3.8. AABC.

Recall the reduced AA table from section 3.4.
REDUCED AA

1. $B \cup . f A \subseteq A \cup . g A . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
2. $B \cup . f A \subseteq A \cup . g B . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
3. $B \cup . f A \subseteq A \cup . g C . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
4. C U. fA \subseteq A \cup. gA. ᄀINF. AL. ᄀALF. ᄀFIN. NON.
5. $C \cup . f A \subseteq A \cup . g B . \neg I N F . A L . \neg A L F . \neg F I N . N O N$. 6. $C \cup . f A \subseteq A \cup . g C . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.

Recall the reduced $A B$ table from section 3.5 .

REDUCED AB

1. A $\cup . f A \subseteq B \cup$. gA. INF. AL. ALF. FIN. NON.
2. A \cup. fA $\subseteq B \cup$. gB. INF. AL. ALF. FIN. NON.
3. A \cup. fA \subseteq B \cup. gC. INF. AL. ALF. FIN. NON.
4. C \cup. fA \subseteq B U. gA. INF. AL. ALF. FIN. NON.
5. $C \cup . f A \subseteq B \cup$. gB. INF. AL. ALF. FIN. NON. 6. $\mathrm{C} \cup . \mathrm{fA} \subseteq \mathrm{B} \cup . \mathrm{gC}$. INF. AL. ALF. FIN. NON.

The reduced $B C$ table is obtained from the reduced $A B$ table via the permutation sending A to B, B to C, C to A. We use 1'-6' to avoid any confusion.

REDUCED BC
$1^{\prime} . B \cup . f B \subseteq C \cup . g B . I N F . A L$. ALF. FIN. NON.
$2^{\prime} . \mathrm{B} \cup . f B \subseteq C \cup . g C . \operatorname{INF} . A L . A L F . F I N . N O N$.
$3^{\prime} . \mathrm{B} \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
$4^{\prime} . A \cup . f B \subseteq C \cup$. g^{\prime}. INF. AL. ALF. FIN. NON.
$5^{\prime} . A \cup . f B \subseteq C \cup . g C$. INF. AL. ALF. FIN. NON.
$6^{\prime} . A \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
All attributes are determined from the reduced AA table, except for AL and NON. So we merely have to determine the status of AL and NON.
part 1. $B \cup f A \subseteq A \cup$. fA.
$1,1^{\prime} . B \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g B . \neg I N F . A L$. $\neg A L F . ~ \neg F I N$. NON.
$1,2^{\prime} . B \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$1,3^{\prime} . B \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g A . \neg I N F . A L$. $\neg A L F . ~ \neg F I N . ~ N O N$.
$1,4^{\prime} . \mathrm{B} \cup . f A \subseteq A \cup . g A, A \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$1,5^{\prime} . \mathrm{B} \cup . f A \subseteq A \cup . g A, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$1, \sigma^{\prime} . B \cup . f A \subseteq A \cup . g A, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.

The following pertains to 1,1', 1, $\mathbf{3}^{\prime}$.
LEMMA 3.8.1. B U. fA $\subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g X$ has AL, provided $X \in\{A, B\}$.

Proof: Let $f, g \in E L G(N)$ and $p>0$. Let $B=[n, n+p]$, where n is sufficiently large. By Lemma 3.3.3, let A be unique such that $A \subseteq[n, \infty) \subseteq A \cup$. gA. Let $C=[n, \infty) \backslash g X$.

Note that $B \cap f A=B \cap f B=B \cap g A=A \cap g A=B \cap g B=C \cap$ $g X=\varnothing$. Hence $B \subseteq A, C$. Also $B \cup f A \subseteq[n, \infty)=A \cup$ gA, and B $\cup f B \subseteq[n, \infty) \subseteq C \cup g X . Q E D$

The following pertains to 1,2'.
LEMMA 3.8.2. $B \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g C$ has AL.
Proof: Let $f, g \in$ ELG and $p>0$. Let $B=[n, n+p]$, where n is sufficiently large. By Lemma 3.3.3, let A be unique such that $A \subseteq[n, \infty) \subseteq A \cup$. gA. By Lemma 3.3.3, let C be unique such that $C \subseteq B \cup f B \subseteq C \cup$. $G C$.

Note that $B \cap f A=B \cap f B=B \cap g C=B \cap g A=A \cap g A=C \cap$ $g C=\varnothing$. Hence $B \subseteq A, C$. Also $B \cup f A \subseteq[n, \infty)=A \cup$ gA. QED

The following pertains to $1,4^{\prime}, 1,5^{\prime}, 1,6^{\prime}$.
LEMMA 3.8.3. $B \cup . f A \subseteq A \cup . g A, A \cap f B=\varnothing$ has $\neg N O N$.
Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=2 m+1, g(n)=4 n+5$. Let B $\cup . f A \subseteq A \cup$. gA, $A \cap f B=\varnothing$, where A, B, C are nonempty.

We claim that $g A \subseteq f A . I . e ., n \in A \rightarrow 4 n+5 \in f A$. To see this, let $n \in A$. Then $2 n+2 \in f A, 2 n+2 \in A$. Since $n<2 n+2$ are from A, we have $4 n+5 \in f A$.

We claim that $B \subseteq A$. To see this, let $n \in B \backslash A$. Then $n \in A \cup$ $g A, n \in g A, n \in f A$. This contradicts $B \cap f A=\varnothing$.

Now let $n \in B$. Then $n \in A, 2 n+2 \in f A, 2 n+2 \in A, 2 n+2 \in f B$. This contradicts $A \cap f B=\varnothing$. QED
part 2. B $\cup . f A \subseteq A \cup . g B$.
$2,1^{\prime} . B \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup . g B . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$2,2^{\prime} . B \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$2,3^{\prime} . B \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup . g A . \neg I N F . A L$. $\neg A L F . ~ \neg F I N$. NON.
$2,4 \prime . B \cup . f A \subseteq A \cup . g B, A \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . \neg N O N$.
$2,5^{\prime} . B \cup . f A \subseteq A \cup . g B, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$2,6^{\prime} . \mathrm{B} \cup . f A \subseteq A \cup . g B, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.

The following pertains to 2,1', 2,3'.
LEMMA 3.8.4. $B \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup . g X$ has $A L$, provided $X \in\{A, B\}$.

Proof: Let $f, g \in E L G$ and $p>0$. Let $B=[n, n+p]$, where n is sufficiently large. Let $A=[n, \infty) \backslash g B$. Let $C=[n, \infty) \backslash g X$.

Note that $B \cap f A=B \cap f B=B \cap g B=B \cap g A=A \cap g B=C \cap$ $g X=\varnothing$. Hence $B \subseteq A, C$. Also $B \cup f A \subseteq[n, \infty)=A \cup g B$, and B $\cup f B \subseteq[n, \infty)=C \cup g X . Q E D$

The following pertains to 2,2'.
LEMMA 3.8.5. $B \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup . g C$ has AL.
Proof: Let $f, g \in E L G$ and $p>0$. Let $B=[n, n+p]$, where n is sufficiently large. Let $A=[n, \infty) \backslash g B$. Let $C \subseteq[n, \infty) \subseteq C \cup$. gC.

Note that $B \cap f A=B \cap f B=B \cap g C=B \cap g B=A \cap g B=C \cap$ $g C=\varnothing$. Hence $B \subseteq A, C$. Also $B \cup f A \subseteq[n, \infty)=A \cup g B$, and B $\cup f B \subseteq[n, \infty)=C \cup g C$. QED

The following pertains to 2,4' - 2,6'.

LEMMA 3.8.6. $B \cup . f A \subseteq A \cup . g B, A \cap f B=\varnothing$ has $\neg N O N$.
Proof: Let f,g \in ELG be defined as follows. For all n, f(n) $=2 n, g(n)=2 n+1$. Let $B \cup . f A \subseteq A \cup . g B, A \cap f B=\varnothing$, where A, B are nonempty.

Let $n=\min (B)$. Then $n \in B, n \notin g B, n \in A, 2 n \in f A, 2 n \in A$, $2 n \in f B$. This contradicts $A \cap f B=\varnothing$. QED
part $3 . B \cup . f A \subseteq A \cup . g C$.
$3,1^{\prime} . B \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g B . \neg I N F . A L$. $\neg A L F . ~ \neg F I N$. NON.
3,2'. B $\cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$3,3^{\prime} . B \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g A . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
3, 4'. $B \cup . f A \subseteq A \cup . g C, A \cup . f B \subseteq C \cup . g B . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
3,5'. B $\cup . f A \subseteq A \cup . g C, A \cup . f B \subseteq C \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$3,6^{\prime} . B \cup . f A \subseteq A \cup . g C, A \cup . f B \subseteq C \cup . g A . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.

The following pertains to 3,1'.
LEMMA 3.8.7. $B \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g B$ has AL.
Proof: Let $f, g \in E L G$ and $p>0$. Let $B=[n, n+p]$, where n is sufficiently large. Let $C=[n, \infty) \backslash g B, A=[n, \infty) \backslash g C$.

Note that $B \cap f A=B \cap f B=A \cap g C=C \cap g B=B \cap g B=B \cap$ $g C=\varnothing$. Hence $B \subseteq A, C$. Also $B \cup f A \subseteq[n, \infty)=A \cup g C$ and B $\cup f B \subseteq[n, \infty) \subseteq C \cup g B . Q E D$

The following pertains to 3,2'.
LEMMA 3.8.8. B U. fA \subseteq A $\cup . g C, B \cup . f B \subseteq C \cup . g C$ has AL.
Proof: Let $f, g \in E L G$ and $p>0$. Let $B=[n, n+p]$, where n is sufficiently large. By Lemma 3.3.3, let C be unique such that $C \subseteq B \cup f B \subseteq C \cup . g C$ Let $A=[n, \infty) \backslash g C$.

Note that $B \cap f A=B \cap f B=A \cap g C=C \cap g C=B \cap g B=B \cap$ $g C=\varnothing$. Hence $B \subseteq A, C$. Also $B \cup f A \subseteq[n, \infty)=A \cup g C$ and B $\cup f B \subseteq C \cup g C . Q E D$

The following pertains to 3,3'.
LEMMA 3.8.9. $\mathrm{B} \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g A$ has AL.
Proof: Let $f, g \in E L G$ and $p>0$. Let $B=[n, n+p]$, where n is sufficiently large. We define A, C inductively. Suppose membership in A, C have been defined for all elements of [n, k), where $k \geq n$. We define membership of k in A, C as follows.

If k is already in $B U$ fA but not yet in $g C$, put k in A. if k is already in $B \cup f B$ but not yet in gA, put k in C. Obviously A, C $\subseteq[n, \infty)$.

Clearly $B \cap f A=B \cap g A=B \cap f B=B \cap g C=A \cap g C=C \cap$ $g A=\varnothing$. Hence we have put every element of B in A, and every element of B in C. Also $f A \subseteq A \cup g C, f B \subseteq C \cup g A$. QED

LEMMA 3.8.10. Let $g \in$ ELG and $p>0$. There exist finite D such that $D, g D, g g D$ are pairwise disjoint and each have at least p elements.

Proof: Let g,p be as given, and n be sufficiently large. Let $n=b_{1}<\ldots<b_{p}$, where for all $1 \leq i \leq p, b_{i+1}>b_{i}{ }^{n}$. Let $D=\left\{b_{1}, \ldots, b_{p}\right\}$. QED

The following pertains to 3,4'.

LEMMA 3.8.11. B U. fA $\subseteq A \cup . g C, A \cup . f B \subseteq C \cup . g B$ has AL.
Proof: Let f,g \in ELG and p > 0. Let D be as given by Lemma 3.8.10. Let $B=g D$.

Let n be sufficiently large. By an obvious generalization of Lemma 3.3.3, let A be unique such that $A \subseteq[n, \infty) \subseteq A \cup$. $g(A \cup D \cup(f B \backslash g B))$. Let $C=A \cup D \cup(f B \backslash g B)$. Then $[n, \infty) \subseteq$ A $\cup . g C$.

Obviously B, D are finite and A, C are infinite. Since n is sufficiently large, we have $B \cap f A=A \cap f B=A \cap g B=D \cap$ $g B=\varnothing$. Hence $C \cap g B=\varnothing$.

Since $B=g D \subseteq g C$ and $f A \subseteq[n, \infty) \subseteq A \cup g C$, we have $B \cup f A$ $\subseteq A \cup g C$.

Since $A \subseteq C$ and $f B \backslash g B \subseteq C$, we have $A \cup f B \subseteq C \cup g B$. QED

The following pertains to 3,6'.
LEMMA 3.8.12. $\mathrm{B} \cup . \mathrm{fA} \subseteq \mathrm{A} \cup . \mathrm{gC}, \mathrm{A} \cup . \mathrm{fB} \subseteq \mathrm{C} \cup . \mathrm{gA}$ has AL.
Proof: Let $f, g \in E L G$ and $p>0$. Let D be as given by Lemma 3.8.10. Let $B=$ gD.

Let n be sufficiently large. Let $A \subseteq[n, \infty) \subseteq A \cup . g(A \cup D$ $\cup f B)$. Let $C=A \cup D \cup f B$. Then $[n, \infty) \subseteq A \cup$. \quad C.

Obviously D, B are finite and A, C are infinite. Since n is sufficiently large, we have $B \cap f A=A \cap f B=f B \cap g A=\varnothing$. $A l s o A \cap g A \subseteq A \cap g C=\varnothing$, and $D \cap g A=\varnothing$. Hence $C \cap g A=$ \varnothing.

Since $B=g D \subseteq g C$ and $f A \subseteq[n, \infty) \subseteq A \cup g C$, we have $B \cup f A$ $\subseteq A \cup g C$. Also $A \cup f B \subseteq C . Q E D$

The following pertains to 3,5'.
LEMMA 3.8.13. $B \cup . f A \subseteq A \cup . g C, A \cup . f B \subseteq C \cup . g C$ has AL.
Proof: Let $f, g \in E L G$ and $p>0$. Let n be sufficiently large. Let $C \subseteq[n, \infty) \subseteq C \cup$. \quad C.

Clearly C is infinite. Let $B \subseteq g C$ have cardinality p. Let m be sufficiently large relative to $p, n, \max (B)$. Let $A=C \cap$ $[m, \infty)$. Then A, C are infinite.

Clearly $B \cap f A=A \cap g C=A \cap f B=C \cap g C=\varnothing$.
We claim that $f A \subseteq A \cup g C$. To see this, let $r \in f A$. Then r $>m>n$, and so $r \in C U g C$. If $r \in g C$ then we are done. If $r \in C$, then $r \in A$.

Finally, $A \cup f B \subseteq A \cup f g C \subseteq[n, \infty) \subseteq C \cup$. gC. QED
part 4. $C \cup . f A \subseteq A \cup$. gA.
$4,1^{\prime} . C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$4,2^{\prime} . C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$4,3^{\prime} . C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$4,4^{\prime} . C \cup . f A \subseteq A \cup . g A, A \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$4,5^{\prime} . C \cup . f A \subseteq A \cup . g A, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$4,6^{\prime} . C \cup . f A \subseteq A \cup . g A, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L E . \neg F I N . \neg N O N$.

The following pertains to $4,1^{\prime}$.
LEMMA 3.8.14. $C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g B$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=2 m+1, f(m, n)=4 m+6, g(n)=4 n+5$. Let $C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup$. gB, where A, B, C are nonempty.

Let $m \in B$. Then $2 m+2 \in f B, 2 m+2 \in C, 2 m+2 \in A, 4 m+6 \in f A$, $2 \mathrm{~m}+2 \notin \mathrm{fA}, \mathrm{m} \notin \mathrm{A}, \mathrm{m} \in \mathrm{C} \cup \mathrm{gB}$.
case $1 . m \in C$. Then $m \in A \cup g A, m \in g A$. Let $m=4 n+5, n \in$ A. Then $2 n+2 \in f A, 2 n+2 \in A$. Since $n<2 n+2$ are from A, we have $4 n+5 \in f A$. This contradicts $C \cap f A=\varnothing$.
case 2. $m \in g B$. Let $m=4 n+5, n \in B$. Since $n<m$ are from B, we have $4 m+6 \in f B, 4 m+6 \in C$. Since $4 m+6 \in f A$, this contradicts $C \cap f A=\varnothing$. QED

The following pertains to 4,2'.
LEMMA 3.8.15. $C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g C$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=2 m+1, f(m, n)=2 m, g(n)=4 n+5$. Let $C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup$. gC, where A, B, C are nonempty.

Let $m \in B$. Then $2 m+2 \in f B, 2 m+2 \in C, 2 m+2 \notin f A, m \notin A, m \in$ $C \cup g C$.
case $1 . m \in C$. Then $m \in A \cup g A, m \in g A$. Let $m=4 n+5, n \in$ A. Hence $2 \mathrm{n}+2 \in \mathrm{fA}, 2 \mathrm{n}+2 \in \mathrm{~A}$. Since $\mathrm{n}<2 \mathrm{n}+2$ are from A, we have $4 \mathrm{n}+5=\mathrm{m} \in \mathrm{fA}$. This contradicts $C \cap \mathrm{fA}=\varnothing$.
case 2. $m \in g C$. Let $m=4 n+5, n \in C$. Hence $n \in A \cup g A$.
case $2 a . n \in A$. Then $2 n+2 \in f A, 2 n+2 \in A, 4 n+6 \in f A, 4 n+6 \in$ $A, 8 n+12 \in f A$. Since $m \in B$, we have $2 m+2=8 n+12 \in f B$, $8 \mathrm{n}+12 \in \mathrm{C}$. This contradicts $\mathrm{C} \cap \mathrm{fA}=\varnothing$.
case $2 \mathrm{~b} . \mathrm{n} \in \mathrm{gA}$. Let $\mathrm{n}=4 \mathrm{r}+5, \mathrm{r} \in \mathrm{A}$. Then $2 \mathrm{r}+2 \in \mathrm{fA}, 2 \mathrm{r}+2$ $\in A, 4 r+6 \in f A, 4 r+6 \in A, 8 r+12 \in f A, 8 r+12 \in A, 16 r+26 \in$ $f A, 16 r+26 \in A, 32 r+52 \in f A$.

Since $m \in B$, we have $2 m+2=8 n+12=32 r+52 \in f B$, and so $32 r+52 \in C$. This contradicts $C \cap f A=\varnothing$. QED

The following pertains to 4,3'.
LEMMA 3.8.16. $\mathrm{C} \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup . g A$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=2 m+1, f(m, n)=2 m, g(n)=4 n+5$. Let $C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq C \cup$. gA, where A, B, C are nonempty.

Let $m \in B$. Then $2 m+2 \in f B, 2 m+2 \in C, 2 m+2 \notin f A, m \notin A, m \in$ $C \cup g A$.
case $1 . m \in C$. Then $m \in A \cup g A, m \in g A$. Let $m=4 n+5, n \in$ A. Hence $2 n+2 \in f A, 2 n+2 \in A$. Since $n<2 n+2$ are from A, we have $m=4 n+5 \in f A$. This contradicts $C \cap f A=\varnothing$.
case $2 . m \in g A$. Let $m=4 n+5, n \in A$. Hence $2 n+2 \in f A, 2 n+2$ $\in A, 4 n+6 \in f A, 4 n+6 \in A, 8 n+12=2 m+2 \in f A$. Since $2 m+2 \in$ C, this contradicts $C \cap f A=\varnothing$. QED

The following pertains to 4,4', 4,5', 4,6'.
LEMMA 3.8.17. $C \cup . f A \subseteq A \cup . g X, A \cup . f B \subseteq C \cup . g Y$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=2 m+2, g(n)=2 n+1$. Let C $\cup . f A \subseteq A \cup . g X, B \cup . f B \subseteq C \cup$. gY, where A, B, C are nonempty.

Let $m \in A$. Then $2 m+2 \in f A, 2 m+2 \in A, 2 m+2 \in C$. This contradicts $C \cap f A=\varnothing$. QED

$5,1^{\prime} . C \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
5,2'. C $\cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$5,3^{\prime} . C \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . \neg N O N$.
$5,4^{\prime} . C \cup . f A \subseteq A \cup . g B, A \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$5,5^{\prime} . C \cup . f A \subseteq A \cup . g B, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$5,6^{\prime} . C \cup . f A \subseteq A \cup . g B, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.

The following pertains to 5,1'.
LEMMA 3.8.18. $\mathrm{C} \cup . \mathrm{fA} \subseteq \mathrm{A} \cup . \mathrm{gB}, \mathrm{B} \cup . \mathrm{fB} \subseteq \mathrm{C} \cup . \mathrm{gB}$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=4 m+6, g(n)=2 n+1$. Let C \cup. fA $\subseteq A \cup . g B, B \cup . f B \subseteq C \cup$. gB, where A, B, C are nonempty.

Let $m \in B$. Then $2 m+2 \in f B, 2 m+2 \in C, 2 m+2 \in A, 4 m+6 \in f A$, $2 \mathrm{~m}+2 \notin \mathrm{fA}, \mathrm{m} \notin \mathrm{A}, \mathrm{m} \in \mathrm{C} \cup \mathrm{gB}$.
case 1. $m \in C$. Then $m \in A \cup g B, m \in g B$. This contradicts C $\cap \mathrm{gB}=\varnothing$.
case 2. $m \in g B$. Let $m=2 n+1, n \in B$. Since $n<m$ are from B, we have $4 m+6 \in f B, 4 m+6 \in C$. Since $4 m+6 \in f A$, this contradicts $C \cap f A=\varnothing$.

QED
The following pertains to 5,2'.
LEMMA 3.8.19. $\mathrm{C} \cup . f A \subseteq A \cup . g B, \mathrm{~B} \cup . f B \subseteq C \cup . g C$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=2 m+8, f(m, n)=2 m+4, g(n)=2 n+3$. Let $C \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup$. gC, where A, B, C are nonempty.

Let $m \in B$. Then $2 m+2 \in f B, 2 m+2 \in C, 2 m+2 \notin f A, m \notin A, m \in$ $C \cup g C$.
case 1. $m \in C$. Then $m \in A \cup g B$. Hence $m \in g B$. This contradicts $\mathrm{B} \cap \mathrm{gB}=\varnothing$.
case $2 . m \in g C$. Let $m=2 n+3, n \in C$. Hence $n \in A \cup g B$.
case $2 \mathrm{a} . \mathrm{n} \in \mathrm{A}$. Then $2 \mathrm{n}+2 \in \mathrm{fA}, 2 \mathrm{n}+2 \in \mathrm{~A}$. Since $\mathrm{n}<2 \mathrm{n}+2$ are from A, we have $4 \mathrm{n}+8=2 \mathrm{~m}+2 \in \mathrm{fA}$. But $2 \mathrm{~m}+2 \notin \mathrm{fA}$.
case $2 \mathrm{~b} . \mathrm{n} \in \mathrm{gB}$. Let $\mathrm{n}=2 \mathrm{r}+3, \mathrm{r} \in \mathrm{B}$. Now $\mathrm{m}=2 \mathrm{n}+3=4 \mathrm{r}+9 \in$ B. So $2 m+2=8 r+20 \in f B, 2 m+2=8 r+20 \in C$. Note that $2 r+2 \in$ $f B, 2 r+2 \in C, 2 r+2 \in A, 4 r+6 \in f A, 4 r+6 \in A$. Since $2 r+2<$ $4 r+6$ are from A, we have $8 r+20 \in f A$. This contradicts $C \cap$ $f A=\varnothing$. QED

The following pertains to 5, $\mathbf{3}^{\prime}$.
LEMMA 3.8.20. $\mathrm{C} \cup . f A \subseteq A \cup . g B, \mathrm{~B} \cup . f B \subseteq C \cup . g A$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $\mathrm{f}(\mathrm{n}, \mathrm{n})=2 \mathrm{n}+2, \mathrm{f}(\mathrm{n}, \mathrm{m})=4 \mathrm{~m}+6, \mathrm{f}(\mathrm{m}, \mathrm{n})=2 \mathrm{~m}, \mathrm{~g}(\mathrm{n})=4 \mathrm{n}+5$. Let $C \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq C \cup$. gA, where A, B, C are nonempty.

Let $m \in B$. Then $2 m+2 \in f B, 2 m+2 \in C, 2 m+2 \in A, 4 m+6 \in f A$, $2 \mathrm{~m}+2 \notin \mathrm{fA}, \mathrm{m} \notin \mathrm{A}, \mathrm{m} \in \mathrm{C} \cup \mathrm{gA}$.
case 1. $m \in C$. Then $m \in A \cup g B, m \in g B$. Let $m=4 n+5, n \in$ B. Since $n<m$ are from B, we have $4 m+6 \in f B, 4 m+6 \in C$. This contradicts $C \cap f A=\varnothing$.
case $2 . m \in g A$. Let $m=4 n+5, n \in A$. Then $2 n+2 \in f A, 2 n+2 \in$ $A, 4 n+6 \in f A, 4 n+6 \in A$. Since $2 n+2<4 n+6$ are from A, we have $8 \mathrm{n}+12=2 \mathrm{~m}+2 \in \mathrm{fA}$. Since $2 \mathrm{~m}+2 \in \mathrm{C}$, this contradicts C $\cap \mathrm{fA}=\varnothing$.

QED
 \neg NON.

Proof: Let f be as given by Lemma 3.2.1. Let $g \in E L G$ be defined by $g(n)=2 n+1$. Let $X U$. $f A \subseteq A \cup . g Y, A \cup . f Z \subseteq X$ U. gW, where X, A, Y, Z, W are nonempty.

Let $n \in f A \cap 2 N$. Then $n \in A$. Hence $f A \cap 2 N \subseteq A$. By Lemma 3.2.1, fA is cofinite. Hence A contains almost all of 2 N . Therefore X contains almost all of 2 N . This contradicts $X \cap$ $\mathrm{fA}=\varnothing$. QED

LEMMA 3.8.22. 5, 4', 5,5', 5,6' have \rightarrow NON.
Proof: By Lemma 3.8.21. QED
part $6 . \mathrm{C} \cup . f A \subseteq A \cup . g C$.
$6,1^{\prime} . C \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
6,2'. $C \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$6,3^{\prime} . C \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$6,4^{\prime} . C \cup . f A \subseteq A \cup . g C, A \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$6,5^{\prime} . C \cup . f A \subseteq A \cup . g C, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$6, \sigma^{\prime} . C \cup . f A \subseteq A \cup . g C, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.

The following pertains to 6,1'.
LEMMA 3.8.23. $C \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g B$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=2 m, g(n)=2 n+1$. Let $C \cup$. $f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup$. gB, where A, B, C are nonempty.

We claim that for all $t \in A$ and $p \geq 0,2 g^{p}(t)+2 \in A \cap f A$. To see this, fix $t \in A$ and argue by induction on $p \geq 0$. Obviously $2 g^{\circ}(t)+2=2 t+2 \in f A$, and so $2 g^{\circ}(t)+2=2 t+2 \in A \cap$ fA. Suppose $2 g^{p}(t)+2 \in A \cap f A$. Note that $2 g^{p+1}(t)+2=$ $2\left(2 g^{p}(t)+1\right)+2=2\left(2 g^{p}(t)+2\right) \in f A$, since $t<2 g^{p}(t)+2$ are from A. Hence $2 g^{p+1}(t)+2 \in A \cap f A$.

Let $m=\min (B)$. Then $2 m+2 \in f B, 2 m+2 \in C, 2 m+2 \notin f A, m \notin A$, $m \in C \cup g B, m \notin g B, m \in C, m \in A \cup g C, m \in g C, g^{-1}(m) \in C$.

Let p be greatest such that
$g^{-1}(m), \ldots, g^{-p}(m) \in C$.

Then $p \geq 1$ and $g^{-p}(m) \in C \backslash g C$. Hence $g^{-p}(m) \in A$.
By the claim, $2 g^{p}\left(g^{-p}(m)\right)+2 \in A \cap$ fA. Hence $2 m+2 \in A \cap f A$. Since $2 \mathrm{~m}+2 \in \mathrm{C}$, this contradicts $\mathrm{C} \cap \mathrm{fA}=\varnothing$. QED

The following pertains to 6,2'.
LEMMA 3.8.24. $\mathrm{C} \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g C$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=2 m, g(n)=2 n+1$. Let $C \cup$. $f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup . g C$ where A, B, C are nonempty.

Let $m \in B$. Then $m \in C \cup g C$.
case 1. $m \in C$. Then $m \in A \cup g C, m \notin g C, m \in A, 2 m+2 \in f A$, $2 \mathrm{~m}+2 \in \mathrm{~A}, 2 \mathrm{~m}+2 \in \mathrm{fB}, 2 \mathrm{~m}+2 \in \mathrm{C}$. This contradicts $\mathrm{C} \cap \mathrm{fA}=$ \varnothing.
case 2. $m \in g C$. Let $m=2 n+1, n \in C$. Then $n \notin g C, n \in A$, $2 n+2 \in f A, 2 n+2 \in A$. Since $n<2 n+2$ are from A, we have $4 n+4=2 m+2 \in f A, 2 m+2 \in f B, 2 m+2 \in C$. This contradicts $C \cap$ $f A=\varnothing . Q E D$

The following pertains to 6,3'.
LEMMA 3.8.25. $C \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup$. gA has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=2 m, g(n)=2 n+1$. Let $C U$. $f A \subseteq A \cup . g C, B \cup . f B \subseteq C \cup$. gA, where A, B, C are nonempty.

As in the proof of Lemma 3.8.23, for all $t \in A$ and $p \geq 0$, $2 g^{p}(t)+2 \in A \cap f A$.

Let $m \in B$. Then $2 m+2 \in f B, 2 m+2 \in C, 2 m+2 \notin f A, m \notin A, m \in$ $C \cup g A$.
case $1 . m \in C$. Then $m \in A \cup g C, m \in g C, g^{-1}(m) \in C$.
Let p be greatest such that $g^{-1}(m), \ldots, g^{-p}(m) \in C$.
Then $p \geq 1$ and $g^{-p}(m) \in C \backslash g C$. Hence $g^{-p}(m) \in A$.
By the claim, $2 g^{p}\left(g^{-p}(m)\right)+2 \in A \cap f A$. Hence $2 m+2 \in A \cap f A$.

Since $2 \mathrm{~m}+2 \in \mathrm{C}$, this contradicts $\mathrm{C} \cap \mathrm{fA}=\varnothing$.
case $2 . m \in$ gA. Let $m=2 n+1, n \in A$. Then $2 n+2 \in f A, 2 n+2 \in$ A. Since $n<2 n+2$ are from A, we have $4 n+4=2 m+2 \in f A$. Since $2 \mathrm{~m}+2 \in \mathrm{C}$, this contradicts $\mathrm{C} \cap \mathrm{fA}=\varnothing$.

QED
LEMMA 3.8.26. 6,4', 6,5', 6,6' have \neg NON.
Proof: By Lemma 3.8.21. QED

