3.8. AABC.

Recall the reduced AA table from section 3.4.

REDUCED AA

1. B U. $fA \subseteq A$ U. gA. $\neg INF$. AL. $\neg ALF$. $\neg FIN$. NON. 2. B U. $fA \subseteq A$ U. gB. $\neg INF$. AL. $\neg ALF$. $\neg FIN$. NON. 3. B U. $fA \subseteq A$ U. gC. $\neg INF$. AL. $\neg ALF$. $\neg FIN$. NON. 4. C U. $fA \subseteq A$ U. gA. $\neg INF$. AL. $\neg ALF$. $\neg FIN$. NON. 5. C U. $fA \subseteq A$ U. gB. $\neg INF$. AL. $\neg ALF$. $\neg FIN$. NON. 6. C U. $fA \subseteq A$ U. gC. $\neg INF$. AL. $\neg ALF$. $\neg FIN$. NON.

Recall the reduced AB table from section 3.5.

REDUCED AB

1. A U. $fA \subseteq B$ U. gA. INF. AL. ALF. FIN. NON. 2. A U. $fA \subseteq B$ U. gB. INF. AL. ALF. FIN. NON. 3. A U. $fA \subseteq B$ U. gC. INF. AL. ALF. FIN. NON. 4. C U. $fA \subseteq B$ U. gA. INF. AL. ALF. FIN. NON. 5. C U. $fA \subseteq B$ U. gB. INF. AL. ALF. FIN. NON. 6. C U. $fA \subseteq B$ U. gC. INF. AL. ALF. FIN. NON.

The reduced BC table is obtained from the reduced AB table via the permutation sending A to B, B to C, C to A. We use 1'-6' to avoid any confusion.

REDUCED BC

1'. B U. $fB \subseteq C$ U. gB. INF. AL. ALF. FIN. NON. 2'. B U. $fB \subseteq C$ U. gC. INF. AL. ALF. FIN. NON. 3'. B U. $fB \subseteq C$ U. gA. INF. AL. ALF. FIN. NON. 4'. A U. $fB \subseteq C$ U. gB. INF. AL. ALF. FIN. NON. 5'. A U. $fB \subseteq C$ U. gC. INF. AL. ALF. FIN. NON. 6'. A U. $fB \subseteq C$ U. gA. INF. AL. ALF. FIN. NON.

All attributes are determined from the reduced AA table, except for AL and NON. So we merely have to determine the status of AL and NON.

part 1. B U. $fA \subseteq A \cup GA$.

1,1'. B U. $fA \subseteq A$ U. gA, B U. $fB \subseteq C$ U. gB. $\neg INF$. AL. $\neg ALF$. $\neg FIN$. NON. 1,2'. B U. $fA \subseteq A$ U. gA, B U. $fB \subseteq C$ U. gC. $\neg INF$. AL. $\neg ALF$. $\neg FIN$. NON.

1,3'. B U. fA \subseteq A U. qA, B U. fB \subseteq C U. qA. \neg INF. AL. ¬ALF. ¬FIN. NON. 1,4'. B U. fA \subseteq A U. qA, A U. fB \subseteq C U. qB. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 1,5'. B U. $fA \subseteq A$ U. gA, A U. $fB \subseteq C$ U. gC. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 1,6'. B U. fA \subseteq A U. gA, A U. fB \subseteq C U. gA. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. The following pertains to 1,1', 1,3'. LEMMA 3.8.1. B U. $fA \subseteq A$ U. gA, B U. $fB \subseteq C$ U. gX has AL, provided $X \in \{A, B\}$. Proof: Let $f,g \in ELG(N)$ and p > 0. Let B = [n,n+p], where n is sufficiently large. By Lemma 3.3.3, let A be unique such that $A \subseteq [n, \infty) \subseteq A \cup gA$. Let $C = [n, \infty) \setminus gX$. Note that B \cap fA = B \cap fB = B \cap qA = A \cap qA = B \cap qB = C \cap $gX = \emptyset$. Hence $B \subseteq A, C$. Also $B \cup fA \subseteq [n, \infty) = A \cup gA$, and B \bigcup fB \subseteq [n, ∞) \subseteq C \bigcup gX. QED The following pertains to 1,2'. LEMMA 3.8.2. B U. $fA \subseteq A$ U. gA, B U. $fB \subseteq C$ U. gC has AL. Proof: Let $f,g \in ELG$ and p > 0. Let B = [n, n+p], where n is sufficiently large. By Lemma 3.3.3, let A be unique such that A \subseteq [n, ∞) \subseteq A U. gA. By Lemma 3.3.3, let C be unique such that $C \subseteq B \cup fB \subseteq C \cup . gC$. Note that B \cap fA = B \cap fB = B \cap gC = B \cap gA = A \cap gA = C \cap $qC = \emptyset$. Hence $B \subseteq A, C$. Also $B \cup fA \subseteq [n, \infty) = A \cup qA$. QED The following pertains to 1, 4', 1, 5', 1, 6'. LEMMA 3.8.3. B U. fA \subseteq A U. qA, A \cap fB = \emptyset has \neg NON. Proof: Define f, $q \in ELG$ as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+1, g(n) = 4n+5. Let B U. fA \subseteq A U. qA, A \cap fB = \emptyset , where A,B,C are nonempty. We claim that $gA \subseteq fA$. I.e., $n \in A \rightarrow 4n+5 \in fA$. To see this, let $n \in A$. Then $2n+2 \in fA$, $2n+2 \in A$. Since n < 2n+2are from A, we have $4n+5 \in fA$.

We claim that $B \subseteq A$. To see this, let $n \in B \setminus A$. Then $n \in A \cup$ gA, $n \in gA$, $n \in fA$. This contradicts $B \cap fA = \emptyset$. Now let $n \in B$. Then $n \in A$, $2n+2 \in fA$, $2n+2 \in A$, $2n+2 \in fB$. This contradicts A \cap fB = \emptyset . QED part 2. B U. $fA \subseteq A U. gB.$ 2,1'. B U. fA \subseteq A U. qB, B U. fB \subseteq C U. qB. \neg INF. AL. ¬ALF. ¬FIN. NON. 2,2'. B U. fA \subseteq A U. gB, B U. fB \subseteq C U. gC. \neg INF. AL. ¬ALF. ¬FIN. NON. 2,3'. B U. $fA \subseteq A$ U. gB, B U. $fB \subseteq C$ U. gA. \neg INF. AL. ¬ALF. ¬FIN. NON. 2,4'. B U. fA \subseteq A U. gB, A U. fB \subseteq C U. gB. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 2,5'. B U. $fA \subseteq A$ U. gB, A U. $fB \subseteq C$ U. gC. $\neg INF$. $\neg AL$. ¬ALF. ¬FIN. ¬NON. 2,6'. B U. $fA \subseteq A$ U. qB, A U. $fB \subseteq C$ U. qA. $\neg INF$. $\neg AL$. ¬ALF. ¬FIN. ¬NON. The following pertains to 2,1', 2,3'. LEMMA 3.8.4. B U. $fA \subseteq A$ U. qB, B U. $fB \subseteq C$ U. qX has AL, provided $X \in \{A, B\}$. Proof: Let $f,q \in ELG$ and p > 0. Let B = [n, n+p], where n is sufficiently large. Let $A = [n, \infty) \setminus gB$. Let $C = [n, \infty) \setminus gX$. Note that B \cap fA = B \cap fB = B \cap gB = B \cap gA = A \cap gB = C \cap $qX = \emptyset$. Hence $B \subseteq A, C$. Also $B \cup fA \subseteq [n, \infty) = A \cup qB$, and B \bigcup fB \subseteq [n, ∞) = C \bigcup gX. QED The following pertains to 2,2'. LEMMA 3.8.5. B U. $fA \subseteq A$ U. gB, B U. $fB \subseteq C$ U. gC has AL. Proof: Let $f, q \in ELG$ and p > 0. Let B = [n, n+p], where n is sufficiently large. Let $A = [n, \infty) \setminus gB$. Let $C \subseteq [n, \infty) \subseteq C \cup$. gC. Note that B \cap fA = B \cap fB = B \cap qC = B \cap qB = A \cap qB = C \cap gC = \emptyset . Hence B \subseteq A,C. Also B U fA \subseteq [n, ∞) = A U gB, and B \bigcup fB \subseteq [n, ∞) = C \bigcup qC. QED The following pertains to 2, 4' - 2, 6'.

LEMMA 3.8.6. B U. $fA \subseteq A \cup gB$, $A \cap fB = \emptyset$ has $\neg NON$. Proof: Let f, $q \in ELG$ be defined as follows. For all n, f(n) = 2n, q(n) = 2n+1. Let B U. fA \subseteq A U. qB, A \cap fB = \emptyset , where A, B are nonempty. Let n = min(B). Then $n \in B$, $n \notin gB$, $n \in A$, $2n \in fA$, $2n \in A$, $2n \in fB$. This contradicts $A \cap fB = \emptyset$. QED part 3. B U. $fA \subseteq A U. gC.$ 3,1'. B U. fA \subseteq A U. gC, B U. fB \subseteq C U. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 3,2'. B U. $fA \subseteq A$ U. gC, B U. $fB \subseteq C$ U. gC. \neg INF. AL. ¬ALF. ¬FIN. NON. 3,3'. B U. fA \subseteq A U. gC, B U. fB \subseteq C U. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 3,4'. B U. fA \subseteq A U. qC, A U. fB \subseteq C U. qB. ¬INF. AL. ¬ALF. ¬FIN. NON. 3,5'. B U. fA \subseteq A U. qC, A U. fB \subseteq C U. qC. \neg INF. AL. ¬ALF. ¬FIN. NON. 3,6'. B U. $fA \subseteq A$ U. gC, A U. $fB \subseteq C$ U. gA. \neg INF. AL. ¬ALF. ¬FIN. NON. The following pertains to 3,1'. LEMMA 3.8.7. B U. fA \subseteq A U. gC, B U. fB \subseteq C U. gB has AL. Proof: Let $f,q \in ELG$ and p > 0. Let B = [n, n+p], where n is sufficiently large. Let $C = [n, \infty) \setminus gB$, $A = [n, \infty) \setminus gC$. Note that $B \cap fA = B \cap fB = A \cap gC = C \cap gB = B \cap gB = B \cap$ $qC = \emptyset$. Hence $B \subseteq A, C$. Also $B \cup fA \subseteq [n, \infty) = A \cup qC$ and B \cup fB \subseteq [n, ∞) \subseteq C \cup gB. QED The following pertains to 3,2'. LEMMA 3.8.8. B U. $fA \subseteq A$ U. qC, B U. $fB \subseteq C$ U. qC has AL. Proof: Let $f, q \in ELG$ and p > 0. Let B = [n, n+p], where n is sufficiently large. By Lemma 3.3.3, let C be unique such that $C \subseteq B \cup fB \subseteq C \cup gC$. Let $A = [n, \infty) \setminus gC$. Note that B \cap fA = B \cap fB = A \cap qC = C \cap qC = B \cap qB = B \cap $qC = \emptyset$. Hence $B \subseteq A, C$. Also $B \cup fA \subseteq [n, \infty) = A \cup qC$ and BU fB \subseteq C U qC. QED

The following pertains to 3,3'. LEMMA 3.8.9. B U. $fA \subseteq A$ U. qC, B U. $fB \subseteq C$ U. qA has AL. Proof: Let $f,g \in ELG$ and p > 0. Let B = [n, n+p], where n is sufficiently large. We define A,C inductively. Suppose membership in A,C have been defined for all elements of [n,k), where $k \ge n$. We define membership of k in A,C as follows. If k is already in B U fA but not yet in gC, put k in A. if k is already in B U fB but not yet in gA, put k in C. Obviously A,C \subseteq [n, ∞). Clearly B \cap fA = B \cap qA = B \cap fB = B \cap qC = A \cap qC = C \cap $qA = \emptyset$. Hence we have put every element of B in A, and every element of B in C. Also fA \subseteq A U gC, fB \subseteq C U gA. QED LEMMA 3.8.10. Let $q \in ELG$ and p > 0. There exist finite D such that D,qD,qqD are pairwise disjoint and each have at least p elements. Proof: Let g,p be as given, and n be sufficiently large. Let $n = b_1 < \ldots < b_p$, where for all $1 \le i \le p$, $b_{i+1} > b_i^n$. Let $D = \{b_1, ..., b_p\}$. QED The following pertains to 3,4'. LEMMA 3.8.11. B U. $fA \subseteq A$ U. gC, A U. $fB \subseteq C$ U. gB has AL. Proof: Let f, $q \in ELG$ and p > 0. Let D be as given by Lemma 3.8.10. Let B = gD. Let n be sufficiently large. By an obvious generalization of Lemma 3.3.3, let A be unique such that $A \subseteq [n, \infty) \subseteq A \cup$. $g(A \cup D \cup (fB \setminus gB))$. Let $C = A \cup D \cup (fB \setminus gB)$. Then $[n, \infty) \subseteq$ A U. gC. Obviously B,D are finite and A,C are infinite. Since n is sufficiently large, we have B \cap fA = A \cap fB = A \cap gB = D \cap $qB = \emptyset$. Hence $C \cap qB = \emptyset$. Since $B = gD \subseteq gC$ and $fA \subseteq [n, \infty) \subseteq A \cup gC$, we have $B \cup fA$ \subseteq A U qC. Since $A \subseteq C$ and $fB \setminus gB \subseteq C$, we have $A \cup fB \subseteq C \cup gB$. QED

The following pertains to 3,6'. LEMMA 3.8.12. B U. fA \subseteq A U. gC, A U. fB \subseteq C U. gA has AL. Proof: Let $f, g \in ELG$ and p > 0. Let D be as given by Lemma 3.8.10. Let B = qD. Let n be sufficiently large. Let $A \subseteq [n,\infty) \subseteq A \cup g(A \cup D)$ U fB). Let C = A U D U fB. Then $[n, \infty) \subseteq A \cup QC$. Obviously D, B are finite and A, C are infinite. Since n is sufficiently large, we have B \cap fA = A \cap fB = fB \cap qA = \emptyset . Also A \cap gA \subseteq A \cap gC = \emptyset , and D \cap gA = \emptyset . Hence C \cap gA = Ø. Since B = gD \subseteq gC and fA \subseteq [n, ∞) \subseteq A U gC, we have B U fA \subseteq A U gC. Also A U fB \subseteq C. QED The following pertains to 3,5'. LEMMA 3.8.13. B U. fA \subseteq A U. gC, A U. fB \subseteq C U. gC has AL. Proof: Let f,g \in ELG and p > 0. Let n be sufficiently large. Let $C \subseteq [n, \infty) \subseteq C \cup QC$. Clearly C is infinite. Let $B \subseteq qC$ have cardinality p. Let m be sufficiently large relative to p, n, max(B). Let $A = C \cap$ $[m,\infty)$. Then A,C are infinite. Clearly B \cap fA = A \cap gC = A \cap fB = C \cap gC = \emptyset . We claim that $fA \subseteq A \cup gC$. To see this, let $r \in fA$. Then r > m > n, and so $r \in C \cup gC$. If $r \in gC$ then we are done. If $r \in C$, then $r \in A$. Finally, A U fB \subseteq A U fgC \subseteq [n, ∞) \subseteq C U. gC. QED part 4. C U. fA \subseteq A U. gA. 4,1'. C U. fA \subseteq A U. gA, B U. fB \subseteq C U. gB. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 4,2'. C U. fA \subseteq A U. gA, B U. fB \subseteq C U. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 4,3'. C U. $fA \subseteq A$ U. qA, B U. $fB \subseteq C$ U. qA. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 4,4'. C U. fA \subseteq A U. gA, A U. fB \subseteq C U. gB. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON.

4,5'. C U. $fA \subseteq A$ U. qA, A U. $fB \subseteq C$ U. qC. $\neg INF$. $\neg AL$. ¬ALF. ¬FIN. ¬NON. 4,6'. C U. fA \subseteq A U. gA, A U. fB \subseteq C U. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. The following pertains to 4,1'. LEMMA 3.8.14. C U. fA \subseteq A U. qA, B U. fB \subseteq C U. qB has ¬NON. Proof: Define f,g \in ELG as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = 2m+1, f(m,n) = 4m+6, g(n) = 4n+5. Let C U. $fA \subseteq A$ U. gA, B U. $fB \subseteq C$ U. gB, where A, B, C are nonempty. Let $m \in B$. Then $2m+2 \in fB$, $2m+2 \in C$, $2m+2 \in A$, $4m+6 \in fA$, $2m+2 \notin fA, m \notin A, m \in C \cup gB.$ case 1. $m \in C$. Then $m \in A \cup qA$, $m \in qA$. Let m = 4n+5, $n \in$ A. Then $2n+2 \in fA$, $2n+2 \in A$. Since n < 2n+2 are from A, we have $4n+5 \in fA$. This contradicts $C \cap fA = \emptyset$. case 2. $m \in qB$. Let m = 4n+5, $n \in B$. Since n < m are from B, we have $4m+6 \in fB$, $4m+6 \in C$. Since $4m+6 \in fA$, this contradicts C \cap fA = \emptyset . QED The following pertains to 4,2'. LEMMA 3.8.15. C U. fA \subseteq A U. gA, B U. fB \subseteq C U. gC has ¬NON. Proof: Define f,g \in ELG as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = 2m+1, f(m,n) = 2m, q(n) = 4n+5. Let C U. $fA \subseteq A$ U. gA, B U. $fB \subseteq C$ U. gC, where A, B, C are nonempty. Let $m \in B$. Then $2m+2 \in fB$, $2m+2 \in C$, $2m+2 \notin fA$, $m \notin A$, $m \in$ C U gC. case 1. $m \in C$. Then $m \in A \cup qA$, $m \in qA$. Let m = 4n+5, $n \in$ A. Hence $2n+2 \in fA$, $2n+2 \in A$. Since n < 2n+2 are from A, we have $4n+5 = m \in fA$. This contradicts $C \cap fA = \emptyset$. case 2. $m \in qC$. Let m = 4n+5, $n \in C$. Hence $n \in A \cup qA$.

case 2a. n \in A. Then 2n+2 \in fA, 2n+2 \in A, 4n+6 \in fA, 4n+6 \in A, $8n+12 \in fA$. Since $m \in B$, we have $2m+2 = 8n+12 \in fB$, $8n+12 \in C$. This contradicts $C \cap fA = \emptyset$. case 2b. $n \in qA$. Let n = 4r+5, $r \in A$. Then $2r+2 \in fA$, 2r+2 \in A, 4r+6 \in fA, 4r+6 \in A, 8r+12 \in fA, 8r+12 \in A, 16r+26 \in fA, 16r+26 \in A, 32r+52 \in fA. Since $m \in B$, we have $2m+2 = 8n+12 = 32r+52 \in fB$, and so $32r+52 \in C$. This contradicts $C \cap fA = \emptyset$. QED The following pertains to 4,3'. LEMMA 3.8.16. C U. fA \subseteq A U. gA, B U. fB \subseteq C U. gA has ¬NON. Proof: Define f,g \in ELG as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = 2m+1, f(m,n) = 2m, g(n) = 4n+5. Let C U. $fA \subseteq A$ U. gA, B U. $fB \subseteq C$ U. gA, where A, B, C are nonempty. Let $m \in B$. Then $2m+2 \in fB$, $2m+2 \in C$, $2m+2 \notin fA$, $m \notin A$, $m \in$ C U gA. case 1. $m \in C$. Then $m \in A \cup gA$, $m \in gA$. Let m = 4n+5, $n \in$ A. Hence $2n+2 \in fA$, $2n+2 \in A$. Since n < 2n+2 are from A, we have m = 4n+5 \in fA. This contradicts C \cap fA = \emptyset . case 2. $m \in qA$. Let m = 4n+5, $n \in A$. Hence $2n+2 \in fA$, 2n+2 \in A, 4n+6 \in fA, 4n+6 \in A, 8n+12 = 2m+2 \in fA. Since 2m+2 \in C, this contradicts C \cap fA = \emptyset . QED The following pertains to 4, 4', 4, 5', 4, 6'. LEMMA 3.8.17. C U. fA \subseteq A U. gX, A U. fB \subseteq C U. gY has ¬NON. Proof: Define f, $q \in ELG$ as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+2, g(n) = 2n+1. Let C U. fA \subseteq A U. gX, B U. fB \subseteq C U. gY, where A,B,C are nonempty. Let $m \in A$. Then $2m+2 \in fA$, $2m+2 \in A$, $2m+2 \in C$. This contradicts C \cap fA = \emptyset . QED part 5. C U. fA \subseteq A U. gB.

5,1'. C U. fA \subseteq A U. qB, B U. fB \subseteq C U. qB. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 5,2'. C U. fA \subseteq A U. gB, B U. fB \subseteq C U. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 5,3'. C U. fA \subseteq A U. gB, B U. fB \subseteq C U. gA. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 5,4'. C U. fA \subseteq A U. gB, A U. fB \subseteq C U. gB. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 5,5'. C U. fA \subseteq A U. qB, A U. fB \subseteq C U. qC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 5,6'. C U. fA \subseteq A U. gB, A U. fB \subseteq C U. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. The following pertains to 5,1'. LEMMA 3.8.18. C U. fA \subseteq A U. qB, B U. fB \subseteq C U. qB has ¬NON. Proof: Define f, $q \in ELG$ as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = f(m,n) = 4m+6, g(n) = 2n+1. Let C U. fA \subseteq A U. gB, B U. fB \subseteq C U. gB, where A,B,C are nonempty. Let $m \in B$. Then $2m+2 \in fB$, $2m+2 \in C$, $2m+2 \in A$, $4m+6 \in fA$, $2m+2 \notin fA$, $m \notin A$, $m \in C \cup gB$. case 1. $m \in C$. Then $m \in A \cup gB$, $m \in gB$. This contradicts C \cap gB = \emptyset . case 2. $m \in gB$. Let m = 2n+1, $n \in B$. Since n < m are from B, we have $4m+6 \in fB$, $4m+6 \in C$. Since $4m+6 \in fA$, this contradicts $C \cap fA = \emptyset$. QED The following pertains to 5,2'. LEMMA 3.8.19. C U. fA \subseteq A U. gB, B U. fB \subseteq C U. gC has ¬NON. Proof: Define f, $q \in ELG$ as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = 2m+8, f(m,n) = 2m+4, g(n) = 2n+3. Let C U. $fA \subseteq A$ U. qB, B U. $fB \subseteq C$ U. qC, where A, B, C are nonempty. Let $m \in B$. Then $2m+2 \in fB$, $2m+2 \in C$, $2m+2 \notin fA$, $m \notin A$, $m \in$ C U gC.

case 1. $m \in$ C. Then $m \in$ A U gB. Hence $m \in$ gB. This contradicts B \cap gB = \emptyset . case 2. $m \in qC$. Let m = 2n+3, $n \in C$. Hence $n \in A \cup qB$. case 2a. n \in A. Then 2n+2 \in fA, 2n+2 \in A. Since n < 2n+2 are from A, we have $4n+8 = 2m+2 \in fA$. But $2m+2 \notin fA$. case 2b. $n \in gB$. Let n = 2r+3, $r \in B$. Now $m = 2n+3 = 4r+9 \in$ B. So $2m+2 = 8r+20 \in fB$, $2m+2 = 8r+20 \in C$. Note that $2r+2 \in$ fB, $2r+2 \in C$, $2r+2 \in A$, $4r+6 \in fA$, $4r+6 \in A$. Since 2r+2 <4r+6 are from A, we have $8r+20 \in fA$. This contradicts C \cap $fA = \emptyset$. QED The following pertains to 5,3'. LEMMA 3.8.20. C U. fA \subseteq A U. qB, B U. fB \subseteq C U. qA has ¬NON. Proof: Define f,g \in ELG as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = 4m+6, f(m,n) = 2m, g(n) = 4n+5. Let C U. $fA \subseteq A$ U. gB, B U. $fB \subseteq C$ U. gA, where A, B, C are nonempty. Let $m \in B$. Then $2m+2 \in fB$, $2m+2 \in C$, $2m+2 \in A$, $4m+6 \in fA$, $2m+2 \notin fA$, $m \notin A$, $m \in C \cup qA$. case 1. $m \in C$. Then $m \in A \cup gB$, $m \in gB$. Let m = 4n+5, $n \in$ B. Since n < m are from B, we have $4m+6 \in fB$, $4m+6 \in C$. This contradicts $C \cap fA = \emptyset$. case 2. $m \in qA$. Let m = 4n+5, $n \in A$. Then $2n+2 \in fA$, $2n+2 \in$ A, $4n+6 \in fA$, $4n+6 \in A$. Since 2n+2 < 4n+6 are from A, we have $8n+12 = 2m+2 \in fA$. Since $2m+2 \in C$, this contradicts C \cap fA = Ø. QED LEMMA 3.8.21. X U. $fA \subseteq A \cup gY$, A U. $fZ \subseteq X \cup gW$ has ¬NON. Proof: Let f be as given by Lemma 3.2.1. Let $g \in ELG$ be defined by q(n) = 2n+1. Let X U. fA \subseteq A U. qY, A U. fZ \subseteq X U. gW, where X, A, Y, Z, W are nonempty.

Let $n \in fA \cap 2N$. Then $n \in A$. Hence $fA \cap 2N \subseteq A$. By Lemma 3.2.1, fA is cofinite. Hence A contains almost all of 2N. Therefore X contains almost all of 2N. This contradicts X \cap $fA = \emptyset$. QED LEMMA 3.8.22. 5,4', 5,5', 5,6' have ¬NON. Proof: By Lemma 3.8.21. QED part 6. C U. $fA \subseteq A \cup gC$. 6,1'. C U. fA \subseteq A U. gC, B U. fB \subseteq C U. gB. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 6,2'. C U. $fA \subseteq A$ U. qC, B U. $fB \subseteq C$ U. qC. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 6,3'. C U. fA \subseteq A U. gC, B U. fB \subseteq C U. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 6,4'. C U. fA \subseteq A U. qC, A U. fB \subseteq C U. qB. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 6,5'. C U. fA \subseteq A U. qC, A U. fB \subseteq C U. qC. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 6,6'. C U. fA \subseteq A U. gC, A U. fB \subseteq C U. gA. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. The following pertains to 6,1'. LEMMA 3.8.23. C U. fA \subseteq A U. gC, B U. fB \subseteq C U. gB has ¬NON. Proof: Define f, $q \in ELG$ as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m, g(n) = 2n+1. Let C U. $fA \subseteq A \cup gC$, $B \cup fB \subseteq C \cup gB$, where A, B, C are nonempty. We claim that for all $t \in A$ and $p \ge 0$, $2g^{p}(t)+2 \in A \cap fA$. To see this, fix $t \in A$ and argue by induction on $p \ge 0$. Obviously $2g^{0}(t)+2 = 2t+2 \in fA$, and so $2g^{0}(t)+2 = 2t+2 \in A \cap$ fA. Suppose $2q^{p}(t)+2 \in A \cap fA$. Note that $2q^{p+1}(t)+2 =$ $2(2q^{p}(t)+1)+2 = 2(2q^{p}(t)+2) \in fA$, since $t < 2q^{p}(t)+2$ are from A. Hence $2q^{p+1}(t) + 2 \in A \cap fA$. Let m = min(B). Then $2m+2 \in fB$, $2m+2 \in C$, $2m+2 \notin fA$, $m \notin A$, $m \in C \cup gB$, $m \notin gB$, $m \in C$, $m \in A \cup gC$, $m \in gC$, $g^{-1}(m) \in C$. Let p be greatest such that $q^{-1}(m), \ldots, q^{-p}(m) \in C.$

Then $p \ge 1$ and $q^{-p}(m) \in C \setminus qC$. Hence $q^{-p}(m) \in A$. By the claim, $2g^{p}(g^{-p}(m))+2 \in A \cap fA$. Hence $2m+2 \in A \cap fA$. Since $2m+2 \in C$, this contradicts $C \cap fA = \emptyset$. QED The following pertains to 6,2'. LEMMA 3.8.24. C U. fA \subseteq A U. gC, B U. fB \subseteq C U. gC has ¬NON. Proof: Define f,g \in ELG as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m, g(n) = 2n+1. Let C U. $fA \subseteq A \cup gC$, $B \cup fB \subseteq C \cup gC$, where A, B, C are nonempty. Let $m \in B$. Then $m \in C \cup qC$. case 1. $m \in C$. Then $m \in A \cup gC$, $m \notin gC$, $m \in A$, $2m+2 \in fA$, $2m+2 \in A$, $2m+2 \in fB$, $2m+2 \in C$. This contradicts $C \cap fA =$ Ø. case 2. $m \in gC$. Let m = 2n+1, $n \in C$. Then $n \notin gC$, $n \in A$, $2n+2 \in fA$, $2n+2 \in A$. Since n < 2n+2 are from A, we have $4n+4 = 2m+2 \in fA$, $2m+2 \in fB$, $2m+2 \in C$. This contradicts C \cap $fA = \emptyset$. QED The following pertains to 6,3'. LEMMA 3.8.25. C U. fA \subseteq A U. gC, B U. fB \subseteq C U. gA has ¬NON. Proof: Define f, $q \in ELG$ as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m, g(n) = 2n+1. Let C U. $fA \subseteq A \cup gC, B \cup fB \subseteq C \cup gA$, where A,B,C are nonempty. As in the proof of Lemma 3.8.23, for all $t \in A$ and $p \ge 0$, $2q^{p}(t)+2 \in A \cap fA.$ Let $m \in B$. Then $2m+2 \in fB$, $2m+2 \in C$, $2m+2 \notin fA$, $m \notin A$, $m \in$ C U qA. case 1. $m \in C$. Then $m \in A \cup qC$, $m \in qC$, $q^{-1}(m) \in C$. Let p be greatest such that $q^{-1}(m), \ldots, q^{-p}(m) \in C$. Then $p \ge 1$ and $q^{-p}(m) \in C \setminus qC$. Hence $q^{-p}(m) \in A$. By the claim, $2q^{p}(q^{-p}(m))+2 \in A \cap fA$. Hence $2m+2 \in A \cap fA$.

```
Since 2m+2 \in C, this contradicts C \cap fA = \emptyset.
case 2. m \in gA. Let m = 2n+1, n \in A. Then 2n+2 \in fA, 2n+2 \in A. Since n < 2n+2 are from A, we have 4n+4 = 2m+2 \in fA.
Since 2m+2 \in C, this contradicts C \cap fA = \emptyset.
```

QED

LEMMA 3.8.26. 6,4', 6,5', 6,6' have ¬NON.

Proof: By Lemma 3.8.21. QED