha}^**$. Since Y has no standard elements, $\alpha > 0$. By Lemma 4.2.16, $\#(t_{d+1}) < c_{\alpha}$, which contradicts the choice of t, α . QED

DEFINITION 4.2.31. It is convenient to set s = 1 + 1/2b for using Lemma 4.2.20.

We now apply the well foundedness of $<_s^{**}$ in an essential way.

LEMMA 4.2.21. There is a unique set W such that W = $\{x \in nst(M^{**}): x \notin g^{**}W\}$. For all $\alpha < \kappa$, $c_{\alpha}^{**} \notin rng(f^{**}), rng(g^{**})$. In particular, each $c_{\alpha}^{**} \in W$.

Proof: By Lemma 4.2.15,

$$g^{**}(x_1,...,x_q) \ge_{1+(1/b)}^{**} |x_1,...,x_q|$$

 $g^{**}(x_1,...,x_q) >_{s}^{**} |x_1,...,x_q|$

holds for all $x_1, \ldots, x_q \in \text{nst}(M^{**})$. Hence g^{**} is strictly dominating on $\text{nst}(M^{**})$. By Lemma 4.2.20, $<_s^{**}$ is well founded on $\text{nst}(M^{**})$. Hence we can apply the Complementation Theorem (for well founded relations), Theorem 1.3.1. Let W be the unique set such that $W = \{x \in \text{nst}(M^{**}): x \notin g^{**}W\}$.

For the second claim, write $c_{\alpha}^{**} = f^{**}(x_1, \ldots, x_p)$. By Lemma 4.2.15, each $x_i <^{**} c_{\alpha}^{**}$. By Lemma 4.2.18, $f^{**}(x_1, \ldots, x_p) <^{**} c_{\alpha}^{**}$. This is a contradiction. The same argument applies to g^{**} .

The third claim follows immediately from the second claim. QED

We fix the unique W from Lemma 4.2.21. We will use q choice functions $F_1, \ldots, F_q: \mathbb{N}^{**} \to \mathbb{W}$ such that for all $x \in g^{**}\mathbb{W}$,

$$x = q^{**}(F_1(x), \ldots, F_q(x))$$

and for all $x \notin g^{**W}$,

$$F_1(x) = ... = F_q(x) = c_0 **.$$

We now come to the Skolem hull construction.

DEFINITION 4.2.32. Let $E \subseteq \kappa$. Define $E[1] = \{c_{\alpha}^{**}: \alpha \in E\}$. Suppose $E[1] \subseteq \ldots \subseteq E[k] \subseteq \kappa$ have been defined, $k \ge 1$. Define $E[k+1] = E[k] \cup (W \cap f^{**}E[k]) \cup F_1f^{**}E[k] \cup \ldots \cup F_qf^{**}E[k]$.

LEMMA 4.2.22. Let $E \subseteq \kappa$ and $i \ge 1$. $E[i] \subseteq E[i+1] \subseteq W$. $f^**E[i] \subseteq E[i+1]$ U. $g^**E[i+1]$. $E[1] \cap f^**E[i] = \emptyset$.

Proof: Let $E \subseteq \kappa$ and $i \ge 1$. $E[i] \subseteq E[i+1] \subseteq W$ is obvious by construction and the third claim of Lemma 4.2.21. Let $x \in f^{**}E[i]$. Since $E[i] \subseteq nst(M^{**})$, by Lemma 4.2.15, we have $x \in nst(M^{**})$.

case 1. $x \in W$. Then $x \in E[i+1]$.

case 2. $x \notin W$. Since $x \in nst(M^{**})$, we have $x \in g^{**}W$. Hence $x = g^{**}(F_1(x), \ldots, F_q(x))$. Now each $F_i(x) \in E[i+1]$ since $x \in f^{**}E[i]$. Hence $x \in g^{**}E[i+1]$.

We have thus established that $f^{**}E[i] \subseteq E[i+1] \cup g^{**}E[i+1]$.

 $E[i+1] \cap q^{**}E[i+1] = \emptyset$ follows from $W \cap q^{**}W = \emptyset$.

E[1] \cap f**E[i] = \varnothing follows from the second claim of Lemma 4.2.21. QED

Note that Proposition B is essentially the same as Lemma 4.2.22, for $1 \le i < n$. However Proposition B lives in N and Lemma 4.2.22 lives way up in M**. The remainder of the proof of Proposition B surrounds the choice of a suitable E such that E[n] can be suitably embedded back into M.

Recall the positive integer $e = p^{n-1}$ fixed at the beginning of this section, where κ is strongly e-Mahlo. Recall that we have also fixed $n \ge 1$.

LEMMA 4.2.23. There is an integer m depending only on p,n, such that the following holds. There exist finitely many functions $G_1, G_2, \ldots, G_m \colon \kappa^e \to W$, such that for all $E \subseteq \kappa$, $E[n] = G_1E \cup \ldots \cup G_mE$.

Proof: We show by induction on $1 \le i \le n$ that there exist finitely many functions G_1, G_2, \ldots, G_m , where each G_i is a multivariate function from κ into W of various arities $\le p^{i-1}$, with the desired property.

For i = 1, take $G_1: \kappa \to W$, where $G_1(\alpha) = c_{\alpha}^{**}$.

Suppose G_1, \ldots, G_m works for fixed $1 \le i < n$, with arities $\le p^{i-1}$. For i+1, we start with G_1, \ldots, G_m in order to generate E[i] from E. In order to generate $W \cap f^{**}E[i]$, we need finitely many functions, each built from f^{**} composed with P of the G_1, \ldots, G_m . The element $C_0^{**} \in W$ is used to make sure that only values in P are generated. Each of these finitely many functions have arity at most $P(P^{i-1}) = P^i$. Each of $P_1^{i}f^{**}[E_i]$, $1 \le j \le q$, are generated similarly.

So arities $\leq p^{n-1}$ are sufficient for the case i=n. We can obviously arrange for all of these functions to have arity $e=p^{n-1}$ by adding dummy variables. QED

We fix the functions G_1, \ldots, G_m given by Lemma 4.2.23.

We now define "term decomposition" functions $H_i:W\to\kappa$, indexed by the natural numbers. Let $x\in W$.

DEFINITION 4.2.33. To define the $H_i(x)$, first choose $t \in CT(L^{**})$ such that $Val(M^{**},t) = x$. Let $c_{\alpha_-1}, c_{\alpha_-2}, \ldots, c_{\alpha_-s}$ be a listing of all transfinite constants appearing in t from left to right, with repetitions allowed.

DEFINITION 4.2.34. For $x \in W$, set $H_0(x) = lth(t)$. For $1 \le i \le s$, set $H_i(x) = \alpha_i$. For i > s, set $H_i(x) = 0$.

DEFINITION 4.2.35. Finally, define functions $J_{i,j}:\kappa^e \to \kappa$, $i \ge 0$, $1 \le j \le m$, by $J_{i,j}(\alpha_1, \ldots, \alpha_e) = H_i(G_j(\alpha_1, \ldots, \alpha_e))$.

LEMMA 4.2.24. Let $E \subseteq \kappa$. Every element of E[n] is of the form $Val(M^{**},t)$, where the length of $t \in CT(L^{**})$ lies in $U\{J_{0,j}E: 1 \le j \le m\}$ and the transfinite constants of t have subscripts lying in $U\{J_{i,j}E: 1 \le i \le lth(t) \land 1 \le j \le m\}$.

Proof: Let $E \subseteq \kappa$ and $x \in E[n]$. By Lemma 4.2.23, let $x \in G_jE$, $1 \le j \le m$. Let $t \in CT(L^{**})$ be the term used to write $x = Val(M^{**},t)$ in the definition of the $H_i(x)$. Write $x = G_j(\alpha_1,\ldots,\alpha_e)$, $\alpha_1,\ldots,\alpha_e \in E$. Then $J_{0,j}(\alpha_1,\ldots,\alpha_e) = H_0(x) = lth(t)$, and $J_{1,j}(\alpha_1,\ldots,\alpha_e)$, $J_{2,j}(\alpha_1,\ldots,\alpha_e)$,...,

 $J_{lth(t),j}(\alpha_1,\ldots,\alpha_e)$ enumerates at least the subscripts of transfinite constants of t. QED

LEMMA 4.2.25. There exists $E \subseteq S \subseteq \kappa$, E,S of order type ω , and a positive integer r, such that $E[n] \subseteq M^{**}[S,r]$.

Proof: We apply Lemma 4.1.6 to the following two sequences of functions. The first is the $J_{i,j}:\kappa^e\to\kappa$, where $i\geq 1$ and $1\leq j\leq m$ (here m is as given by Lemma 4.2.23, and depends only on p,k). The first can be construed as an infinite sequence of functions from κ^e into κ , and the second can also be construed as an infinite sequence of functions from κ into ω by infinite repetition.

By Lemma 4.1.6, let $E \subseteq \kappa$ be of order type ω such that for all $i \ge 1$ and $1 \le j \le m$, $J_{i,j}E$ is either a finite subset of $\sup(E)$, or has order type ω with the same \sup as E, and $J_{0,j}E$ is finite.

Let $r = \max(J_{0,1}E \cup ... \cup J_{0,m}E)$. By Lemma 4.2.24, every element of E[n] is the value in M^{**} of a closed term t of length at most r, whose transfinite constants have subscripts lying in $S = \bigcup\{J_{ij}E\colon 1 \le i \le lth(t) \land 1 \le j \le m\}$. I.e., $E[n] \subseteq M^{**}[S,r]$. Note that S is a finite union of sets of ordinals, each of which is either a finite subset of $\sup(E)$, or is of order type ω with the same \sup as E. Since $E \subseteq S$, we see that S is of order type ω . QED

DEFINITION 4.2.36. We fix E,S,r as given by Lemma 4.2.25.

THEOREM 4.2.26. Proposition B is provable in $SMAH^+$. In fact, it is provable in MAH^+ .

Proof: By Lemma 4.2.22, for all $1 \le i < n$, $f^{**}E[i] \subseteq E[i+1]$ U. $g^{**}E[i+1]$, and $E[1] \cap f^{**}E[n] = \emptyset$. By Lemma 4.2.13, there is an S,r-embedding T from M** into M. Note that $f^{**}[E[n]] \cup g^{**}[E[n]] \subseteq M^{**}[S,r(p+q)] = dom(T)$.

For $1 \le i \le n$, let $A_i = TE[i]$. Since $E[1] \subseteq ... \subseteq E[n]$, we have $A_1 \subseteq ... \subseteq A_n \subseteq N$. By Lemma 4.2.25, $E[n] \subseteq M^{**}[S,r]$.

We first claim that for all $1 \le i < n$, $fA_i \subseteq A_{i+1} \cup gA_{i+1}$.

Let $1 \le i < n$, and $x \in fA_i$. Write $x = f(Ty_1, ..., Ty_p)$, $y_1, ..., y_p \in E[i]$. Hence $Tf^{**}(y_1, ..., y_p) = f(Ty_1, ..., Ty_p) = x$.

By Lemma 4.2.22, $f^{**}(y_1,...,y_p) \in E[i+1] \cup g^{**}E[i+1]$. First suppose $f^{**}(y_1,...,y_p) \in E[i+1]$. Then $Tf^{**}(y_1,...,y_p) = x \in A_{i+1}$.

Secondly suppose $f^{**}(y_1, \ldots, y_p) \in g^{**}E[i+1]$, and write $f^{**}(y_1, \ldots, y_p) = g^{**}(z_1, \ldots, z_q)$, where $z_1, \ldots, z_q \in E[i+1]$. Then $Tf^{**}(y_1, \ldots, y_p) = Tg^{**}(z_1, \ldots, z_q) = g(Tz_1, \ldots, Tz_q) = f(Ty_1, \ldots, Ty_p) = x$. Hence $x \in gA_{i+1}$.

We next claim that for all $1 \le i < n$, $A_{i+1} \cap gA_{i+1} = \emptyset$. We must verify that $TE[i+1] \cap gTE[i+1] = \emptyset$. Let $x, y_1, \ldots, y_q \in E[i+1]$, $T(x) = g(Ty_1, \ldots, Ty_q)$. Clearly $T(x) = Tg^{**}(y_1, \ldots, y_q)$, and so $x = g^{**}(y_1, \ldots, y_q)$. This contradicts $E[i+1] \cap g^{**}E[i+1] = \emptyset$.

We finally claim that $A_1 \cap fA_n = \emptyset$. Let $x \in A_1$, $y_1, \ldots, y_p \in A_n$, $x = f(y_1, \ldots, y_p)$. Let $x' \in E[1]$, $y_1', \ldots, y_p' \in E[n]$, where x = T(x'), and $y_1, \ldots, y_p = T(y_1'), \ldots, T(y_p')$ respectively. Note that $Tf^{**}(y_1', \ldots, y_p') = f(T(y_1'), \ldots, T(y_p')) = f(y_1, \ldots, y_p) = x = T(x')$. Therefore $x' = f^{**}(y_1', \ldots, y_p')$, contradicting the last claim of Lemma 4.2.22.

The second claim in the Lemma follows from the first by Theorem 4.1.7. This is because Proposition B is obviously in $\Pi^1{}_2$ form. QED

Obviously the proof of Theorem 4.2.26 gives an upper bound on the order of strongly Mahlo cardinal sufficient to prove Proposition B that depends exponentially on the arity of f and the length of the tower. Without attempting to optimize the level, we have shown the following.

COROLLARY 4.2.27. The following is provable in ZFC. Let p,n ≥ 1 . If there exists a strongly pⁿ⁻¹-Mahlo cardinal then Proposition B holds for p-ary f, multivariate g, and n. If there exists a strongly p²-Mahlo cardinal, then Proposition A holds for p-ary f and multivariate g. Furthermore, we can drop "strongly" from both results.

Corollary 4.2.27 is far from optimal. For instance, if n=2 then Proposition B is provable in RCA_0 , as we shall see now.

THEOREM 4.2.28. The following is provable in RCA₀. For all $f,g \in ELG$ there exist infinite A \subseteq B \subseteq N such that

$fA \subseteq B \cup gB$ $A \cap fB = \emptyset$.

Proof: Let f,g \in EVSD. Let n be sufficiently large. By Theorem 3.2.5, let A \subseteq [n, ∞) be infinite where A \cap g(A U fA) = \emptyset . By Lemma 3.3.3, let B be unique such that B \subseteq A U fA \subseteq B U. gB. Then A \cap gB \subseteq A \cap g(A U fA) = \emptyset , and hence A \subseteq B. Also A \cap fB \subseteq A \cap f(A U fA) = \emptyset , and fA \subseteq B U. gB. QED