CHAPTER 4. PROOF OF PRINCIPAL EXOTIC CASE

- 4.1. Strongly Mahlo Cardinals of Finite Order.
- 4.2. Proof using Strongly Mahlo Cardinals.
- 4.3. Some Existential Sentences.
- 4.4. Proof using 1-consistency.

4.1. Strongly Mahlo Cardinals of Finite Order.

The large cardinal properties used in this book are the strongly Mahlo cardinals of order n, where n $\in \omega$. These are defined inductively as follows.

DEFINITION 4.1.1. The strongly 0-Mahlo cardinals are the strongly inaccessible cardinals (uncountable regular strong limit cardinals).

The strongly n+1-Mahlo cardinals are the infinite cardinals all of whose closed unbounded subsets contain a strongly n-Mahlo cardinal.

It is easy to prove by induction on n that for all n < m < $\omega_{\text{\tiny{\it I}}}$ every strongly m-Mahlo cardinal is a strongly n-Mahlo cardinal.

There is a closely related notion: n-Mahlo cardinal.

DEFINITION 4.1.2. The 0-Mahlo cardinals are the weakly inaccessible cardinals (uncountable regular limit cardinals). The n+1-Mahlo cardinals are the infinite cardinals all of whose closed unbounded subsets contain an n-Mahlo cardinal.

Again, for all n < m < ω , every m-Mahlo cardinal is an n-Mahlo cardinal.

NOTE: Sometimes (strongly) n-Mahlo cardinals are called (strongly) Mahlo cardinals of order \leq n. Also, sometimes what we call n-Mahlo cardinals are called weakly n-Mahlo cardinals.

The well known relationship between n-Mahlo cardinals and strongly n-Mahlo cardinals is given as follows.

THEOREM 4.1.1. The following is provable in ZFC. Let $n<\omega$. A cardinal is strongly n-Mahlo if and only if it is n-Mahlo and strongly inaccessible. Under the GCH, a cardinal is strongly n-Mahlo if and only if it is n-Mahlo.

Proof: For the first claim, note that it is obvious for n = 0. Assume that every strongly inaccessible n-Mahlo cardinal is strongly n-Mahlo. Let κ be a strongly inaccessible n+1-Mahlo cardinal. Let A $\subseteq \kappa$ be closed and unbounded. Since κ is strongly inaccessible, the set B $\subseteq \kappa$ consisting of the strong limit cardinals in A is closed and unbounded. Let λ \in B be an n-Mahlo cardinal. As previously remarked, λ is an inaccessible cardinal. Since λ is a strong limit cardinal, λ is a strongly inaccessible cardinal. By the induction hypothesis, λ is a strongly n-Mahlo cardinal.

We have thus shown that every closed unbounded A $\subseteq \kappa$ contains a strongly n-Mahlo element. Hence κ is strongly n+1-Mahlo.

For the final claim, assume the GCH. By an obvious induction, every strongly n-Mahlo cardinal is an n-Mahlo cardinal. For the converse, let κ be an n-Mahlo cardinal. As previously remarked, κ is a weakly inaccessible cardinal. Hence κ is a strongly inaccessible cardinal (by GCH). By the first claim, κ is a strongly n-Mahlo cardinal. QED

We now develop the essential combinatorics of strongly Mahlo cardinals of finite order used in this Chapter.

DEFINITION 4.1.3. Let $[A]^n$ be the set of all n element subsets of A. Sometimes we write $x \in [A]^n$ in the form $\{x_1, \ldots, x_n\}_{<}$ to indicate that the xi are strictly increasing. Let A be a set of ordinals. We say that $f:[A]^n \to On$ is regressive if and only if for all $x \in [A \setminus \{0\}]^n$, f(x) < min(x).

DEFINITION 4.1.4. We say that E is min homogenous for $f:[A]^n \to On$ if and only if $E \subseteq A$ and for all $x,y \in [E]^n$, min $(x) = min(y) \to f(x) = f(y)$.

LEMMA 4.1.2. Let $n \ge 0$, κ a strongly n-Mahlo cardinal, $A \subseteq \kappa$ unbounded, and $f:[A]^{n+2} \to \kappa$ be regressive. For all $\alpha < \kappa$,

there exists $E\subseteq A$ of order type α which is min homogenous for f.

Proof: This result originally appeared in [Sc74], in somewhat sharper form, using different notation. We present the proof in [HKS87], p. 147, using Erdös-Rado trees.

DEFINITION 4.1.5. Let A be a set of ordinals with at least two elements. An A-tree is an irreflexive transitive relation T with field A such that

i. α T $\beta \rightarrow \alpha < \beta$.

ii. $\{\beta: \beta \ T \ \alpha\}$ is linearly (and hence well) ordered by T.

DEFINITION 4.1.6. Let m \geq 2, A be a nonempty set of ordinals, and f:[A]^m \rightarrow On be regressive. The Erdos-Rado tree ERT(f) is the unique A-tree T with field A such that for all $\alpha, \beta \in A$, α T β if and only if

i. $\alpha < \beta$.

ii. For all $\gamma_1, \ldots, \gamma_{m-1}$ T α with $\gamma_1 < \ldots < \gamma_{m-1}$, $f(\{\gamma_1, \ldots, \gamma_{m-1}, \alpha\}) = f(\{\gamma_1, \ldots, \gamma_{m-1}, \beta\})$.

To see that there is such a unique T, build ERT(f, α), $\alpha \in$ A, by transfinite recursion on $\alpha \in$ A. Here ERT(f, α) is ERT(f) restricted to A \cap α . The details are left to the reader.

DEFINITION 4.1.7. For $\alpha \in A$, the height of α in ERT(f) is the order type of $\{\beta\colon \beta \text{ ERT}(f)\ \alpha\}$. We say that $\alpha,\beta \in A$ are siblings in ERT(f) if and only if they are distinct, and have the same strict predecessors in ERT(f). For ordinals γ , let ERT(f)[$<\gamma$] be the restriction of ERT(f) to the elements of A (vertices) of height $<\gamma$.

We now assume that $f:[A]^{n+2}\to On$ is regressive and $\sup(A)$ is a strongly inaccessible cardinal $\kappa.$ Observe that for all $\alpha\in A$, the number of siblings of α in ERT(f) is at most the number of functions from α^{n+1} into α , which is at most $2^{|\alpha|}+\omega.$ Next observe that by transfinite induction on $\alpha<\kappa$, ERT(f)[$<\alpha$] has $<\kappa$ vertices. Hence for all $\alpha<\kappa$, ERT(f) has a vertex of height α . By the construction of ERT(f), every vertex has height $<\kappa$.

Now observe that if n=0 then the set of strict predecessors of every element of ERT(f) is min homogeneous for f. This establishes the Lemma for the basis case n=0.

Suppose that the Lemma holds for a fixed n \geq 0. Let κ be a strongly n+1-Mahlo cardinal, A $\subseteq \kappa$ be unbounded, $\alpha < \kappa$, and f:[A]ⁿ⁺³ $\rightarrow \kappa$ be regressive. We use the Erdös-Rado tree ERT(f).

Since κ is strongly inaccessible, $C = \{\lambda < \kappa : \lambda \text{ is a limit ordinal} > \alpha \text{ and ERT}(f)[<\lambda] \text{ is an A } \cap \lambda\text{-tree and A } \cap \lambda \text{ is unbounded in } \lambda\}$ is a closed and unbounded subset of κ . Since κ is a strongly n+1-Mahlo cardinal, fix $\lambda < \kappa$ to be a strongly n-Mahlo cardinal > α such that ERT(f)[< λ] is an A \cap λ -tree and A \cap λ is unbounded in λ .

Let v be a vertex of ERT(f) of height λ . Let B = {w: w ERT(f) v}. Then B is an unbounded subset of λ .

B naturally gives rise to a regressive function $f^*:[B]^{n+2} \to \lambda$ by taking $f^*(x) = f(x \cup \{\gamma\})$, where $\gamma \in B$, $\gamma > \max(x)$. Note that this definition is independent of the choice of γ .

By the induction hypothesis, let E \subseteq B be min homogenous for f*, E of order type α . Then E \subseteq B \subseteq A is min homogenous for f. QED

DEFINITION 4.1.8. For all ordinals α , let α^+ be the least infinite cardinal $> \alpha$. Let $f:[A]^n \to \kappa$. We say that f is next regressive if and only if every $f(x_1, \ldots, x_n) < \min(x_1, \ldots, x_n)^+$.

LEMMA 4.1.3. Let $n \ge 0$, κ a strongly n-Mahlo cardinal, and A $\subseteq \kappa$ be unbounded. For all $i \in \omega$, let $f_i \colon [A]^{n+2} \to \kappa$ be next regressive. For all $\alpha < \kappa$, there exists $E \subseteq A$ of order type α such that for all $i \in \omega$, E is min homogenous for f_i .

Proof: This is by a straightforward modification of the proof of Lemma 4.1.2. Modify the definition of the Erdös-Rado tree ERT(f) accordingly, and derive a similar upper bound on the number of siblings of a vertex in ERT(f). QED

Let $n \ge 1$ and $f:[A]^n \to \kappa$. We wish to define n+1 kinds of infinite sets $E \subseteq A$ for f.

DEFINITION 4.1.9. We say that E is of kind 0 for f if and only if f is constant on $[E]^n$, where the constant value is less than the strict sup of E.

DEFINITION 4.1.10. We say that E is of kind $1 \le j \le n$ for f if and only if the following holds. For all $\{x_1, \ldots, x_n\}_<$, $\{x_1, \ldots, x_j, y_{j+1}, \ldots, y_n\}_< \subseteq E$, $f(x_1, \ldots, x_n) = f(x_1, \ldots, x_j, y_{j+1}, \ldots, y_n)$ is greater than every element of E < x_j and smaller than every element of E > x_j .

For E \subseteq On and δ < ot(E), we write E[δ] for the $\delta-$ th element of E.

We fix $H:On^{<\omega} \to On\setminus\{0\}$, where H is one-one and for all $x\in On^{<\omega}$, $H(x) < max(x)^+$.

LEMMA 4.1.4. Let $n \ge 1$, κ a strongly n-Mahlo cardinal, and A $\subseteq \kappa$ unbounded. For all $i \in \omega$, let $f_i \colon [A]^{n+1} \to \kappa$. For all $\alpha < \kappa$, there exists $E \subseteq A$ of order type α such that the following holds. For all $i \in \omega$, there exists $0 \le j \le n+1$ such that E is of kind j for f_i .

Proof: Let $n, \kappa, A, f_i, \alpha$ be as given. We can assume that $\alpha > \omega$, $A \subseteq \kappa \setminus \omega$, and there is an infinite cardinal strictly between any two elements of A. We can also assume that for all $\alpha_1, \ldots, \alpha_{n+1} < \beta$ from A, $f_i(\alpha_1, \ldots, \alpha_{n+1}) < \beta$.

For all $i \in \omega$, define $g_{i,0}\{u, x_1, ..., x_{n+1}\} = 1 + f_i\{x_1, ..., x_{n+1}\}$ if $f_i\{x_1, ..., x_{n+1}\} \le u$; 0 otherwise.

For $1 \le j \le n+1$, define $g_{i,j}\{u,x_{j+1},\ldots,x_{n+2}\}$ as follows. Let $z_1 < \ldots < z_j \le u$ be such that $f_i\{z_1,\ldots,z_j,x_{j+1},\ldots,x_{n+1}\} \ne f_i\{z_1,\ldots,z_j,x_{j+2},\ldots,x_{n+2}\}$ and $f_i\{z_1,\ldots,z_j,x_{j+1},\ldots,x_{n+1}\} \le u$. Set $g_{i,j}\{u,x_{j+1},\ldots,x_{n+2}\} = H(z_1,\ldots,z_j,f_i\{z_1,\ldots,z_j,x_{j+1},\ldots,x_{n+1}\})$. If such z's do not exist, then set $g_{i,j}\{u,x_{j+1},\ldots,x_{n+2}\} = 0$.

Note that each $g_{i,j}$ is next regressive. By Lemma 4.1.3, let $E'\subseteq A\setminus \omega$ be min homogeneous for all $g_{i,j}$, where E' has cardinality $\geq \Im_{\omega}(\alpha+\omega)=$ the first strong limit cardinal $> \alpha+\omega$.

We can partition the tuples from E' of length \leq 2n+2 in a strategic way, with 2° pieces, and apply the Erdös-Rado theorem to obtain E \subseteq E' with order type α , with the following three properties. Write E[1],E[2],... for the first ω elements of E. Let i $\in \omega$.

1) For all $\{x_1, \ldots, x_{n+1}\} \in [E]^{n+1}$, $f_i\{x_1, \ldots, x_{n+1}\} \in E \rightarrow f_i\{x_1, \ldots, x_{n+1}\} \in \{x_1, \ldots, x_{n+1}\}$.

- 2) Suppose $f_i\{E[2], ..., E[n+2]\} = f_i\{E[n+3], ..., E[2n+3]\}$. Then f_i is constant on $[E]^{n+1}$.
- 3) Suppose $1 \le j \le n+1$, and $f_i\{E[2], E[4], \ldots, E[2n+2]\} = f_i\{E[2], E[4], \ldots, E[2j], E[2j+4], E[2j+6], \ldots, E[2n+4]\} \in (E[2j-1], E[2j+1])$. Then E is of kind j for f_i .

For the remainder of the proof, we fix $i \in \omega$. The first case that applies is the operative case.

case 1. $f_i\{E[2], E[4], \ldots, E[2n+2]\} \le E[1]$. Then $g_{i,0}\{E[1], E[2], E[4], \ldots, E[2n+2]\} = 1+f_i\{E[2], E[4], \ldots, E[2n+2]\} > 0$. Since E is min homogenous for $g_{i,0}$ we see that for all $x,y \in [E]^{n+1}$ such that $\min(x), \min(y) \ge E[2]$, we have $g_{i,0}(\{E[1]\} \cup x) = g_{i,0}(\{E[1]\} \cup y) = 1+f_i(x) = 1+f_i(y)$. In particular, $f_i\{E[2], \ldots, E[n+2]\} = f_i\{E[n+3], \ldots, E[2n+3]\}$. By 2), f_i is constant on $[E]^{n+1}$. Hence E is of kind 0 for f_i .

case 2. Let j be the greatest element of [1,n+1] such that $f_i\{E[2],E[4],\ldots,E[2n+2]\}\in (E[2j-1],E[2j+1])$. Note that $g_{i,j}\{E[2j+1],E[2j+2],E[2j+4],\ldots,E[2n+4]\}=g_{i,j}\{E[2j+1],E[2j+4],E[2j+6],\ldots,E[2n+6]\}$.

Suppose the main clause in the definition of $g_{i,j}\{E[2j+1], E[2j+2], E[2j+4], \ldots, E[2n+4]\}$ holds, with $z_1 < \ldots < z_j \le E[2j+1]$. Since H is nonzero, the main clause in the definition of $g_{i,j}\{E[2j+1], E[2j+4], E[2j+6], \ldots, E[2n+6]\}$ holds with, say, $w_1 < \ldots < w_j \le E[2j+1]$. Hence $H(z_1, \ldots, z_j, f_i\{z_1, \ldots, z_j, E[2j+2], E[2j+4], \ldots, E[2n+2]\}) = H(w_1, \ldots, w_j, f_i\{w_1, \ldots, w_j, E[2j+4], E[2j+6], \ldots, E[2n+4]\})$. Therefore $z_1, \ldots, z_j = w_1, \ldots, w_j$, respectively, and $f_i\{z_1, \ldots, z_j, E[2j+4], E[2j+4], \ldots, E[2n+2]\} = f_i\{w_1, \ldots, w_j, E[2j+4], E[2j+6], \ldots, E[2n+4]\}$. This contradicts the choice of z_1, \ldots, z_j .

Hence the main clause in the definition of $g_{i,j}\{E[2j+1],E[2j+2],E[2j+4],\ldots,E[2n+4]\}$ fails. In particular, it fails with $z_1,\ldots,z_j=E[2],E[4],\ldots,E[2j],$ respectively. Then $f_i\{E[2],E[4],\ldots,E[2n+2]\}=f_i\{E[2],E[4],\ldots,E[2j],E[2j+4],E[2j+6],\ldots,E[2n+4]\}$. By 3), E is of kind j for f_i .

case 3. Otherwise. Then $f_i\{E[2], E[4], \ldots, E[2n+2]\} \in \{E[1], E[3], \ldots, E[2n+1]\}$, or $f_i\{E[2], E[4], \ldots, E[2n+2]\} \ge E[2n+3]$. The first disjunct is impossible by 1), and the second disjunct is impossible by the assumption on A.

We have thus shown that for some $j \in [0,n+1]$, E is of kind j for f_i . Since i is arbitrarily chosen from ω , we are done.

QED

DEFINITION 4.1.11. Let $f:[A]^n \to \kappa$ and $E \subseteq A$. We define fE to be the range of f on $[E]^n$.

LEMMA 4.1.5. Let n,m \geq 1, κ a strongly n-Mahlo cardinal, and A $\subseteq \kappa$ unbounded. For all $i \in \omega$, let $f_i \colon [A]^{n+1} \to \kappa$, and let $g_i \colon [A]^m \to \omega$. There exists E $\subseteq \kappa$ of order type ω such that i) for all $i \in \omega$, f_i is either constant on $[E]^{n+1}$, with constant value < sup(E), or $f_i E$ is of order type ω with the same sup as E;

ii) for all $i \in \omega$, g_i is constant on $[E]^m$.

Proof: Let $n, m, \kappa, A, f_i, g_i$ be as given. Apply Lemma 4.1.4 to obtain $E' \subseteq \kappa$ of order type $\Im_{\omega}(\omega)$ such that the following holds. For all $i \in \omega$ there exists $0 \le j \le n+1$ such that E is of kind j for f_i . By the Erdös-Rado theorem, let $E \subseteq E'$ be of order type ω , where for all $i \in \omega$, g_i is constant on $[E]^m$. Write $E = \{E[1], E[2], \ldots\}_{<}$.

Let $i \in \omega$ and E be of kind j for f_i . If j = 0 then f_i is constant on $[E]^{n+1}$, where the constant value is less than $\sup(E)$.

Now suppose $1 \le j \le n+1$. For all $\{x_1, \ldots, x_{n+1}\}_{<}$, $\{x_1, \ldots, x_j, y_{j+1}, \ldots, y_{n+1}\}_{<} \subseteq E$, $f_i\{x_1, \ldots, x_{n+1}\} = f\{x_1, \ldots, x_j, y_{j+1}, \ldots, y_{n+1}\}$ is greater than every element of E $< x_j$ and smaller than every element of E $> x_j$. Since we can set x_j to vary among $E[j], E[j+1], \ldots$, we see that f_iE has the same sup as E. In particular, f_iE is infinite.

Also, for any particular E[p], the values $f_i\{x_1,\ldots,x_{n+1}\}$ < E[p], $x_1 < \ldots < x_{n+1} \in A$, can arise only if $x_j \le E[p+1]$. Since the arguments x_{j+1},\ldots,x_{n+1} don't matter (kind j for f_i), there are at most finitely many such values.

We have shown that $f_i E$ has at most finitely many elements not exceeding any given element of E. Therefore $f_i E$ has order type $\leq \omega$. Since $f_i E$ is infinite, the order type of $f_i E$ is ω . QED

We now switch over to ordered tuples. Let $f:A^n \to \kappa$ and $E \subseteq A$. Here we also define fE to be the range of f on E^n .

LEMMA 4.1.6. Let $n,m \ge 1$, κ a strongly n-Mahlo cardinal, and $A \subseteq \kappa$ unbounded. For all $i \in \omega$, let $f_i : A^{n+1} \to \kappa$, and let $g_i : A^m \to \omega$. There exists $E \subseteq \kappa$ of order type ω such that i) for all $i \ge 1$, $f_i E$ is either a finite subset of sup(E), or of order type ω with the same sup as E; ii) for all $i \in \omega$, $g_i E$ is finite.

Proof: Let $n, m, \kappa, A, f_i, g_i$ be as given. Each f_i gives rise to finitely many corresponding $f_{i,\sigma}$, where σ ranges over the order types of n+1 tuples. Also each g_i gives rise to finitely many corresponding $g_{i,\sigma}$, where σ ranges over the order types of m tuples. Any $f_i E$ is the union of the $f_{i,\sigma} E$, and any $g_i E$ is the union of the $g_{i,\sigma} E$. Choose E according to Lemma 4.1.5. Then E will be as required. QED

DEFINITION 4.1.12. Let SMAH⁺ be ZFC + (\forall n < ω) ($\exists \kappa$) (κ is a strongly n-Mahlo cardinal). Let SMAH be ZFC + {($\exists \kappa$) (κ is a strongly n-Mahlo cardinal)} $_{n < \omega}$.

DEFINITION 4.1.13. Let MAH be ZFC + $(\forall n < \omega)$ ($\exists \kappa$) (κ is an n-Mahlo cardinal). Let MAH be ZFC + $\{(\exists \kappa) \ (\kappa \text{ is an n-Mahlo cardinal})\}_{n < \omega}$.

We will use the following (known) relationship between SMAH⁺, MAH⁺, SMAH, and MAH.

DEFINITION 4.1.14. The system EFA = exponential function arithmetic is defined to be the system $I\Sigma_0$ (exp); see [HP93].

THEOREM 4.1.7. SMAH⁺ and MAH⁺ prove the same Π^1_2 sentences. SMAH and MAH prove the same Π^1_2 sentences. SMAH is 1-consistent if and only if MAH is 1-consistent. SMAH is consistent if and only if MAH is consistent. These results are provable in EFA.

Proof: We first prove the following well known theorem in ZFC.

1) Let $n \ge 0$. Every n-Mahlo cardinal is an n-Mahlo cardinal in the sense of L.

The basis case asserts that every weakly inaccessible cardinal is a weakly inaccessible cardinal in L. This is particularly well known and easy to check.

Fix n \geq 0 and assume that every n-Mahlo cardinal is an n-Mahlo cardinal in L. Let κ be an n+1-Mahlo cardinal. Let A $\subseteq \kappa$, A \in L, where A is closed and unbounded in κ (in the sense of L). Let $\lambda \in$ A be an n-Mahlo cardinal. Then $\lambda \in$ A is an n-Mahlo cardinal in L. Hence κ is an n+1-Mahlo cardinal in L.

If T is a sentence or set of sentences in the language of set theory, then we write $T^{(L)}$ for the relativization of T to Godel's constructible universe L.

For the first claim, let SMAH⁺ prove ϕ , where ϕ is Π^1_2 . By Lemma 4.1.1, MAH⁺ + GCH proves ϕ . Hence ZFC + MAH^{+(L)} + GCH^(L) proves $\phi^{(L)}$ by, e.g., [Je78], section 12. Therefore ZFC + MAH^{+(L)} proves $\phi^{(L)}$ by, e.g., [Je78], section 13. By the Shoenfield absoluteness theorem (see, e.g., [Je78], p. 530), ZFC + MAH^{+(L)} proves ϕ . By 1), MAH⁺ proves ϕ .

For the second claim, we repeat the proof of the first claim for any specific level of strong Mahloness.

For the third claim, assume 1-Con(MAH). Let ϕ be a $\Sigma^0{}_1$ sentence provable in SMAH. By the second claim, ϕ is provable in MAH. Hence ϕ is true.

For the final claim, assume Con(MAH). Then MAH does not prove 1=0. By the second claim, SMAH does not prove 1=0. Hence Con(SMAH). QED

Theorem 4.1.7 tells us that for the purposes of this book, $SMAH^+$ and SMAH are equivalent to MAH^+ and MAH. We will always use $SMAH^+$ and SMAH.