3.7. AABB.

Recall the reduced AA table from section 3.4.
REDUCED AA

1. $B \cup . f A \subseteq A \cup . g A . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
2. $B \cup . f A \subseteq A \cup$. gB. $\neg I N F . A L . \neg A L F . \neg F I N$. NON.
3. $B \cup . f A \subseteq A \cup . g C . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
4. C U. fA $\subseteq A \cup$. gA. $\neg I N F . A L . \neg A L F . \neg F I N . N O N$.
5. $C \cup . f A \subseteq A \cup . g B . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
6. $C \cup . f A \subseteq A \cup . g C . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.

The reduced BB table is obtained from the reduced AA table by interchanging A, B. We use $1^{\prime}-6^{\prime}$ to avoid any confusion. We use $1^{\prime}-6^{\prime}$ to avoid any confusion.

REDUCED BB
$1^{\prime} . A \cup . f B \subseteq B \cup . g B . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
$2^{\prime} . A \cup . f B \subseteq B \cup . g A . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
$3^{\prime} . A \cup . f B \subseteq B \cup . g C . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
$4^{\prime} . C \cup . f B \subseteq B \cup . g B . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
$5^{\prime} . C \cup . f B \subseteq B \cup . g A . \neg I N F . A L . \neg A L F . \neg F I N . N O N$. $6^{\prime} . C \cup . f B \subseteq B \cup . g C . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.

LEMMA 3.7.1. X U. fA $\subseteq A \cup . g Y, ~ Z U . f B \subseteq B \cup . g W$ has \neg NON, provided $X=B$ or $Z=A$.

Proof: Let f be as given by Lemma 3.2.1. Define $g \in E L G$ by $g(n)=2 n+1$. Let $X \cup . f A \subseteq A \cup . g Y, Z \cup . f B \subseteq B \cup . W$, where A, B, C are nonempty. Assume $X=B$ or $Z=A$.

Clearly fA $\cap 2 \mathrm{~N} \subseteq A$ and $f B \cap 2 \mathrm{~N} \subseteq$ B. By Lemma 3.2.1, fA and $f B$ are cofinite. Hence A, B are infinite. Since $X \cap f A=\varnothing$, we see that X is finite. Since $Z \cap f B=\varnothing$, we see that Z is finite. Hence A is finite or B is finite. This is a contradiction. QED

By Lemma 3.7.1, we can eliminate $B \mathcal{U}$. fA $\subseteq A \cup$. gX from consideration. For the same reason, we can eliminate $A \cup$. $f B \subseteq B U$. $g X$ from consideration. Thus we need only handle the two tables
4. C U. fA \subseteq A U. gA. $\neg I N F . A L . \neg A L F . \neg F I N . N O N$.
5. $C \cup . f A \subseteq A \cup$. gB. $\neg I N F . A L . \neg A L F . \neg F I N . N O N$.
6. $C \cup . f A \subseteq A \cup$. gC. $\neg I N F . A L . \neg A L F . \neg F I N . N O N$.
and
$4^{\prime} . C \cup . f B \subseteq B \cup . g B . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
$5^{\prime} . C \cup . f B \subseteq B \cup$. gA. $\neg I N F . A L . \neg A L F . \neg F I N . N O N$. $6^{\prime} . C \cup . f B \subseteq B \cup . g C . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.

It is clear by switching A,B, that i,j' and i',j are equivalent, where $4 \leq i, j \leq 6$. Hence we need only consider i,j', where i $\leq j^{\prime}$.
$4,4 \prime . C \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq B \cup . g B . \neg I N F . A L$. $\neg A L F . ~ \neg F I N . ~ N O N$.
$4,5^{\prime} . C \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq B \cup . g A . \neg I N F . A L$. $\neg A L F . ~ \neg F I N$. NON.
$4, \sigma^{\prime} . C \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq B \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
5,5'. C $\cup . f A \subseteq A \cup . g B, C \cup . f B \subseteq B \cup . g A . \neg I N F . A L$. $\neg A L F . ~ \neg F I N$. NON.
$5,6^{\prime} . C \cup . f A \subseteq A \cup . g B, C \cup . f B \subseteq B \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$6, \sigma^{\prime} . C \cup . f A \subseteq A \cup . g C, C \cup . f B \subseteq B \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.

As before, all proposition attributes are determined from the above tables, except for AL and NON. So we merely have to determine the status of $A L$ and NON.

LEMMA 3.7.2. 4,4', 4,5', 5,5' have AL.

Proof: From the reduced AA table, C U. fA $\subseteq A \cup$. gA has AL. In the cited pairs, replace B by A. QED

The following pertains to 4,6'.
LEMMA 3.7.3. $\mathrm{C} \cup . \mathrm{fA} \subseteq A \cup . \ln , \mathrm{C} \cup . f B \subseteq B \cup . g C$ has AL.
Proof: Let $f, g \in$ ELG be given and $p>0$. Let $C=[n, n+p]$, where n is sufficiently large. By Lemma 3.3.3, let A be unique such that $A \subseteq[n, \infty) \subseteq A \cup$. gA. Let $B=[n, \infty) \backslash g C$.

Clearly $C \cap f A=C \cap f B=C \cap g A=C \cap g C=\varnothing$. Hence $C \subseteq$ A, B. Also $A \cap g A=B \cap g C=\varnothing$.

Clearly $C \cup f B \subseteq[n, \infty)=B \cup g C$. Also $C \cup f A \subseteq[n, \infty)=A \cup$ gA. QED

The following pertains to 5,6'.
LEMMA 3.7.4. $\mathrm{C} \cup . \mathrm{fA} \subseteq \mathrm{A} \cup . \mathrm{gB}, \mathrm{C} \cup . f B \subseteq B \cup . g C$ has AL.
Proof: Let $f, g \in E L G(N)$ and $p>0$. Let $C=[n, n+p]$, where n is sufficiently large. Let $B=[n, \infty) \backslash g C$ and $A=[n, \infty) \backslash g B$.

Obviously $C \cap f A=C \cap f B=C \cap g C=C \cap g B=A \cap g B=B \cap$ $g C=\varnothing$. Hence $C \subseteq A, B$. Furthermore, $f A \subseteq[n, \infty) \subseteq A \cup g B$, and $f B \subseteq[n, \infty) \subseteq B \cup g C . Q E D$

The following pertains to 6, ' $^{\prime}$.
LEMMA 3.7.5. $\mathrm{C} \cup . \mathrm{fA} \subseteq \mathrm{A} \cup . \mathrm{gC}, \mathrm{C} \cup . f B \subseteq \mathrm{~B} \cup . \mathrm{gC}$ has AL.
Proof: From the reduced AA table, C U. fA $\subseteq A \cup$. gC has AL. Replace B by A in the cited ordered pair. QED

