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3.8. AABC. 
 
Recall the reduced AA table from section 3.4. 
 
REDUCED AA 
 
1. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
2. B ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
3. B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
4. C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
Recall the reduced AB table from section 3.5. 
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
 
The reduced BC table is obtained from the reduced AB table 
via the permutation sending A to B, B to C, C to A. We use 
1'-6' to avoid any confusion.  
 
REDUCED BC 
 
1’. B ∪. fB ⊆ C ∪. gB. INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ C ∪. gC. INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. FIN. NON. 
4’. A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. FIN. NON. 
5’. A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. FIN. NON. 
6’. A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. FIN. NON. 
 
All attributes are determined from the reduced AA table, 
except for AL and NON. So we merely have to determine the 
status of AL and NON. 
 
part 1. B ∪. fA ⊆ A ∪. gA. 
 
1,1’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
1,2’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
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1,3’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
1,4’. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,5’. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,6’. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 1,1’, 1,3’.  
 
LEMMA 3.8.1. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gX has AL, 
provided X ∈ {A,B}. 
 
Proof: Let f,g ∈ ELG(N) and p > 0. Let B = [n,n+p], where n 
is sufficiently large. By Lemma 3.3.3, let A be unique such 
that A ⊆ [n,∞) ⊆ A ∪. gA. Let C = [n,∞)\gX.  
 
Note that B ∩ fA = B ∩ fB = B ∩ gA = A ∩ gA = B ∩ gB = C ∩ 
gX = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gA, and B 
∪ fB ⊆ [n,∞) ⊆ C ∪ gX. QED 
 
The following pertains to 1,2’. 
 
LEMMA 3.8.2. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. By Lemma 3.3.3, let A be unique such 
that A ⊆ [n,∞) ⊆ A ∪. gA. By Lemma 3.3.3, let C be unique 
such that C ⊆ B ∪ fB ⊆ C ∪. gC.  
 
Note that B ∩ fA = B ∩ fB = B ∩ gC = B ∩ gA = A ∩ gA = C ∩ 
gC = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gA. QED 
 
The following pertains to 1,4’, 1,5’, 1,6’. 
 
LEMMA 3.8.3. B ∪. fA ⊆ A ∪. gA, A ∩ fB = ∅ has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+1, g(n) = 4n+5. Let B 
∪. fA ⊆ A ∪. gA, A ∩ fB = ∅, where A,B,C are nonempty. 
 
We claim that gA ⊆ fA. I.e., n ∈ A → 4n+5 ∈ fA. To see 
this, let n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 
are from A, we have 4n+5 ∈ fA.  
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We claim that B ⊆ A. To see this, let n ∈ B\A. Then n ∈ A ∪ 
gA, n ∈ gA, n ∈ fA. This contradicts B ∩ fA = ∅.  
 
Now let n ∈ B. Then n ∈ A, 2n+2 ∈ fA, 2n+2 ∈ A, 2n+2 ∈ fB. 
This contradicts A ∩ fB = ∅. QED  
 
part 2. B ∪. fA ⊆ A ∪. gB. 
 
2,1’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,2’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,3’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,4’. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,5’. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,6’. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 2,1’, 2,3’. 
 
LEMMA 3.8.4. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gX has AL, 
provided X ∈ {A,B}. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. Let A = [n,∞)\gB. Let C = [n,∞)\gX.  
 
Note that B ∩ fA = B ∩ fB = B ∩ gB = B ∩ gA = A ∩ gB = C ∩ 
gX = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gB, and B 
∪ fB ⊆ [n,∞) = C ∪ gX. QED 
 
The following pertains to 2,2’. 
 
LEMMA 3.8.5. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. Let A = [n,∞)\gB. Let C ⊆ [n,∞) ⊆ C ∪. 
gC. 
 
Note that B ∩ fA = B ∩ fB = B ∩ gC = B ∩ gB = A ∩ gB = C ∩ 
gC = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gB, and B 
∪ fB ⊆ [n,∞) = C ∪ gC. QED 
 
The following pertains to 2,4’ - 2,6’. 
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LEMMA 3.8.6. B ∪. fA ⊆ A ∪. gB, A ∩ fB = ∅ has ¬NON.  
 
Proof: Let f,g ∈ ELG be defined as follows. For all n, f(n) 
= 2n, g(n) = 2n+1. Let B ∪. fA ⊆ A ∪. gB, A ∩ fB = ∅, 
where A,B are nonempty. 
 
Let n = min(B). Then n ∈ B, n ∉ gB, n ∈ A, 2n ∈ fA, 2n ∈ A, 
2n ∈ fB. This contradicts A ∩ fB = ∅. QED   
 
part 3. B ∪. fA ⊆ A ∪. gC. 
 
3,1’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,2’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,3’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,4’. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,5’. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,6’. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
The following pertains to 3,1’. 
 
LEMMA 3.8.7. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. Let C = [n,∞)\gB, A = [n,∞)\gC.  
 
Note that B ∩ fA = B ∩ fB = A ∩ gC = C ∩ gB = B ∩ gB = B ∩ 
gC = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gC and B 
∪ fB ⊆ [n,∞) ⊆ C ∪ gB. QED 
 
The following pertains to 3,2’. 
 
LEMMA 3.8.8. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. By Lemma 3.3.3, let C be unique such 
that C ⊆ B ∪ fB ⊆ C ∪. gC. Let A = [n,∞)\gC.  
 
Note that B ∩ fA = B ∩ fB = A ∩ gC = C ∩ gC = B ∩ gB = B ∩ 
gC = ∅. Hence B ⊆ A,C. Also B ∪ fA ⊆ [n,∞) = A ∪ gC and B 
∪ fB ⊆ C ∪ gC. QED 
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The following pertains to 3,3’. 
 
LEMMA 3.8.9. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n is 
sufficiently large. We define A,C inductively. Suppose 
membership in A,C have been defined for all elements of 
[n,k), where k ≥ n. We define membership of k in A,C as 
follows. 
 
If k is already in B ∪ fA but not yet in gC, put k in A. if 
k is already in B ∪ fB but not yet in gA, put k in C. 
Obviously A,C ⊆ [n,∞). 
 
Clearly B ∩ fA = B ∩ gA = B ∩ fB = B ∩ gC = A ∩ gC = C ∩ 
gA = ∅. Hence we have put every element of B in A, and 
every element of B in C. Also fA ⊆ A ∪ gC, fB ⊆ C ∪ gA. QED 
 
LEMMA 3.8.10. Let g ∈ ELG and p > 0. There exist finite D 
such that D,gD,ggD are pairwise disjoint and each have at 
least p elements.  
 
Proof: Let g,p be as given, and n be sufficiently large. 
Let  n = b1 < ... < bp, where for all 1 ≤ i ≤ p, bi+1 > bin. 
Let D = {b1,...,bp}. QED    
 
The following pertains to 3,4’.   
 
LEMMA 3.8.11. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gB has AL.  
 
Proof: Let f,g ∈ ELG and p > 0. Let D be as given by Lemma 
3.8.10. Let B = gD.  
 
Let n be sufficiently large. By an obvious generalization 
of Lemma 3.3.3, let A be unique such that A ⊆ [n,∞) ⊆ A ∪. 
g(A ∪ D ∪ (fB\gB)). Let C = A ∪ D ∪ (fB\gB). Then [n,∞) ⊆ 
A ∪. gC. 
 
Obviously B,D are finite and A,C are infinite. Since n is 
sufficiently large, we have B ∩ fA = A ∩ fB = A ∩ gB = D ∩ 
gB = ∅. Hence C ∩ gB = ∅.  
 
Since B = gD ⊆ gC and fA ⊆ [n,∞) ⊆ A ∪ gC, we have B ∪ fA 
⊆ A ∪ gC.  
 
Since A ⊆ C and fB\gB ⊆ C, we have A ∪ fB ⊆ C ∪ gB. QED 
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The following pertains to 3,6’. 
 
LEMMA 3.8.12. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gA has AL.  
 
Proof: Let f,g ∈ ELG and p > 0. Let D be as given by Lemma 
3.8.10. Let B = gD.  
 
Let n be sufficiently large. Let A ⊆ [n,∞) ⊆ A ∪. g(A ∪ D 
∪ fB). Let C = A ∪ D ∪ fB. Then [n,∞) ⊆ A ∪. gC. 
 
Obviously D,B are finite and A,C are infinite. Since n is 
sufficiently large, we have B ∩ fA = A ∩ fB = fB ∩ gA = ∅. 
Also A ∩ gA ⊆ A ∩ gC = ∅, and D ∩ gA = ∅. Hence C ∩ gA = 
∅. 
 
Since B = gD ⊆ gC and fA ⊆ [n,∞) ⊆ A ∪ gC, we have B ∪ fA 
⊆ A ∪ gC. Also A ∪ fB ⊆ C. QED 
 
The following pertains to 3,5’. 
 
LEMMA 3.8.13. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gC has AL.  
 
Proof: Let f,g ∈ ELG and p > 0. Let n be sufficiently 
large. Let C ⊆ [n,∞) ⊆ C ∪. gC.  
 
Clearly C is infinite. Let B ⊆ gC have cardinality p. Let m 
be sufficiently large relative to p,n,max(B). Let A = C ∩ 
[m,∞). Then A,C are infinite.  
 
Clearly B ∩ fA = A ∩ gC = A ∩ fB = C ∩ gC = ∅.  
 
We claim that fA ⊆ A ∪ gC. To see this, let r ∈ fA. Then r 
> m > n, and so r ∈ C ∪ gC. If r ∈ gC then we are done. If 
r ∈ C, then r ∈ A.  
 
Finally, A ∪ fB ⊆ A ∪ fgC ⊆ [n,∞) ⊆ C ∪. gC. QED 
 
part 4. C ∪. fA ⊆ A ∪. gA. 
 
4,1’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,2’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,3’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,4’. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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4,5’. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,6’. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 4,1’. 
 
LEMMA 3.8.14. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m+1, f(m,n) = 4m+6, g(n) = 4n+5. 
Let C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gB, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∈ A, 4m+6 ∈ fA, 
2m+2 ∉ fA, m ∉ A, m ∈ C ∪ gB.  
 
case 1. m ∈ C. Then m ∈ A ∪ gA, m ∈ gA. Let m = 4n+5, n ∈ 
A. Then 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 are from A, we 
have 4n+5 ∈ fA. This contradicts C ∩ fA = ∅.  
 
case 2. m ∈ gB. Let m = 4n+5, n ∈ B. Since n < m are from 
B, we have 4m+6 ∈ fB, 4m+6 ∈ C. Since 4m+6 ∈ fA, this 
contradicts C ∩ fA = ∅. QED 
 
The following pertains to 4,2’. 
 
LEMMA 3.8.15. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m+1, f(m,n) = 2m, g(n) = 4n+5. Let 
C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, m ∈ 
C ∪ gC.  
 
case 1. m ∈ C. Then m ∈ A ∪ gA, m ∈ gA. Let m = 4n+5, n ∈ 
A. Hence 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 are from A, we 
have 4n+5 = m ∈ fA. This contradicts C ∩ fA = ∅.  
 
case 2. m ∈ gC. Let m = 4n+5, n ∈ C. Hence n ∈ A ∪ gA. 
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case 2a. n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A, 4n+6 ∈ fA, 4n+6 ∈ 
A, 8n+12 ∈ fA. Since m ∈ B, we have 2m+2 = 8n+12 ∈ fB, 
8n+12 ∈ C. This contradicts C ∩ fA = ∅.  
 
case 2b. n ∈ gA. Let n = 4r+5, r ∈ A. Then 2r+2 ∈ fA, 2r+2 
∈ A, 4r+6 ∈ fA, 4r+6 ∈ A, 8r+12 ∈ fA, 8r+12 ∈ A, 16r+26 ∈ 
fA, 16r+26 ∈ A, 32r+52 ∈ fA.  
 
Since m ∈ B, we have 2m+2 = 8n+12 = 32r+52 ∈ fB, and so 
32r+52 ∈ C. This contradicts C ∩ fA = ∅. QED 
 
The following pertains to 4,3’. 
 
LEMMA 3.8.16. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m+1, f(m,n) = 2m, g(n) = 4n+5. Let 
C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ C ∪. gA, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, m ∈ 
C ∪ gA.  
 
case 1. m ∈ C. Then m ∈ A ∪ gA, m ∈ gA. Let m = 4n+5, n ∈ 
A. Hence 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 are from A, we 
have m = 4n+5 ∈ fA. This contradicts C ∩ fA = ∅.  
 
case 2. m ∈ gA. Let m = 4n+5, n ∈ A. Hence 2n+2 ∈ fA, 2n+2 
∈ A, 4n+6 ∈ fA, 4n+6 ∈ A, 8n+12 = 2m+2 ∈ fA. Since 2m+2 ∈ 
C, this contradicts C ∩ fA = ∅. QED 
 
The following pertains to 4,4’, 4,5’, 4,6’. 
 
LEMMA 3.8.17. C ∪. fA ⊆ A ∪. gX, A ∪. fB ⊆ C ∪. gY has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+2, g(n) = 2n+1. Let C 
∪. fA ⊆ A ∪. gX, B ∪. fB ⊆ C ∪. gY, where A,B,C are 
nonempty.  
 
Let m ∈ A. Then 2m+2 ∈ fA, 2m+2 ∈ A, 2m+2 ∈ C. This 
contradicts C ∩ fA = ∅. QED 
 
part 5. C ∪. fA ⊆ A ∪. gB. 
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5,1’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,2’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,3’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,4’. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,5’. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,6’. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 5,1’.  
 
LEMMA 3.8.18. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 4m+6, g(n) = 2n+1. Let C 
∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gB, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∈ A, 4m+6 ∈ fA, 
2m+2 ∉ fA, m ∉ A, m ∈ C ∪ gB.   
 
case 1. m ∈ C. Then m ∈ A ∪ gB, m ∈ gB. This contradicts C 
∩ gB = ∅.  
 
case 2. m ∈ gB. Let m = 2n+1, n ∈ B. Since n < m are from 
B, we have 4m+6 ∈ fB, 4m+6 ∈ C. Since 4m+6 ∈ fA, this 
contradicts C ∩ fA = ∅.  
 
QED 
 
The following pertains to 5,2’. 
 
LEMMA 3.8.19. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m+8, f(m,n) = 2m+4, g(n) = 2n+3. 
Let C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, m ∈ 
C ∪ gC.  
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case 1. m ∈ C. Then m ∈ A ∪ gB. Hence m ∈ gB. This 
contradicts B ∩ gB = ∅.  
 
case 2. m ∈ gC. Let m = 2n+3, n ∈ C. Hence n ∈ A ∪ gB. 
 
case 2a. n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 
are from A, we have 4n+8 = 2m+2 ∈ fA. But 2m+2 ∉ fA.  
 
case 2b. n ∈ gB. Let n = 2r+3, r ∈ B. Now m = 2n+3 = 4r+9 ∈ 
B. So 2m+2 = 8r+20 ∈ fB, 2m+2 = 8r+20 ∈ C. Note that 2r+2 ∈ 
fB, 2r+2 ∈ C, 2r+2 ∈ A, 4r+6 ∈ fA, 4r+6 ∈ A. Since 2r+2 < 
4r+6 are from A, we have 8r+20 ∈ fA. This contradicts C ∩ 
fA = ∅. QED 
 
The following pertains to 5,3’. 
 
LEMMA 3.8.20. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 4m+6, f(m,n) = 2m, g(n) = 4n+5. Let 
C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ C ∪. gA, where A,B,C are 
nonempty.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∈ A, 4m+6 ∈ fA, 
2m+2 ∉ fA, m ∉ A, m ∈ C ∪ gA.  
 
case 1. m ∈ C. Then m ∈ A ∪ gB, m ∈ gB. Let m = 4n+5, n ∈ 
B. Since n < m are from B, we have 4m+6 ∈ fB, 4m+6 ∈ C. 
This contradicts C ∩ fA = ∅.  
 
case 2. m ∈ gA. Let m = 4n+5, n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ 
A, 4n+6 ∈ fA, 4n+6 ∈ A. Since 2n+2 < 4n+6 are from A, we 
have 8n+12 = 2m+2 ∈ fA. Since 2m+2 ∈ C, this contradicts C 
∩ fA = ∅.    
 
QED 
 
LEMMA 3.8.21. X ∪. fA ⊆ A ∪. gY, A ∪. fZ ⊆ X ∪. gW has 
¬NON. 
 
Proof: Let f be as given by Lemma 3.2.1. Let g ∈ ELG be 
defined by g(n) = 2n+1. Let X ∪. fA ⊆ A ∪. gY, A ∪. fZ ⊆ X 
∪. gW, where X,A,Y,Z,W are nonempty.  
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Let n ∈ fA ∩ 2N. Then n ∈ A. Hence fA ∩ 2N ⊆ A. By Lemma 
3.2.1, fA is cofinite. Hence A contains almost all of 2N. 
Therefore X contains almost all of 2N. This contradicts X ∩ 
fA = ∅. QED  
 
LEMMA 3.8.22. 5,4’, 5,5’, 5,6’ have ¬NON. 
 
Proof: By Lemma 3.8.21. QED 
 
part 6. C ∪. fA ⊆ A ∪. gC. 
 
6,1’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,2’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,3’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,4’. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,5’. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,6’. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
The following pertains to 6,1’. 
 
LEMMA 3.8.23. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m, g(n) = 2n+1. Let C ∪. 
fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gB, where A,B,C are nonempty. 
 
We claim that for all t ∈ A and p ≥ 0, 2gp(t)+2 ∈ A ∩ fA. 
To see this, fix t ∈ A and argue by induction on p ≥ 0. 
Obviously 2g0(t)+2 = 2t+2 ∈ fA, and so 2g0(t)+2 = 2t+2 ∈ A ∩ 
fA. Suppose 2gp(t)+2 ∈ A ∩ fA. Note that 2gp+1(t)+2 = 
2(2gp(t)+1)+2 = 2(2gp(t)+2) ∈ fA, since t < 2gp(t)+2 are 
from A. Hence 2gp+1(t)+2 ∈ A ∩ fA.  
 
Let m = min(B). Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, 
m ∈ C ∪ gB, m ∉ gB, m ∈ C, m ∈ A ∪ gC, m ∈ gC, g-1(m) ∈ C.  
 
Let p be greatest such that  
 
g-1(m),...,g-p(m) ∈ C. 
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Then p ≥ 1 and g-p(m) ∈ C\gC. Hence g-p(m) ∈ A.  
 
By the claim, 2gp(g-p(m))+2 ∈ A ∩ fA. Hence 2m+2 ∈ A ∩ fA. 
Since 2m+2 ∈ C, this contradicts C ∩ fA = ∅. QED 
 
The following pertains to 6,2’. 
 
LEMMA 3.8.24. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m, g(n) = 2n+1. Let C ∪. 
fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gC, where A,B,C are nonempty.  
 
Let m ∈ B. Then m ∈ C ∪ gC. 
 
case 1. m ∈ C. Then m ∈ A ∪ gC, m ∉ gC, m ∈ A, 2m+2 ∈ fA, 
2m+2 ∈ A, 2m+2 ∈ fB, 2m+2 ∈ C. This contradicts C ∩ fA = 
∅. 
 
case 2. m ∈ gC. Let m = 2n+1, n ∈ C. Then n ∉ gC, n ∈ A, 
2n+2 ∈ fA, 2n+2 ∈ A. Since n < 2n+2 are from A, we have 
4n+4 = 2m+2 ∈ fA, 2m+2 ∈ fB, 2m+2 ∈ C. This contradicts C ∩ 
fA = ∅. QED 
 
The following pertains to 6,3’. 
 
LEMMA 3.8.25. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m, g(n) = 2n+1. Let C ∪. 
fA ⊆ A ∪. gC, B ∪. fB ⊆ C ∪. gA, where A,B,C are nonempty. 
 
As in the proof of Lemma 3.8.23, for all t ∈ A and p ≥ 0, 
2gp(t)+2 ∈ A ∩ fA.  
 
Let m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∉ fA, m ∉ A, m ∈ 
C ∪ gA.  
 
case 1. m ∈ C. Then m ∈ A ∪ gC, m ∈ gC, g-1(m) ∈ C. 
 
Let p be greatest such that g-1(m),...,g-p(m) ∈ C. 
 
Then p ≥ 1 and g-p(m) ∈ C\gC. Hence g-p(m) ∈ A.  
 
By the claim, 2gp(g-p(m))+2 ∈ A ∩ fA. Hence 2m+2 ∈ A ∩ fA. 
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Since 2m+2 ∈ C, this contradicts C ∩ fA = ∅. 
 
case 2. m ∈ gA. Let m = 2n+1, n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ 
A. Since n < 2n+2 are from A, we have 4n+4 = 2m+2 ∈ fA. 
Since 2m+2 ∈ C, this contradicts C ∩ fA = ∅.  
 
QED 
 
LEMMA 3.8.26. 6,4’, 6,5’, 6,6’ have ¬NON. 
 
Proof: By Lemma 3.8.21. QED 
 


