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CHAPTER 4.  
PROOF OF PRINCIPAL EXOTIC 
CASE 
 
4.1. Strongly Mahlo Cardinals of Finite Order. 
4.2. Proof using Strongly Mahlo Cardinals. 
4.3. Some Existential Sentences. 
4.4. Proof using 1-consistency. 
 
4.1. Strongly Mahlo Cardinals of Finite 
Order. 
 
The large cardinal properties used in this book are the 
strongly Mahlo cardinals of order n, where n ∈ ω. These are 
defined inductively as follows.  
 
DEFINITION 4.1.1. The strongly 0-Mahlo cardinals are the 
strongly inaccessible cardinals (uncountable regular strong 
limit cardinals).  
The strongly n+1-Mahlo cardinals are the infinite cardinals 
all of whose closed unbounded subsets contain a strongly n-
Mahlo cardinal. 
 
It is easy to prove by induction on n that for all n < m < 
ω, every strongly m-Mahlo cardinal is a strongly n-Mahlo 
cardinal. 
 
There is a closely related notion: n-Mahlo cardinal.  
 
DEFINITION 4.1.2. The 0–Mahlo cardinals are the weakly 
inaccessible cardinals (uncountable regular limit 
cardinals). The n+1-Mahlo cardinals are the infinite 
cardinals all of whose closed unbounded subsets contain an 
n-Mahlo cardinal.  
 
Again, for all n < m < ω, every m-Mahlo cardinal is an n-
Mahlo cardinal.  
 
NOTE: Sometimes (strongly) n-Mahlo cardinals are called 
(strongly) Mahlo cardinals of order ≤ n. Also, sometimes 
what we call n-Mahlo cardinals are called weakly n-Mahlo 
cardinals.  
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The well known relationship between n-Mahlo cardinals and 
strongly n-Mahlo cardinals is given as follows. 
 
THEOREM 4.1.1. The following is provable in ZFC. Let n < ω. 
A cardinal is strongly n-Mahlo if and only if it is n-Mahlo 
and strongly inaccessible. Under the GCH, a cardinal is 
strongly n-Mahlo if and only if it is n-Mahlo.  
 
Proof: For the first claim, note that it is obvious for n = 
0. Assume that every strongly inaccessible n-Mahlo cardinal 
is strongly n-Mahlo. Let κ be a strongly inaccessible n+1-
Mahlo cardinal. Let A ⊆ κ be closed and unbounded. Since κ 
is strongly inaccessible, the set B ⊆ κ consisting of the 
strong limit cardinals in A is closed and unbounded. Let λ 
∈ B be an n-Mahlo cardinal. As previously remarked, λ is an 
inaccessible cardinal. Since λ is a strong limit cardinal, λ 
is a strongly inaccessible cardinal. By the induction 
hypothesis, λ is a strongly n-Mahlo cardinal.  
 
We have thus shown that every closed unbounded A ⊆ κ 
contains a strongly n-Mahlo element. Hence κ is strongly 
n+1-Mahlo.  
 
For the final claim, assume the GCH. By an obvious 
induction, every strongly n-Mahlo cardinal is an n-Mahlo 
cardinal. For the converse, let κ be an n-Mahlo cardinal. As 
previously remarked, κ is a weakly inaccessible cardinal. 
Hence κ is a strongly inaccessible cardinal (by GCH). By the 
first claim, κ is a strongly n-Mahlo cardinal. QED 
 
We now develop the essential combinatorics of strongly 
Mahlo cardinals of finite order used in this Chapter.  
 
DEFINITION 4.1.3. Let [A]n be the set of all n element 
subsets of A. Sometimes we write x ∈ [A]n in the form 
{x1,...,xn}< to indicate that the xi are strictly 
increasing. Let A be a set of ordinals. We say that f:[A]n 
→ On is regressive if and only if for all x ∈ [A\{0}]n, 
f(x) < min(x).  
 
DEFINITION 4.1.4. We say that E is min homogenous for f:[A]n 
→ On if and only if E ⊆ A and for all x,y ∈ [E]n, min(x) = 
min(y) → f(x) = f(y). 
 
LEMMA 4.1.2. Let n ≥ 0, κ a strongly n-Mahlo cardinal, A ⊆ κ 
unbounded, and f:[A]n+2 → κ be regressive. For all α < κ, 
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there exists E ⊆ A of order type α which is min homogenous 
for f.  
 
Proof: This result originally appeared in [Sc74], in 
somewhat sharper form, using different notation. We present 
the proof in [HKS87], p. 147, using Erdös-Rado trees.  
 
DEFINITION 4.1.5. Let A be a set of ordinals with at least 
two elements. An A-tree is an irreflexive transitive 
relation T with field A such that  
 
i. α T β → α < β. 
ii. {β: β T α} is linearly (and hence well) ordered by T.  
 
DEFINITION 4.1.6. Let m ≥ 2, A be a nonempty set of 
ordinals, and f:[A]m → On be regressive. The Erdos-Rado 
tree ERT(f) is the unique A-tree T with field A such that 
for all α,β ∈ A, α T β if and only if  
 
i. α < β. 
ii. For all γ1,...,γm-1 T α with γ1 < ... < γm-1, f({γ1,...,γm-
1,α}) = f({γ1,...,γm-1,β}). 
 
To see that there is such a unique T, build ERT(f,α), α ∈ 
A, by transfinite recursion on α ∈ A. Here ERT(f,α) is 
ERT(f) restricted to A ∩ α. The details are left to the 
reader.  
 
DEFINITION 4.1.7. For α ∈ A, the height of α in ERT(f) is 
the order type of {β: β ERT(f) α}. We say that α,β ∈ A are 
siblings in ERT(f) if and only if they are distinct, and 
have the same strict predecessors in ERT(f). For ordinals γ, 
let ERT(f)[<γ] be the restriction of ERT(f) to the elements 
of A (vertices) of height < γ.  
 
We now assume that f:[A]n+2 → On is regressive and sup(A) is 
a strongly inaccessible cardinal κ. Observe that for all α 
∈ A, the number of siblings of α in ERT(f) is at most the 
number of functions from αn+1 into α, which is at most 
2|α|+ω. Next observe that by transfinite induction on α < κ, 
ERT(f)[<α] has < κ vertices. Hence for all α < κ, ERT(f) has 
a vertex of height α. By the construction of ERT(f), every 
vertex has height < κ.  
 
Now observe that if n = 0 then the set of strict 
predecessors of every element of ERT(f) is min homogeneous 
for f. This establishes the Lemma for the basis case n = 0. 
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Suppose that the Lemma holds for a fixed n ≥ 0. Let κ be a 
strongly n+1-Mahlo cardinal, A ⊆ κ be unbounded, α < κ, and 
f:[A]n+3 → κ be regressive. We use the Erdös-Rado tree 
ERT(f).  
 
Since κ is strongly inaccessible, C = {λ < κ: λ is a limit 
ordinal > α and ERT(f)[<λ] is an A ∩ λ-tree and A ∩ λ is 
unbounded in λ} is a closed and unbounded subset of κ. Since 
κ is a strongly n+1-Mahlo cardinal, fix λ < κ to be a 
strongly n-Mahlo cardinal > α such that ERT(f)[<λ] is an A 
∩ λ-tree and A ∩ λ is unbounded in λ.  
 
Let v be a vertex of ERT(f) of height λ. Let B = {w: w 
ERT(f) v}. Then B is an unbounded subset of λ.  
 
B naturally gives rise to a regressive function f*:[B]n+2 → 
λ by taking f*(x) = f(x ∪ {γ}), where γ ∈ B, γ > max(x). 
Note that this definition is independent of the choice of γ.  
 
By the induction hypothesis, let E ⊆ B be min homogenous 
for f*, E of order type α. Then E ⊆ B ⊆ A is min homogenous 
for f. QED 
 
DEFINITION 4.1.8. For all ordinals α, let α+ be the least 
infinite cardinal > α. Let f:[A]n → κ. We say that f is 
next regressive if and only if every f(x1,...,xn) < 
min(x1,...,xn)+. 
 
LEMMA 4.1.3. Let n ≥ 0, κ a strongly n-Mahlo cardinal, and A 
⊆ κ be unbounded. For all i ∈ ω, let fi:[A]n+2 → κ be next 
regressive. For all α < κ, there exists E ⊆ A of order type 
α such that for all i ∈ ω, E is min homogenous for fi. 
 
Proof: This is by a straightforward modification of the 
proof of Lemma 4.1.2. Modify the definition of the Erdös-
Rado tree ERT(f) accordingly, and derive a similar upper 
bound on the number of siblings of a vertex in ERT(f). QED 
 
Let n ≥ 1 and f:[A]n → κ. We wish to define n+1 kinds of 
infinite sets E ⊆ A for f.  
 
DEFINITION 4.1.9. We say that E is of kind 0 for f if and 
only if f is constant on [E]n, where the constant value is 
less than the strict sup of E. 
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DEFINITION 4.1.10. We say that E is of kind 1 ≤ j ≤ n for f 
if and only if the following holds. For all {x1,...,xn}<, 
{x1,...,xj,yj+1,...,yn}< ⊆ E, f(x1,...,xn) = 
f(x1,...,xj,yj+1,...,yn) is greater than every element of E < 
xj and smaller than every element of E > xj. 
 
For E ⊆ On and δ < ot(E), we write E[δ] for the δ-th element 
of E. 
 
We fix H:On<ω → On\{0}, where H is one-one and for all x ∈ 
On<ω, H(x) < max(x)+. 
 
LEMMA 4.1.4. Let n ≥ 1, κ a strongly n-Mahlo cardinal, and A 
⊆ κ unbounded. For all i ∈ ω, let fi:[A]n+1 → κ. For all α < 
κ, there exists E ⊆ A of order type α such that the 
following holds. For all i ∈ ω, there exists 0 ≤ j ≤ n+1 
such that E is of kind j for fi. 
 
Proof: Let n,κ,A,fi,α be as given. We can assume that α > ω, 
A ⊆ κ\ω, and there is an infinite cardinal strictly between 
any two elements of A. We can also assume that for all 
α1,...,αn+1 < β from A, fi(α1,...,αn+1) < β. 
 
For all i ∈ ω, define gi,0{u,x1,...,xn+1}< = 1+fi{x1,...,xn+1} 
if fi{x1,...,xn+1} ≤ u; 0 otherwise.  
 
For 1 ≤ j ≤ n+1, define gi,j{u,xj+1,...,xn+2}< as follows. Let 
z1 < ... < zj ≤ u be such that fi{z1,...,zj,xj+1...,xn+1} ≠ 
fi{z1,...,zj,xj+2,...,xn+2} and fi{z1,...,zj,xj+1...,xn+1} ≤ u. 
Set gi,j{u,xj+1,...,xn+2} = 
H(z1,...,zj,fi{z1,...,zj,xj+1,...,xn+1}). If such z’s do not 
exist, then set gi,j{u,xj+1,...,xn+2} = 0.  
 
Note that each gi,j is next regressive. By Lemma 4.1.3, let 
E’ ⊆ A\ω be min homogeneous for all gi,j, where E’ has 
cardinality ≥ ℑω(α+ω) = the first strong limit cardinal > 
α+ω.  
 
We can partition the tuples from E’ of length ≤ 2n+2 in a 
strategic way, with 2ω pieces, and apply the Erdös-Rado 
theorem to obtain E ⊆ E’ with order type α, with the 
following three properties. Write E[1],E[2],... for the 
first ω elements of E. Let i ∈ ω. 
 
1) For all {x1,...,xn+1}< ∈ [E]n+1, fi{x1,...,xn+1} ∈ E → 
fi{x1,...,xn+1} ∈ {x1,...,xn+1}.  
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2) Suppose fi{E[2],...,E[n+2]} = fi{E[n+3],...,E[2n+3]}. 
Then fi is constant on [E]n+1.  
 
3) Suppose 1 ≤ j ≤ n+1, and fi{E[2],E[4],...,E[2n+2]} = 
fi{E[2],E[4],...,E[2j],E[2j+4],E[2j+6],...,E[2n+4]} ∈ (E[2j-
1],E[2j+1]). Then E is of kind j for fi.  
 
For the remainder of the proof, we fix i ∈ ω. The first 
case that applies is the operative case. 
 
case 1. fi{E[2],E[4],...,E[2n+2]} ≤ E[1]. Then 
gi,0{E[1],E[2],E[4],...,E[2n+2]} = 
1+fi{E[2],E[4],...,E[2n+2]} > 0. Since E is min homogenous 
for gi,0 we see that for all x,y ∈ [E]n+1 such that 
min(x),min(y) ≥ E[2], we have gi,0({E[1]} ∪ x) = gi,0({E[1]} 
∪ y) = 1+fi(x) = 1+fi(y). In particular, fi{E[2],...,E[n+2]} 
= fi{E[n+3],...,E[2n+3]}. By 2), fi is constant on [E]n+1. 
Hence E is of kind 0 for fi.  
 
case 2. Let j be the greatest element of [1,n+1] such that 
fi{E[2],E[4],...,E[2n+2]} ∈ (E[2j-1],E[2j+1]). Note that 
gi,j{E[2j+1],E[2j+2],E[2j+4],...,E[2n+4]} = 
gi,j{E[2j+1],E[2j+4],E[2j+6],...,E[2n+6]}.  
 
Suppose the main clause in the definition of 
gi,j{E[2j+1],E[2j+2],E[2j+4],...,E[2n+4]} holds, with z1 < 
... < zj ≤ E[2j+1]. Since H is nonzero, the main clause in 
the definition of gi,j{E[2j+1],E[2j+4],E[2j+6],...,E[2n+6]} 
holds with, say, w1 < ... < wj ≤ E[2j+1]. Hence 
H(z1,...,zj,fi{z1,...,zj,E[2j+2],E[2j+4],...,E[2n+2]}) = 
H(w1,...,wj,fi{w1,...,wj,E[2j+4],E[2j+6],...,E[2n+4]}). 
Therefore z1,...,zj = w1,...,wj, respectively, and 
fi{z1,...,zj,E[2j+2],E[2j+4],...,E[2n+2]} = 
fi{w1,...,wj,E[2j+4],E[2j+6],...,E[2n+4]}.  This contradicts 
the choice of z1,...,zj.  
 
Hence the main clause in the definition of 
gi,j{E[2j+1],E[2j+2],E[2j+4],...,E[2n+4]} fails. In 
particular, it fails with z1,...,zj = E[2],E[4],...,E[2j], 
respectively. Then fi{E[2],E[4],...,E[2n+2]} = 
fi{E[2],E[4],...,E[2j],E[2j+4],E[2j+6],...,E[2n+4]}.  By 3), 
E is of kind j for fi. 
 
case 3. Otherwise. Then fi{E[2],E[4],...,E[2n+2]}  ∈ 
{E[1],E[3],...,E[2n+1]}, or fi{E[2],E[4],...,E[2n+2]} ≥ 
E[2n+3]. The first disjunct is impossible by 1), and the 
second disjunct is impossible by the assumption on A. 
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We have thus shown that for some j ∈ [0,n+1], E is of kind 
j for fi. Since i is arbitrarily chosen from ω, we are done. 
 
QED 
 
DEFINITION 4.1.11. Let f:[A]n → κ and E ⊆ A. We define fE 
to be the range of f on [E]n. 
 
LEMMA 4.1.5. Let n,m ≥ 1, κ a strongly n-Mahlo cardinal, and 
A ⊆ κ unbounded. For all i ∈ ω, let fi:[A]n+1 → κ, and let 
gi:[A]m → ω. There exists E ⊆ κ of order type ω such that  
i) for all i ∈ ω, fi is either constant on [E]n+1, with 
constant value < sup(E), or fiE is of order type ω with the 
same sup as E; 
ii) for all i ∈ ω, gi is constant on [E]m. 
 
Proof: Let n,m,κ,A,fi,gi be as given. Apply Lemma 4.1.4 to 
obtain E’ ⊆ κ of order type ℑω(ω) such that the following 
holds. For all i ∈ ω there exists 0 ≤ j ≤ n+1 such that E 
is of kind j for fi. By the Erdös-Rado theorem, let E ⊆ E’ 
be of order type ω, where for all i ∈ ω, gi is constant on 
[E]m. Write E = {E[1],E[2],...}<. 
 
Let i ∈ ω and E be of kind j for fi. If j = 0 then fi is 
constant on [E]n+1, where the constant value is less than 
sup(E).   
 
Now suppose 1 ≤ j ≤ n+1. For all {x1,...,xn+1}<, 
{x1,...,xj,yj+1,...,yn+1}< ⊆ E, fi{x1,...,xn+1} = 
f{x1,...,xj,yj+1,...,yn+1} is greater than every element of E 
< xj and smaller than every element of E > xj. Since we can 
set xj to vary among E[j],E[j+1],..., we see that fiE has 
the same sup as E. In particular, fiE is infinite. 
 
Also, for any particular E[p], the values fi{x1,...,xn+1} < 
E[p], x1 < ... < xn+1 ∈ A, can arise only if xj ≤ E[p+1]. 
Since the arguments xj+1,...,xn+1 don't matter (kind j for 
fi), there are at most finitely many such values.  
 
We have shown that fiE has at most finitely many elements 
not exceeding any given element of E. Therefore fiE has 
order type ≤ ω. Since fiE is infinite, the order type of fiE 
is ω. QED   
 
We now switch over to ordered tuples. Let f:An → κ and E ⊆ 
A. Here we also define fE to be the range of f on En. 
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LEMMA 4.1.6. Let n,m ≥ 1, κ a strongly n-Mahlo cardinal, and 
A ⊆ κ unbounded. For all i ∈ ω, let fi:An+1 → κ, and let 
gi:Am → ω. There exists E ⊆ κ of order type ω such that  
i) for all i ≥ 1, fiE is either a finite subset of sup(E), 
or of order type ω with the same sup as E; 
ii) for all i ∈ ω, giE is finite. 
 
Proof: Let n,m,κ,A,fi,gi be as given. Each fi gives rise to 
finitely many corresponding fi,σ, where σ ranges over the 
order types of n+1 tuples. Also each gi gives rise to 
finitely many corresponding gi,σ, where σ ranges over the 
order types of m tuples. Any fiE is the union of the fi,σE, 
and any giE is the union of the gi,σE. Choose E according to 
Lemma 4.1.5. Then E will be as required. QED 
 
DEFINITION 4.1.12. Let SMAH+ be ZFC + (∀n < ω)(∃κ)(κ is a 
strongly n-Mahlo cardinal). Let SMAH be ZFC + {(∃κ)(κ is a 
strongly n-Mahlo cardinal)}n<ω. 
 
DEFINITION 4.1.13. Let MAH+ be ZFC + (∀n < ω)(∃κ)(κ is an n-
Mahlo cardinal). Let MAH be ZFC + {(∃κ)(κ is an n-Mahlo 
cardinal)}n < ω. 
 
We will use the following (known) relationship between 
SMAH+, MAH+, SMAH, and MAH. 
 
DEFINITION 4.1.14. The system EFA = exponential function 
arithmetic is defined to be the system IΣ0(exp); see [HP93]. 
 
THEOREM 4.1.7. SMAH+ and MAH+ prove the same Π1

2 sentences. 
SMAH and MAH prove the same Π1

2 sentences. SMAH is 1-
consistent if and only if MAH is 1-consistent. SMAH is 
consistent if and only if MAH is consistent. These results 
are provable in EFA. 
 
Proof: We first prove the following well known theorem in 
ZFC.  
 
1) Let n ≥ 0. Every n-Mahlo cardinal is an n-Mahlo cardinal 
in the sense of L.  
 
The basis case asserts that every weakly inaccessible 
cardinal is a weakly inaccessible cardinal in L. This is 
particularly well known and easy to check. 
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Fix n ≥ 0 and assume that every n-Mahlo cardinal is an n-
Mahlo cardinal in L. Let κ be an n+1-Mahlo cardinal. Let A 
⊆ κ, A ∈ L, where A is closed and unbounded in κ (in the 
sense of L). Let λ ∈ A be an n-Mahlo cardinal. Then λ ∈ A 
is an n-Mahlo cardinal in L. Hence κ is an n+1-Mahlo 
cardinal in L. 
 
If T is a sentence or set of sentences in the language of 
set theory, then we write T(L) for the relativization of T 
to Godel’s constructible universe L.  
 
For the first claim, let SMAH+ prove ϕ, where ϕ is Π1

2. By 
Lemma 4.1.1, MAH+ + GCH proves ϕ. Hence ZFC + MAH+(L) + GCH(L) 
proves ϕ(L) by, e.g., [Je78], section 12. Therefore ZFC + 
MAH+(L) proves ϕ(L) by, e.g., [Je78], section 13. By the 
Shoenfield absoluteness theorem (see, e.g., [Je78], p. 
530), ZFC + MAH+(L) proves ϕ. By 1), MAH+ proves ϕ. 
 
For the second claim, we repeat the proof of the first 
claim for any specific level of strong Mahloness.  
 
For the third claim, assume 1-Con(MAH). Let ϕ be a Σ01 
sentence provable in SMAH. By the second claim, ϕ is 
provable in MAH. Hence ϕ is true.  
 
For the final claim, assume Con(MAH). Then MAH does not 
prove 1 = 0. By the second claim, SMAH does not prove 1 = 
0. Hence Con(SMAH). QED  
 
Theorem 4.1.7 tells us that for the purposes of this book, 
SMAH+ and SMAH are equivalent to MAH+ and MAH. We will 
always use SMAH+ and SMAH. 
 


