3.6. AABA.

Recall the reduced AA table from section 3.4.
REDUCED AA

1. B \cup. fA \subseteq A \cup. gA. $\neg I N F . A L . \neg A L F . \neg F I N . N O N$.
2. B $\cup . f A \subseteq A \cup . g B . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
3. B $\cup . f A \subseteq A \cup . g C . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.
4. C U. fA \subseteq A U. gA. ᄀINF. AL. ᄀALF. ᄀFIN. NON.
5. C U. fA \subseteq A \cup. gB. $\neg I N F . A L . \neg A L F . \neg F I N . N O N$.
6. $C \cup . f A \subseteq A \cup . g C . \neg I N F . A L . \neg A L F . \neg F I N . N O N$.

Recall the reduced $A B$ table from section 3.5.

REDUCED AB

1. A \cup. f A \subseteq B \cup. gA. INF. AL. ALF. FIN. NON.
2. A \cup. $f A \subseteq B \cup$. $g B$. INF. AL. ALF. FIN. NON.
3. A \cup. $f A \subseteq B \cup$. gC. INF. AL. ALF. FIN. NON.
4. $C \cup(f A \subseteq B \cup$. gA. INF. AL. ALF. FIN. NON.
5. $C \cup$. $f A \subseteq B \cup$. gB. INF. AL. ALF. FIN. NON. 6. $\mathrm{C} \cup . f A \subseteq B \cup . \operatorname{GC}$. INF. AL. ALF. FIN. NON.

The reduced BA table is obtained from the reduced AB table by switching A, B. We use $1^{\prime}-6^{\prime}$ to avoid any confusion.

REDUCED BA
$1^{\prime} . B \cup . f B \subseteq A \cup . g B$. INF. AL. ALF. FIN. NON.
$2^{\prime} . B \cup . f B \subseteq A \cup$. gA. INF. AL. ALF. FIN. NON.
$3^{\prime} . \mathrm{B} \cup . f B \subseteq A \cup . g C . \operatorname{INF} . A L . A L F . F I N$. NON.
$4^{\prime} . \mathrm{C} \cup . f B \subseteq A \cup . \operatorname{GB}$. INF. AL. ALF. FIN. NON.
$5^{\prime} . C \cup . f B \subseteq A \cup$. gA. INF. AL. ALF. FIN. NON. $6^{\prime} . C \cup . f B \subseteq A \cup$. gC. INF. AL. ALF. FIN. NON.

We consider all 36 pairs, arranged in cases according to the first clause of the ordered pair.

The status of all of our proposition attributes are determined by the reduced AA table except AL and NON. Thus, we need only obtain the status of AL and NON.
part 1. B U. fA $\subseteq A \cup . g A$.
$1,1^{\prime} . B \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq A \cup . g B . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . N O N$.
$1,2^{\prime} . B \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq A \cup . g A . \neg I N F . A L$. $\neg A L F . ~ \neg F I N . ~ N O N$.
$1,3^{\prime} . B \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq A \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$1,4^{\prime} . B \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq A \cup . g B . \neg I N F . \neg A L$. $\neg A L F . \neg F I N$. NON.
$1,5^{\prime} . \mathrm{B} \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq A \cup . g A . \neg I N F . A L$. $\neg A L F . ~ \neg F I N . ~ N O N$.
$1, \sigma^{\prime} . \mathrm{B} \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq A \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N$. NON.

LEMMA 3.6.1. There exists $g \in E L G \cap$ SD such that the following holds. Suppose $A \cup g B$ is cofinite and $A \cap g A=\varnothing$. Then $A \subseteq B$. We can require that rng(g) $\subseteq 2 N+1$. Furthermore, we can require that for all X and $n, 4 n+3 \in g X \leftrightarrow n \in X$.

Proof: Define $g \in E L G \cap \operatorname{SD}$ as follows. For all m $>\mathrm{n}$, define

$$
g\left(n, 4 m^{2}+4 n+1\right)=16 m^{2}+4 n+1 .
$$

For all other pairs p,q, define

$$
g(p, q)=4|p, q|+3 .
$$

Let $A \cup g B$ be cofinite and $A \cap g B=\varnothing$. Let $n \in A \backslash B$. We derive a contradiction.

Note that the last two requirements on g hold.
We first claim that

$$
\mathrm{m}>\mathrm{n} \rightarrow 4 \mathrm{~m}^{2}+4 \mathrm{n}+1 \notin \mathrm{gB} .
$$

To see this, let $m>n, 4 m^{2}+4 n+1 \in g B$. Note that $4 m^{2}+4 n+1 \equiv$ $1 \bmod 4$. Hence for some $n^{\prime}, m^{\prime} \in B, m^{\prime}>n^{\prime}$, we have

$$
4 \mathrm{~m}^{2}+4 \mathrm{n}+1=\mathrm{g}\left(\mathrm{n}^{\prime}, \mathrm{m}^{\prime}\right)=16 \mathrm{~m}^{\prime 2}+4 \mathrm{n}^{\prime}+1
$$

Since $n \notin B$ and $n^{\prime} \in B$, we have $n \neq n^{\prime}$. Also

$$
\begin{gathered}
16 m^{\prime 2}-4 m^{2}=4 n-4 n^{\prime} . \\
4 m^{\prime 2}-m^{2}=n-n^{\prime} . \\
\left(2 m^{\prime}-m\right)\left(2 m^{\prime}+m\right)=n-n^{\prime} . \\
2 m^{\prime}-m \neq 0 . \\
2 m^{\prime}+m>2 n^{\prime}+n \\
2 n^{\prime}+n<\left|\left(2 m^{\prime}-m\right)\left(2 m^{\prime}+m\right)\right|=\left|n-n^{\prime}\right| \leq n+n^{\prime} .
\end{gathered}
$$

$$
n^{\prime}<0 .
$$

Now fix $m>n$, where $4 m^{2}+4 n+1,16 m^{2}+4 n+1 \in A \cup g B$. By the first claim applied to m and to 2 m , we have

$$
\begin{gathered}
4 m^{2}+4 n+1, \quad 16 m^{2}+4 n+1 \notin g B . \\
4 m^{2}+4 n+1, \quad 16 m^{2}+4 n+1 \in A . \\
n \in A . \\
g\left(n, 4 m^{2}+4 n+1\right)=16 m^{2}+4 n+1 \in g A .
\end{gathered}
$$

This contradicts $A \cap$ gA $=\varnothing$. QED
LEMMA 3.6.2. B $\cup . f A \subseteq X \cup . g X, f B \subseteq X \cup . g B$ has $\neg A L$.
Proof: Let f be given by Lemma 3.2.2. Let g be as given by Lemma 3.6.1. Let $B \cup$. fA $\subseteq x \cup$. gX, $f B \subseteq X \cup$. gB, where A, B, C have at least two elements. We now use Lemma 3.2.2 to show that $f B$ is cofinite.

Let $\mathrm{n} \in \mathrm{fB} \cap 2 \mathrm{~N}, 4 \mathrm{n}+3 \in \mathrm{fB}$. Then $\mathrm{n} \in \mathrm{X}, 4 \mathrm{n}+3 \in \mathrm{gX}, 4 \mathrm{n}+3 \notin$ X. Since $4 n+3 \in f B$, we have $4 n+3 \in g B$. Hence $n \in B$. We have thus established that $(\forall n \in f B \cap 2 N)(4 n+3 \in f B \rightarrow n \in B)$. By Lemma 3.2.2, fB is cofinite.

We have thus established that $X U g B$ is cofinite and $X \cap g X$ $=\varnothing$. By Lemma 3.6.1, $X \subseteq B$. By Lemma 3.2.2, fA has an even element $2 r$. Hence $2 r \in X, 2 r \in B$. This contradicts $B \cap f A=$ \varnothing. QED

LEMMA 3.6.3. 1,1', 1,4' have ᄀAL.
Proof: By Lemma 3.6.2, setting $X=A$. QED
The following pertains to $1,6^{\prime}$.
LEMMA 3.6.4. $\mathrm{B} \cup . \mathrm{fA} \subseteq \mathrm{A} \cup . \mathrm{gA}, \mathrm{C} \cup . \mathrm{fB} \subseteq \mathrm{A} \cup . \mathrm{gC}$ has $\neg A L$.
Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=4 m+5, g(n)=2 n+1$. Let B $\cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq A \cup$. gC, where A, B, C have at least two elements. Let $\mathrm{n}<\mathrm{m}$ be from B.

Clearly $2 \mathrm{~m}+2,4 \mathrm{~m}+5 \in \mathrm{fB}, 2 \mathrm{~m}+2 \notin \mathrm{C}, 4 \mathrm{~m}+5 \notin \mathrm{gC}, 4 \mathrm{~m}+5 \in \mathrm{~A}, 4 \mathrm{~m}+5$ $\notin \mathrm{gA}, 2 \mathrm{~m}+2 \notin \mathrm{~A}, 2 \mathrm{~m}+2 \in \mathrm{gC}$. This is impossible since g is odd valued. QED

The following pertains to 1,2', 1,5'.

LEMMA 3.6.5. $X \cup . f A \subseteq A \cup . g A, Y \cup . f B \subseteq A \cup . g A$ has AL, provided $X, Y \in\{B, C\}$.

Proof: Let $f, g \in E L G$ and $p>0$. Let $B=C=[n, n+p]$, where n is sufficiently large. By Lemma 3.3.3, let A be unique such that $A \subseteq[n, \infty) \subseteq A \cup$. gA.

Obviously $X \cap f A=X \cap g A=A \cap g A=Y \cap f B=\varnothing$. Hence B, C $\subseteq A . A l s o f A, f B \subseteq[n, \infty) \subseteq A \cup$ gA. QED

The following pertains to 1, $\mathbf{3}^{\prime}$.
LEMMA 3.6.6. $\mathrm{B} \cup . \mathrm{fA} \subseteq A \cup . g A, B \cup . f B \subseteq A \cup . g C$ has AL.
Proof: By Lemma 3.6.5, B U. fA $\subseteq A \cup . g A, B \cup . f B \subseteq A \cup$. gA has AL. Replace C by A in the cited pair. QED

LEMMA 3.6.7. $X \cup . f A \subseteq A \cup . g A, Y \cup . f Z \subseteq A \cup . g W$ has NON, provided $X, Y, Z, W \in\{B, C\}$.

Proof: Let $f, g \in$ ELG. Let n be sufficiently large.
case 1. $f(n, \ldots, n)=g(n, \ldots, n)$. Let $A=B=C=\{n\}$.
case 2. $f(n, \ldots, n) \neq g(n, \ldots, n)$ Let $B=C=\{n\}$. By Lemma 3.3.3, let A be unique such that $A \subseteq[f(n, \ldots, n), \infty) \cup\{n\} \subseteq$ A \cup. gA.

In case 1, both inclusions have the same left and right sides, and are easily verified.

We assume case 2 holds. Obviously $B \cap f A=B \cap f B=A \cap g A$ $=\varnothing$. Also $n \in A$, and hence $X \subseteq A$ and $Y \subseteq A$. Since $g(n, \ldots, n) \in g A$, we have $g(n, \ldots, n) \notin A$. Hence $A \cap g B=A \cap$ $g C=\varnothing$.

We have thus shown that $X \cap f A=A \cap g A=Y \cap f Z=A \cap g W$ $=\varnothing$.

Note that $f(n, \ldots, n) \notin g A$. To see this, let $f(n, \ldots, n)=$ $g\left(b_{1}, \ldots, b_{r}\right), b_{1}, \ldots, b_{r} \in A . C l e a r l y$ not every b_{i} is n. Hence some b_{i} is at least $f(n, \ldots, n)$. This is a contradiction.

Since $f(n, \ldots, n) \notin g A$, we see that $f(n, \ldots, n) \in A$. Hence $f Z$ $\subseteq A$. Also $f A \subseteq[f(n, \ldots, n), \infty) \subseteq A \cup$ gA. QED

LEMMA 3.6.8. 1, $1^{\prime}, 1,4^{\prime}, 1,6^{\prime}$ have NON.
Proof: Immediate from Lemma 3.6.7. QED
part 2. B $\cup . f A \subseteq A \cup$. $g B$.
$2,1^{\prime} . B \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq A \cup . g B . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$2,2^{\prime} . B \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq A \cup . g A . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$2,3^{\prime} . B \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq A \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$2,4^{\prime} . B \cup . f A \subseteq A \cup . g B, C \cup . f B \subseteq A \cup . g B . \neg I N F . A L$. $\neg A L F . ~ \neg F I N$. NON.
$2,5^{\prime} . B \cup . f A \subseteq A \cup . g B, C \cup . f B \subseteq A \cup . g A . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . \neg N O N$.
$2,6^{\prime} . B \cup . f A \subseteq A \cup . g B, C \cup . f B \subseteq A \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.

The following pertains to 2,1', 2,3', 2,4', 2,6'.
LEMMA 3.6.9. $\mathrm{X} \cup \mathrm{U} . \mathrm{fA} \subseteq \mathrm{A} \cup . \operatorname{gY}, \mathrm{Z} \cup . f B \subseteq A \cup . g W$ has AL, provided $X, Y, Z, W \in\{B, C\}$.

Proof: Let $f, g \in E L G$ and $p>0$. Let $B=C=[n, n+p]$, where n is sufficiently large. Let $A=[n, \infty) \backslash g B$. Then A is infinite.

Clearly $B \cap f A=C \cap f A=B \cap f B=C \cap f B=A \cap g B=A \cap$ $g C=B \cap g B=C \cap g B=\varnothing$. Hence $B, C \subseteq A$. Also $f A, f B \subseteq$ $[n, \infty) \subseteq A \cup g B=A \cup g C \cdot Q E D$

LEMMA 3.6.10. fA $\subseteq A \cup . g B, B \cap f A=A \cap g A=\varnothing$ has $\neg N O N$.
Proof: Let f be given by Lemma 3.2.1. Define $g \in E L G$ by $g(n)=2 n+1$. Let $f A \subseteq A \cup . g B, B \cap f A=A \cap g A=\varnothing$, where A, B, C are nonempty.

Obviously fA $\cap 2 \mathrm{~N} \subseteq \mathrm{~A}$. By Lemma 3.2.1, fA is cofinite. Since $A \cap g A=\varnothing$, we see that A is not cofinite. Since fA \subseteq $A \cup g B$ and $f A$ is cofinite, we see that $g B$ is infinite. Hence B is infinite. This contradicts $B \cap f A=\varnothing$. $Q E D$

LEMMA 3.6.11. 2,2', 2,5' have \neg NON.
Proof: Immediate from Lemma 3.6.10. QED
part $3 . \mathrm{B} \cup . f A \subseteq A \cup . g C$.
3.1'. B $\cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq A \cup . g B . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$3,2^{\prime} . B \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq A \cup . g A . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$3,3^{\prime} . B \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq A \cup . g C . \neg I N F . A L$. $\neg A L F . ~ \neg F I N$. NON.
3, 4'. B $\cup . f A \subseteq A \cup . g C, C \cup . f B \subseteq A \cup . g B . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$3,5^{\prime} . \mathrm{B} \cup . f A \subseteq A \cup . g C, C \cup . f B \subseteq A \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$3,6^{\prime} . B \cup . f A \subseteq A \cup . g C, C \cup . f B \subseteq A \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N . N O N$.

LEMMA 3.6.12. 3, $\mathbf{1}^{\prime}, 3,3^{\prime}, 3,4^{\prime}, 3,6^{\prime}$ have AL.
Proof: By Lemma 3.6.9. QED
The following pertains to 3,2'.
LEMMA 3.6.13. $B \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq A \cup . g A$ has AL.
Proof: By Lemma 3.6.5, B U. fA $\subseteq A \cup . g A, B \cup . f B \subseteq A \cup$. gA has AL. Replace C by A in the cited ordered pair. QED

The following pertains to 3,5'.
LEMMA 3.6.14. $\mathrm{B} \cup . \mathrm{fA} \subseteq \mathrm{A} \cup . \mathrm{gC}, \mathrm{C} \cup . \mathrm{fB} \subseteq \mathrm{A} \cup . \mathrm{gA}$ has \neg NON.

Proof: For $n<m, d e f i n e f(n, n, n)=2 n+2, f(n, m, m)=4 m+5$, $f(n, n, m)=2 m+1, f(m, n, n)=8 m+9$. Define $f(a, b, c)=$ $2|a, b, c|+1$ for all other triples a, b, c. Define $g(n)=4 n+5$. Obviously f,g \in ELG.

Let $B \cup . f A \subseteq A \cup . g C, C \cup . f B \subseteq A \cup$. CA, where $A, B, C \subseteq N$ are nonempty. Let $n \in B$. Then $n \in A \cup g C$.
case 1. $n \in A$. Then $2 n+2 \in f A, 2 n+2 \in A, 8 n+13 \in f A, g A$, $8 \mathrm{n}+13 \notin \mathrm{~A}, 8 \mathrm{n}+13 \in \mathrm{gC}, 2 \mathrm{n}+2 \in \mathrm{C}, 2 \mathrm{n}+2 \in \mathrm{fB}$. This contradicts $C \cap f B=\varnothing$.
case $2 . n \in g C$. Let $n=4 m+5, m \in C$. Then $m \in A \cup g A$.
case $2 \mathrm{a} . \mathrm{m} \in \mathrm{A}$. Then $2 \mathrm{~m}+2 \in \mathrm{fA}, 2 \mathrm{~m}+2 \in \mathrm{~A}, 4 \mathrm{~m}+5 \in \mathrm{fA}, 4 \mathrm{~m}+5=$ $\mathrm{n} \in \mathrm{B}$. This contradicts $\mathrm{B} \cap \mathrm{fA}=\varnothing$.
case $2 \mathrm{~b} . \mathrm{m} \in \mathrm{gA}$. Let $\mathrm{m}=4 \mathrm{r}+5, \mathrm{r} \in \mathrm{A}$. Then $2 \mathrm{r}+2 \in \mathrm{fA}, 2 \mathrm{r}+2$ $\in A$. Since $n=4 m+5$ and $m=4 r+5$, we have $n=16 r+25$. Hence $n=f(2 r+2, r, r) \in f A, n \in B$. This contradicts $B \cap f A=\varnothing$. QED
part 4. C U. fA $\subseteq A \cup$. gA.
$4,1^{\prime} . C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq A \cup . g B . \neg I N F . \neg A L$. $\neg A L F . \neg F I N$. NON.
$4,2^{\prime} . C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq A \cup . g A . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$4,3^{\prime} . C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq A \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N$. NON.
$4,4^{\prime} . C \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq A \cup . g B . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$4,5^{\prime} . C \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq A \cup . g A . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$4,6^{\prime} . C \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq A \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N$. NON.

The following pertains to 4,1'.
LEMMA 3.6.15. fA $\subseteq A \cup . g A, B \cup . f B \subseteq A \cup . g B$ has $\neg A L$.
Proof: Define f,g \in ELG as follows. For all $n<m$, let $\mathrm{f}(\mathrm{n}, \mathrm{n})=2 \mathrm{n}, \mathrm{f}(\mathrm{n}, \mathrm{m})=\mathrm{f}(\mathrm{m}, \mathrm{n})=4 \mathrm{~m}+1, \mathrm{~g}(\mathrm{n})=2 \mathrm{n}+1$. Let $\mathrm{fA} \subseteq$ $A \cup . g A, B \cup . f B \subseteq A \cup$. gB, where A, B, C have at least two elements. Let $\mathrm{n}<\mathrm{m}$ be from B .

Note that $2 \mathrm{~m} \in \mathrm{fB}, 2 \mathrm{~m} \in \mathrm{~A}, 2 \mathrm{~m} \notin \mathrm{~B}, 4 \mathrm{~m}+1 \notin \mathrm{gB}, 4 \mathrm{~m}+1 \in \mathrm{fB}$, $4 \mathrm{~m}+1 \in \mathrm{~A}, 4 \mathrm{~m}+1 \in \mathrm{gA}$. This contradicts $\mathrm{A} \cap \mathrm{gA}=\varnothing$. QED

LEMMA 3.6.16. 4,2', 4,5' have AL.
Proof: By Lemma 3.6.5. QED
The following pertains to 4, 3'.
LEMMA 3.6.17. $C \cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq A \cup . g C$ has $\neg A L$.

Proof: Define f,g \in ELG as follows. For all $n<m, ~ l e t$ $f(n, n)=2 n, f(n, m)=4 m, f(m, n)=8 m+1, g(n)=2 n+1$. Let C $\cup . f A \subseteq A \cup . g A, B \cup . f B \subseteq A \cup$. gC, where A, B, C have at least two elements. Let $\mathrm{n}<\mathrm{m}$ be from B .

Clearly $2 \mathrm{~m} \in \mathrm{fB}, 2 \mathrm{~m} \in \mathrm{~A}, 2 \mathrm{~m} \notin \mathrm{~B}, 4 \mathrm{~m} \in \mathrm{fB}, 4 \mathrm{~m} \in \mathrm{~A}, 4 \mathrm{~m} \notin \mathrm{~B}$, $8 \mathrm{~m}+1 \in \mathrm{gA}, 8 \mathrm{~m}+1 \notin \mathrm{~A}, 8 \mathrm{~m}+1 \in \mathrm{fB}, 8 \mathrm{~m}+1 \in \mathrm{gC}, 4 \mathrm{~m} \in \mathrm{C}, 4 \mathrm{~m} \in$ fA. This contradicts $C \cap f A=\varnothing$. QED

The following pertains to 4, 4'.
LEMMA 3.6.18. $C \cup . f A \subseteq A \cup . g A, C \cup . f B \subseteq A \cup . g B$ has $A L$.
Proof: From the reduced AA table, C U. fA \subseteq A U. gA has AL. Replace B by A in the cited ordered pair. QED

The following pertains to 4, $\mathbf{6}^{\prime}$.
LEMMA 3.6.19. $\mathrm{C} \cup . \mathrm{f} \subseteq \subseteq \mathrm{A} \cup . \mathrm{gA}, \mathrm{C} \cup . f B \subseteq \mathrm{~A} \cup . \mathrm{gC}$ has $\neg A L$.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n, f(n, m)=f(m, n)=4 m+1, g(n)=2 n+1$. Let $C U$. $f A \subseteq A \cup . g A, C \cup . f B \subseteq A \cup . g C$, where A, B, C have at least two elements. Let $\mathrm{n}<\mathrm{m}$ be from B .

Clearly $2 \mathrm{~m} \in \mathrm{fB}, 2 \mathrm{~m} \in \mathrm{~A}, 4 \mathrm{~m}+1 \in \mathrm{gA}, 4 \mathrm{~m}+1 \notin \mathrm{~A}, 4 \mathrm{~m}+1 \in \mathrm{fB}$, $4 \mathrm{~m}+1 \in \mathrm{gC}, 2 \mathrm{~m} \in \mathrm{C}$. This contradicts $\mathrm{C} \cap \mathrm{fB}=\varnothing$. QED

LEMMA 3.6.20. 4,1', 4,3', 4,6' have NON.
Proof: By Lemma 3.6.7, $X \cup . f A \subseteq A \cup . g A, Y \cup . f Z \subseteq A \cup$. gW has NON, provided $X, Y, Z, W \in\{B, C\}$. QED
part 5. C $\cup . f A \subseteq A \cup . g B$.
5, $1^{\prime} . C \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq A \cup . g B . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$5,2^{\prime} . C \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq A \cup . g A . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$5,3^{\prime} . C \cup . f A \subseteq A \cup . g B, B \cup . f B \subseteq A \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$5,4^{\prime} . C \cup . f A \subseteq A \cup . g B, C \cup . f B \subseteq A \cup . g B . \neg I N F . A L$. $\neg A L F . \neg F I N$. NON.
$5,5^{\prime} . C \cup . f A \subseteq A \cup . g B, C \cup . f B \subseteq A \cup . g A . \neg I N F . A L$. $\neg A L F . ~ \neg F I N$. NON.
$5, \sigma^{\prime} . C \cup . f A \subseteq A \cup . g B, C \cup . f B \subseteq A \cup . g C . \neg I N F . A L$. $\neg A L F . ~ \neg F I N$. NON.

LEMMA 3.6.21. 5, $\mathbf{1}^{\prime}, 5,3^{\prime}, 5,4^{\prime}, 5,6^{\prime}$ have AL.

Proof: By Lemma 3.6.9, $X \cup . f A \subseteq A \cup . g Y, \quad$ Z $\cup . f B \subseteq A \cup$. gW has AL, provided $X, Y, Z, W \in\{B, C\}$. QED

The following pertains to 5, 5'.

LEMMA 3.6.22. $\mathrm{C} \cup . \mathrm{fA} \subseteq A \cup . \ln , \mathrm{C} \cup . \mathrm{fB} \subseteq A \cup . g A$ has AL.

Proof: From the reduced table for $A A$, we see that $C \cup . f A \subseteq$ A U. gA has AL. In the cited ordered pair, replace B by A. QED

The following pertains to $5,2^{\prime}$.

LEMMA 3.6.23. fA $\subseteq A \cup . \operatorname{GB}, \mathrm{B} \cup . \mathrm{fB} \subseteq A \cup . g A$ has $\neg \mathrm{NON}$.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(m, n)=f(n, m)=2 m+1, g(n)=2 n+1$. Let $f A$ $\subseteq A \cup . g B, B \cup . f B \subseteq A \cup . g A$, where A, B are nonempty.

Let $n \in A$. Then $2 n+2 \in f A, 2 n+2 \in A, 4 n+5 \in g A, 4 n+5 \notin A$. Since $n<2 n+2$ are from A, we have $4 n+5 \in f A, 4 n+5 \in g B$, $2 n+2 \in B, 4 n+6 \in f B, 4 n+6 \in A$. Since $n<4 n+6$ are from A, we have $8 n+13 \in f A, 8 n+13 \in g A, 8 n+13 \notin A, 8 n+13 \in g B, 4 n+6$ $\in B$. This contradicts $B \cap f B=\varnothing . Q E D$
part 6. $\mathrm{C} \cup . \mathrm{f} A \subseteq A \cup . g C$.
$6,1^{\prime} . C \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq A \cup . g B . \neg I N F . A L$. $\neg A L F . \neg F I N . N O N$.
 $\neg A L F . \neg F I N . \neg N O N$.
$6,3^{\prime} . C \cup . f A \subseteq A \cup . g C, B \cup . f B \subseteq A \cup . g C . \neg I N F . A L$. $\neg A L F . \neg F I N . N O N$.
$6,4^{\prime} . C \cup . f A \subseteq A \cup . g^{\prime} \subseteq C \cup . f B \subseteq A \cup . \quad g B . \neg I N F . A L$. $\neg A L F . \neg F I N . N O N$.
6, 5'. $C \cup . f A \subseteq A \cup . g C, C \cup . f B \subseteq A \cup . g A . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . \neg N O N$.
 $\neg A L F . \neg F I N . N O N$.

LEMMA 3.6.24. 6, $1^{\prime}, 6,3^{\prime}, 6,4^{\prime}, 6,6^{\prime}$ have AL.

Proof: By Lemma 3.6.9, X U. fA $\subseteq A \cup . \quad$ gY, Z U. fB $\subseteq A \cup$. gW has $A L, ~ p r o v i d e d ~ X, Y, Z, W \in\{B, C\} . Q E D$

The following pertains to $6,2^{\prime}$ and 6,5'.

LEMMA 3.6.25. $\mathrm{C} \cup \mathrm{U} . \mathrm{fA} \subseteq \mathrm{A} \cup . \mathrm{gC}, \mathrm{A} \cap \mathrm{gA}=\varnothing$ has $\neg \mathrm{NON}$.
Proof: Let f be as given by Lemma 3.2.1. Define $g \in E L G$ by $g(n)=2 n+1$. Let $C \cup . f A \subseteq A \cup . g C, A \cap g A=\varnothing$, where A, B, C are nonempty.

We claim that $f A \cap 2 \mathrm{~N} \subseteq A$. To see this, let $n \in f A \cap 2 N$. Then $n \notin g C$, and so $n \in A$.

By Lemma 3.2.1, fA is cofinite. Hence C is finite. Therefore $g C$ is finite. Hence A is cofinite. Therefore gA is infinite. This contradicts $A \cap g A=\varnothing$. $Q E D$

