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3.9. ABAB. 
 
Recall the following reduced table for AB from section 3.5.  
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
The duplicate pairs were treated in section 3.3. We now 
treat the 15 ordered pairs from this table, where the first 
clause is earlier in the list than the second clause. We 
determine the status of INF, AL, ALF, FIN, NON for each 
such ordered pair.  
 
1,2. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
1,3. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.  
1,4. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. 
FIN. NON.   
1,5. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
1,6. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.   
2,3. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.   
2,4. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN, NON. 
2,5. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. 
FIN. NON.  
2,6. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
3,4. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. 
FIN. NON.   
3,5. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
3,6. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.   
4,5. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. ¬INF. AL. ¬ALF. 
FIN. NON.  
4,6. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. 
FIN. NON.  
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5,6. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN, NON.  
 
LEMMA 3.9.1. (1,3), (1,4), (1,6), (2,3), (2,5), (3,4), 
(3,6), (4,6) have INF, ALF, even for EVSD. 
 
Proof: Note that A ∪. fA ⊆ B ∪. gA has INF, ALF, and A ∪. 
fA ⊆ B ∪. gB has INF, ALF, even for EVSD, by the AB table 
in section 3.3. Now set C = A in all of the above ordered 
pairs except (2,3). For (2,3), set C = B. QED 
 
The following pertains to (1,2). 
 
LEMMA 3.9.2. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB has FIN. 
 
Proof: Let f,g ∈ ELG. Let A = {n}, where n is sufficiently 
large.  
 
case 1. f(n,...,n) = g(n,...,n). Set A = B = {n}.  
 
case 2. f(n,...,n) ≠ g(n,...,n). Set A = {n}, B = 
{n,f(n,...,n)}. Note that A ⊆ B.  
 
In case 1, fA = gA = gB, A ∩ fA = B ∩ gA = B ∩ gB = ∅. 
 
In case 2, note that A ⊆ B, A ∩ fA = B ∩ gA = ∅, fA ⊆ B. 
 
We claim that B ∩ gB = ∅. To see this, first note that n ∉ 
gB since n is sufficiently large. Also note that f(n,...,n) 
∉ gB, since f(n,...,n) ≠ g(n,...,n), and f(n,...,n) ≠ 
g(...,f(n,...,n)...). QED 
 
LEMMA 3.9.3. (1,5), (2,4), (2,6), (3,5), (4,5), (5,6) have 
FIN. 
 
Proof: From Lemma 3.9.2, by setting C = A in the cited 
ordered pairs. QED 
 
LEMMA 3.9.4. fA ⊆ B ∪. gA, A ∩ fA = B ∩ gB = ∅ has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = 4m, f(m,n) = 8m, g(n) = 2n. Let fA ⊆ 
B ∪. gA, A ∩ fA = B ∩ gB = ∅, where A,B have at least two 
elements. Let n < m be from A.  
 
Clearly 2m,4m,8m ∈ fA. Hence 2m,4m,8m ∉ A. So 4m,8m ∉ gA. 
Hence 4m,8m ∈ B, 8m ∈ fB. This contradicts B ∩ fB = ∅. QED 
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LEMMA 3.9.5. (1,2), (1,5) have ¬AL. 
 
Proof: By Lemma 3.9.4. QED 
 
The following pertains to (2,4). 
 
LEMMA 3.9.6. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let A ∪. 
fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA, where A,B have at least 
two elements. Let n < m be from A. 
 
Clearly 2m ∈ fA, 2m ∈ B, 2m ∉ A, 4m+1 ∉ gA, 4m+1 ∈ fA, 4m+1 
∈ B, 4m+1 ∈ gB. This contradicts B ∩ gB = ∅. QED 
 
LEMMA 3.9.7. fA ⊆ B ∪. gB, fA ⊆ B ∪. gC, C ∩ fA = ∅ has 
¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let fA ⊆ 
B ∪. gB, fA ⊆ B ∪. gC, C ∩ fA = ∅, where A,B,C have at 
least two elements. Let n < m be from A.  
 
Clearly 2m ∈ fA, 2m ∈ B, 2m ∉ C, 4m+1 ∉ gC, 4m+1 ∈ fA, 4m+1 
∈ B, 4m+1 ∈ gB. This contradicts B ∩ gB = ∅. QED 
 
LEMMA 3.9.8. (2,6), (3,5), (5,6) have ¬AL. 
 
Proof: By Lemma 3.9.7. QED 
 
The following pertains to (4,5). 
 
LEMMA 3.9.9. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB has AL. 
 
Proof: Note that C ∪. fA ⊆ A ∪. gA has AL by the AA table 
of section 3.3. Replace B by A in the cited pair. QED 
 
The following pertains to (4,5). 
 
LEMMA 3.9.10. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB has 
¬INF, ¬ALF. 
 
Proof: Let f be as given by Lemma 3.2.1. Let f’ ∈ ELG be 
given by f’(a,b,c,d) = f(a,b,c) if c = d; 2f(a,b,c)+1 if c 
> d; 2|a,b,c,d|+2 if c < d. Let g ∈ ELG be given by g(n) = 



 4 

2n+1. Let C ∪. f’A ⊆ B ∪. gA, C ∪. f’A ⊆ B ∪. gB, where 
A,B,C have at least two elements. Let A’ = A\{min(A)}.  
 
Note that fA’ ⊆ fA ⊆ f’A. To see this, let a,b,c ∈ A. Then 
f(a,b,c) = f’(a,b,c,c).  
 
Let n ∈ fA’ ∩ 2N. Write n = f(a,b,c), a,b,c ∈ A'. Then 2n+1 
= f'(a,b,c,min(A)), 2n+1 ∈ f'A. Also n ∈ f'A. Hence n ∈ B, 
2n+1 ∈ gB, 2n+1 ∉ B, 2n+1 ∈ gA, n ∈ A, n > min(A), n ∈ A'. 
Thus we have shown that fA’ ∩ 2N ⊆ A’. Hence by Lemma 
3.2.1, fA’ is cofinite.  
 
It is now clear that A’ is infinite, and therefore A is 
infinite. This establishes ¬ALF.  
 
We also see that C is finite, since f’A is cofinite and C ∩ 
f’A = ∅. This establishes ¬INF. QED 
 


