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3.6. AABA. 
 
Recall the reduced AA table from section 3.4. 
 
REDUCED AA 
 
1. B ∪. fA ⊆ A ∪. gA.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
2. B ∪. fA ⊆ A ∪. gB.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
3. B ∪. fA ⊆ A ∪. gC.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
4. C ∪. fA ⊆ A ∪. gA.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. C ∪. fA ⊆ A ∪. gB.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. C ∪. fA ⊆ A ∪. gC.  ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
Recall the reduced AB table from section 3.5. 
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
The reduced BA table is obtained from the reduced AB table 
by switching A,B. We use 1’-6’ to avoid any confusion. 
 
REDUCED BA 
 
1’. B ∪. fB ⊆ A ∪. gB. INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ A ∪. gA. INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ A ∪. gC. INF. AL. ALF. FIN. NON. 
4’. C ∪. fB ⊆ A ∪. gB. INF. AL. ALF. FIN. NON. 
5’. C ∪. fB ⊆ A ∪. gA. INF. AL. ALF. FIN. NON. 
6’. C ∪. fB ⊆ A ∪. gC. INF. AL. ALF. FIN. NON. 
 
We consider all 36 pairs, arranged in cases according to 
the first clause of the ordered pair. 
 
The status of all of our proposition attributes are 
determined by the reduced AA table except AL and NON. Thus, 
we need only obtain the status of AL and NON. 
 
part 1. B ∪. fA ⊆ A ∪. gA.  
 
1,1’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
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1,2’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
1,3’. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
1,4’. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
1,5’. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON.  
1,6’. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.6.1. There exists g ∈ ELG ∩ SD such that the 
following holds. Suppose A ∪ gB is cofinite and A ∩ gA = ∅. 
Then A ⊆ B. We can require that rng(g) ⊆ 2N+1. Furthermore, 
we can require that for all X and n, 4n+3 ∈ gX ↔ n ∈ X. 
 
Proof: Define g ∈ ELG ∩ SD as follows. For all m > n, 
define  
 

g(n,4m2+4n+1) = 16m2+4n+1. 
 
For all other pairs p,q, define  
 

g(p,q) = 4|p,q|+3. 
 
Let A ∪ gB be cofinite and A ∩ gB = ∅. Let n ∈ A\B. We 
derive a contradiction.  
 
Note that the last two requirements on g hold. 
 
We first claim that  
 

m > n → 4m2+4n+1 ∉ gB. 
 
To see this, let m > n, 4m2+4n+1 ∈ gB. Note that 4m2+4n+1 ≡ 
1 mod 4. Hence for some n’,m’ ∈ B, m’ > n’, we have  
 

4m2+4n+1 = g(n’,m’) = 16m’2+4n’+1. 
 
Since n ∉ B and n’ ∈ B, we have n ≠ n’. Also  
 

16m’2 - 4m2 = 4n - 4n’. 
4m’2 - m2 = n - n’. 

(2m’ - m)(2m’ + m) = n - n’. 
2m’ - m ≠ 0. 

2m’ + m > 2n’ + n. 
2n’ + n < |(2m’ - m)(2m’ + m)| = |n - n’| ≤ n + n’. 
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n’ < 0. 
 
Now fix m > n, where 4m2+4n+1, 16m2+4n+1 ∈ A ∪ gB. By the 
first claim applied to m and to 2m, we have 
 

4m2+4n+1, 16m2+4n+1 ∉ gB. 
4m2+4n+1, 16m2+4n+1 ∈ A. 

n ∈ A. 
g(n,4m2+4n+1) = 16m2+4n+1 ∈ gA. 

 
This contradicts A ∩ gA = ∅. QED 
 
LEMMA 3.6.2. B ∪. fA ⊆ X ∪. gX, fB ⊆ X ∪. gB has ¬AL.  
 
Proof: Let f be given by Lemma 3.2.2. Let g be as given by 
Lemma 3.6.1. Let B ∪. fA ⊆ X ∪. gX, fB ⊆ X ∪. gB, where 
A,B,C have at least two elements. We now use Lemma 3.2.2 to 
show that fB is cofinite. 
 
Let n ∈ fB ∩ 2N, 4n+3 ∈ fB. Then n ∈ X, 4n+3 ∈ gX, 4n+3 ∉ 
X. Since 4n+3 ∈ fB, we have 4n+3 ∈ gB. Hence n ∈ B. We have 
thus established that (∀n ∈ fB ∩ 2N)(4n+3 ∈ fB → n ∈ B). 
By Lemma 3.2.2, fB is cofinite. 
 
We have thus established that X ∪ gB is cofinite and X ∩ gX 
= ∅. By Lemma 3.6.1, X ⊆ B. By Lemma 3.2.2, fA has an even 
element 2r. Hence 2r ∈ X, 2r ∈ B. This contradicts B ∩ fA = 
∅. QED  
 
LEMMA 3.6.3. 1,1’, 1,4’ have ¬AL. 
 
Proof: By Lemma 3.6.2, setting X = A. QED 
 
The following pertains to 1,6’. 
 
LEMMA 3.6.4. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 4m+5, g(n) = 2n+1. Let B 
∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC, where A,B,C have at 
least two elements. Let n < m be from B. 
 
Clearly 2m+2,4m+5 ∈ fB, 2m+2 ∉ C, 4m+5 ∉ gC, 4m+5 ∈ A, 4m+5 
∉ gA, 2m+2 ∉ A, 2m+2 ∈ gC. This is impossible since g is 
odd valued. QED 
 
The following pertains to 1,2’, 1,5’. 
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LEMMA 3.6.5. X ∪. fA ⊆ A ∪. gA, Y ∪. fB ⊆ A ∪. gA has AL, 
provided X,Y ∈ {B,C}. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = C = [n,n+p], where 
n is sufficiently large. By Lemma 3.3.3, let A be unique 
such that A ⊆ [n,∞) ⊆ A ∪. gA.  
 
Obviously X ∩ fA = X ∩ gA = A ∩ gA = Y ∩ fB = ∅. Hence B,C 
⊆ A. Also fA,fB ⊆ [n,∞) ⊆ A ∪ gA. QED 
 
The following pertains to 1,3’. 
 
LEMMA 3.6.6. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC has AL. 
 
Proof: By Lemma 3.6.5, B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. 
gA has AL. Replace C by A in the cited pair. QED 
 
LEMMA 3.6.7. X ∪. fA ⊆ A ∪. gA, Y ∪. fZ ⊆ A ∪. gW has NON, 
provided X,Y,Z,W ∈ {B,C}. 
 
Proof: Let f,g ∈ ELG. Let n be sufficiently large.  
 
case 1. f(n,...,n) = g(n,...,n). Let A = B = C = {n}.  
 
case 2. f(n,...,n) ≠ g(n,...,n). Let B = C = {n}. By Lemma 
3.3.3, let A be unique such that A ⊆ [f(n,...,n),∞) ∪ {n} ⊆ 
A ∪. gA. 
 
In case 1, both inclusions have the same left and right 
sides, and are easily verified.  
 
We assume case 2 holds. Obviously B ∩ fA = B ∩ fB = A ∩ gA 
= ∅. Also n ∈ A, and hence X ⊆ A and Y ⊆ A. Since 
g(n,...,n) ∈ gA, we have g(n,...,n) ∉ A. Hence A ∩ gB = A ∩ 
gC = ∅.  
 
We have thus shown that X ∩ fA = A ∩ gA = Y ∩ fZ = A ∩ gW 
= ∅. 
 
Note that f(n,...,n) ∉ gA. To see this, let f(n,...,n) = 
g(b1,...,br), b1,...,br ∈ A. Clearly not every bi is n. Hence 
some bi is at least f(n,...,n). This is a contradiction.  
 
Since f(n,...,n) ∉ gA, we see that f(n,...,n) ∈ A. Hence fZ         
⊆ A. Also fA ⊆ [f(n,...,n),∞) ⊆ A ∪ gA. QED 
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LEMMA 3.6.8. 1,1’, 1,4’, 1,6’ have NON. 
 
Proof: Immediate from Lemma 3.6.7. QED  
 
part 2. B ∪. fA ⊆ A ∪. gB.  
 
2,1’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,2’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,3’. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,4’. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
2,5’. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,6’. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
The following pertains to 2,1’, 2,3’, 2,4’, 2,6’. 
 
LEMMA 3.6.9. X ∪. fA ⊆ A ∪. gY, Z ∪. fB ⊆ A ∪. gW has AL, 
provided X,Y,Z,W ∈ {B,C}. 
 
Proof: Let f,g ∈ ELG and p > 0. Let B = C = [n,n+p], where 
n is sufficiently large. Let A = [n,∞)\gB. Then A is 
infinite.  
 
Clearly B ∩ fA = C ∩ fA = B ∩ fB = C ∩ fB = A ∩ gB = A ∩ 
gC = B ∩ gB = C ∩ gB = ∅. Hence B,C ⊆ A. Also fA,fB ⊆ 
[n,∞) ⊆ A ∪ gB = A ∪ gC. QED 
 
LEMMA 3.6.10. fA ⊆ A ∪. gB, B ∩ fA = A ∩ gA = ∅ has ¬NON. 
 
Proof: Let f be given by Lemma 3.2.1. Define g ∈ ELG by 
g(n) = 2n+1. Let fA ⊆ A ∪. gB, B ∩ fA = A ∩ gA = ∅, where 
A,B,C are nonempty. 
 
Obviously fA ∩ 2N ⊆ A. By Lemma 3.2.1, fA is cofinite. 
Since A ∩ gA = ∅, we see that A is not cofinite. Since fA ⊆ 
A ∪ gB and fA is cofinite, we see that gB is infinite. 
Hence B is infinite. This contradicts B ∩ fA = ∅. QED 
 
LEMMA 3.6.11. 2,2’, 2,5’ have ¬NON. 
 
Proof: Immediate from Lemma 3.6.10. QED 
 



 6 

part 3. B ∪. fA ⊆ A ∪. gC. 
 
3.1’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,2’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,3’. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,4’. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
3,5’. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,6’. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.6.12. 3,1’, 3,3’, 3,4’, 3,6’ have AL.  
 
Proof: By Lemma 3.6.9. QED 
 
The following pertains to 3,2’. 
 
LEMMA 3.6.13. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gA has AL. 
 
Proof: By Lemma 3.6.5, B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. 
gA has AL. Replace C by A in the cited ordered pair. QED 
 
The following pertains to 3,5’. 
 
LEMMA 3.6.14. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA has 
¬NON. 
 
Proof: For n < m, define f(n,n,n) = 2n+2, f(n,m,m) = 4m+5, 
f(n,n,m) = 2m+1, f(m,n,n) = 8m+9. Define f(a,b,c) = 
2|a,b,c|+1 for all other triples a,b,c. Define g(n) = 4n+5. 
Obviously f,g ∈ ELG.  
 
Let B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA, where A,B,C ⊆ N 
are nonempty. Let n ∈ B. Then n ∈ A ∪ gC.  
 
case 1. n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A, 8n+13 ∈ fA,gA, 
8n+13 ∉ A, 8n+13 ∈ gC, 2n+2 ∈ C, 2n+2 ∈ fB. This 
contradicts C ∩ fB = ∅. 
 
case 2. n ∈ gC. Let n = 4m+5, m ∈ C. Then m ∈ A ∪ gA.  
 
case 2a. m ∈ A. Then 2m+2 ∈ fA, 2m+2 ∈ A, 4m+5 ∈ fA, 4m+5 = 
n ∈ B. This contradicts B ∩ fA = ∅.    
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case 2b. m ∈ gA. Let m = 4r+5, r ∈ A. Then 2r+2 ∈ fA, 2r+2 
∈ A. Since n = 4m+5 and m = 4r+5, we have n = 16r+25. Hence 
n = f(2r+2,r,r) ∈ fA, n ∈ B. This contradicts B ∩ fA = ∅. 
QED   
 
part 4. C ∪. fA ⊆ A ∪. gA.     
 
4,1’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
4,2’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,3’. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
4,4’. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,5’. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
4,6’. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. NON. 
 
The following pertains to 4,1’. 
 
LEMMA 3.6.15. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gB has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let fA ⊆ 
A ∪. gA, B ∪. fB ⊆ A ∪. gB, where A,B,C have at least two 
elements. Let n < m be from B. 
 
Note that 2m ∈ fB, 2m ∈ A, 2m ∉ B, 4m+1 ∉ gB, 4m+1 ∈ fB, 
4m+1 ∈ A, 4m+1 ∈ gA. This contradicts A ∩ gA = ∅. QED  
 
LEMMA 3.6.16. 4,2’, 4,5’ have AL. 
 
Proof: By Lemma 3.6.5. QED 
 
The following pertains to 4,3’. 
 
LEMMA 3.6.17. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC has 
¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = 4m, f(m,n) = 8m+1, g(n) = 2n+1. Let C 
∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ A ∪. gC, where A,B,C have at 
least two elements. Let n < m be from B. 
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Clearly 2m ∈ fB, 2m ∈ A, 2m ∉ B, 4m ∈ fB, 4m ∈ A, 4m ∉ B, 
8m+1 ∈ gA, 8m+1 ∉ A, 8m+1 ∈ fB, 8m+1 ∈ gC, 4m ∈ C, 4m ∈ 
fA. This contradicts C ∩ fA = ∅. QED  
 
The following pertains to 4,4’. 
 
LEMMA 3.6.18. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gB has AL. 
 
Proof: From the reduced AA table, C ∪. fA ⊆ A ∪. gA has AL. 
Replace B by A in the cited ordered pair. QED 
 
The following pertains to 4,6’.  
 
LEMMA 3.6.19. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC has 
¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let C ∪. 
fA ⊆ A ∪. gA, C ∪. fB ⊆ A ∪. gC, where A,B,C have at least 
two elements. Let n < m be from B. 
 
Clearly 2m ∈ fB, 2m ∈ A, 4m+1 ∈ gA, 4m+1 ∉ A, 4m+1 ∈ fB, 
4m+1 ∈ gC, 2m ∈ C. This contradicts C ∩ fB = ∅. QED   
 
LEMMA 3.6.20. 4,1’, 4,3’, 4,6’ have NON. 
 
Proof: By Lemma 3.6.7, X ∪. fA ⊆ A ∪. gA, Y ∪. fZ ⊆ A ∪. 
gW has NON, provided X,Y,Z,W ∈ {B,C}. QED 
 
part 5. C ∪. fA ⊆ A ∪. gB. 
 
5,1’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,2’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,3’. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,4’. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,5’. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gA. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
5,6’. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.6.21. 5,1’, 5,3’, 5,4’, 5,6’ have AL. 
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Proof: By Lemma 3.6.9, X ∪. fA ⊆ A ∪. gY, Z ∪. fB ⊆ A ∪. 
gW has AL, provided X,Y,Z,W ∈ {B,C}. QED 
 
The following pertains to 5,5’. 
 
LEMMA 3.6.22. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ A ∪. gA has AL. 
 
Proof: From the reduced table for AA, we see that C ∪. fA ⊆ 
A ∪. gA has AL. In the cited ordered pair, replace B by A. 
QED 
 
The following pertains to 5,2’.  
 
LEMMA 3.6.23. fA ⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(m,n) = f(n,m) = 2m+1, g(n) = 2n+1. Let fA 
⊆ A ∪. gB, B ∪. fB ⊆ A ∪. gA, where A,B are nonempty.  
 
Let n ∈ A. Then 2n+2 ∈ fA, 2n+2 ∈ A, 4n+5 ∈ gA, 4n+5 ∉ A. 
Since n < 2n+2 are from A, we have 4n+5 ∈ fA, 4n+5 ∈ gB, 
2n+2 ∈ B, 4n+6 ∈ fB, 4n+6 ∈ A. Since n < 4n+6 are from A, 
we have 8n+13 ∈ fA, 8n+13 ∈ gA, 8n+13 ∉ A, 8n+13 ∈ gB, 4n+6 
∈ B. This contradicts B ∩ fB = ∅. QED 
 
part 6. C ∪. fA ⊆ A ∪. gC. 
 
6,1’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
6,2’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,3’. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
6,4’. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gB. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
6,5’. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,6’. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ A ∪. gC. ¬INF. AL. 
¬ALF. ¬FIN. NON. 
 
LEMMA 3.6.24. 6,1’, 6,3’, 6,4’, 6,6’ have AL. 
 
Proof: By Lemma 3.6.9, X ∪. fA ⊆ A ∪. gY, Z ∪. fB ⊆ A ∪. 
gW has AL, provided X,Y,Z,W ∈ {B,C}. QED 
 
The following pertains to 6,2’ and 6,5’. 
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LEMMA 3.6.25. C ∪. fA ⊆ A ∪. gC, A ∩ gA = ∅ has ¬NON. 
 
Proof: Let f be as given by Lemma 3.2.1. Define g ∈ ELG by 
g(n) = 2n+1. Let C ∪. fA ⊆ A ∪. gC, A ∩ gA = ∅, where 
A,B,C are nonempty.  
 
We claim that fA ∩ 2N ⊆ A. To see this, let n ∈ fA ∩ 2N. 
Then n ∉ gC, and so n ∈ A.  
 
By Lemma 3.2.1, fA is cofinite. Hence C is finite. 
Therefore gC is finite. Hence A is cofinite. Therefore gA 
is infinite. This contradicts A ∩ gA = ∅. QED 
 


