3.7. AABB.

Recall the reduced AA table from section 3.4.

REDUCED AA

- 1. B U. fA ⊆ A U. gA. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 2. B U. fA \subseteq A U. gB. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 3. B U. fA ⊆ A U. gC. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 4. C U. fA \subseteq A U. gA. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 5. C U. fA ⊆ A U. gB. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 6. C U. fA \subseteq A U. gC. ¬INF. AL. ¬ALF. ¬FIN. NON.

The reduced BB table is obtained from the reduced AA table by interchanging A,B. We use 1'-6' to avoid any confusion. We use 1'-6' to avoid any confusion.

REDUCED BB

- 1'. A U. fB ⊆ B U. gB. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 2'. A U. fB ⊆ B U. gA. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 3'. A U. fB ⊆ B U. gC. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 4'. C U. fB ⊆ B U. gB. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 5'. C U. fB \subseteq B U. gA. \neg INF. AL. \neg ALF. \neg FIN. NON.
- 6'. C U. fB ⊆ B U. qC. ¬INF. AL. ¬ALF. ¬FIN. NON.

LEMMA 3.7.1. X U. fA \subseteq A U. gY, Z U. fB \subseteq B U. gW has \neg NON, provided X = B or Z = A.

Proof: Let f be as given by Lemma 3.2.1. Define $g \in ELG$ by g(n) = 2n+1. Let X U. fA \subseteq A U. gY, Z U. fB \subseteq B U. W, where A,B,C are nonempty. Assume X = B or Z = A.

Clearly fA \cap 2N \subseteq A and fB \cap 2N \subseteq B. By Lemma 3.2.1, fA and fB are cofinite. Hence A,B are infinite. Since X \cap fA = \emptyset , we see that X is finite. Since Z \cap fB = \emptyset , we see that Z is finite. Hence A is finite or B is finite. This is a contradiction. QED

By Lemma 3.7.1, we can eliminate B U. fA \subseteq A U. gX from consideration. For the same reason, we can eliminate A U. fB \subseteq B U. gX from consideration. Thus we need only handle the two tables

- 4. C U. fA ⊆ A U. gA. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 5. C U. fA ⊆ A U. gB. ¬INF. AL. ¬ALF. ¬FIN. NON.
- 6. C U. fA ⊆ A U. gC. ¬INF. AL. ¬ALF. ¬FIN. NON.

and

```
4'. C U. fB ⊆ B U. gB. ¬INF. AL. ¬ALF. ¬FIN. NON.
```

5'. C U. fB ⊆ B U. gA. ¬INF. AL. ¬ALF. ¬FIN. NON.

6'. C U. fB ⊆ B U. qC. ¬INF. AL. ¬ALF. ¬FIN. NON.

It is clear by switching A,B, that i,j' and i',j are equivalent, where $4 \le i,j \le 6$. Hence we need only consider i,j', where $i \le j'$.

4,4'. C U. fA \subseteq A U. gA, C U. fB \subseteq B U. gB. ¬INF. AL. ¬ALF. ¬FIN. NON.

4,5'. C U. fA \subseteq A U. gA, C U. fB \subseteq B U. gA. ¬INF. AL.

¬ALF. ¬FIN. NON.

4,6'. C U. fA \subseteq A U. gA, C U. fB \subseteq B U. gC. ¬INF. AL. ¬ALF. ¬FIN. NON.

5,5'. C U. fA \subseteq A U. gB, C U. fB \subseteq B U. gA. ¬INF. AL. ¬ALF. ¬FIN. NON.

5,6'. C U. fA \subseteq A U. gB, C U. fB \subseteq B U. gC. ¬INF. AL.

 \neg ALF. \neg FIN. NON.

6,6'. C U. fA \subseteq A U. gC, C U. fB \subseteq B U. gC. ¬INF. AL. ¬ALF. ¬FIN. NON.

As before, all proposition attributes are determined from the above tables, except for AL and NON. So we merely have to determine the status of AL and NON.

LEMMA 3.7.2. 4,4', 4,5', 5,5' have AL.

Proof: From the reduced AA table, C U. fA \subseteq A U. gA has AL. In the cited pairs, replace B by A. QED

The following pertains to 4,6'.

LEMMA 3.7.3. C U. fA \subseteq A U. gA, C U. fB \subseteq B U. gC has AL.

Proof: Let f,g \in ELG be given and p > 0. Let C = [n,n+p], where n is sufficiently large. By Lemma 3.3.3, let A be unique such that A \subseteq [n, ∞) \subseteq A U. gA. Let B = [n, ∞)\gC.

Clearly C \cap fA = C \cap fB = C \cap gA = C \cap gC = \emptyset . Hence C \subseteq A,B. Also A \cap gA = B \cap gC = \emptyset .

Clearly C U fB \subseteq [n, ∞) = B U gC. Also C U fA \subseteq [n, ∞) = A U gA. QED

The following pertains to 5,6'.

LEMMA 3.7.4. C U. fA \subseteq A U. gB, C U. fB \subseteq B U. gC has AL.

Proof: Let f,g \in ELG(N) and p > 0. Let C = [n,n+p], where n is sufficiently large. Let B = [n, ∞)\gC and A = [n, ∞)\gB.

Obviously C \cap fA = C \cap fB = C \cap gC = C \cap gB = A \cap gB = B \cap gC = \emptyset . Hence C \subseteq A,B. Furthermore, fA \subseteq [n, ∞) \subseteq A U gB, and fB \subseteq [n, ∞) \subseteq B U gC. QED

The following pertains to 6,6'.

LEMMA 3.7.5. C U. fA \subseteq A U. gC, C U. fB \subseteq B U. gC has AL.

Proof: From the reduced AA table, C U. fA \subseteq A U. gC has AL. Replace B by A in the cited ordered pair. QED