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3.3. Single Clauses (duplicates). 
 
In this section we handle the relatively easy case of 
ordered pairs α,β of clauses, where α = β. We these 
duplicate ordered pairs as single clauses, α. 
 
As we shall see, several single clauses have ¬NON, and so 
any ordered pair of clauses, at least one of which is such 
a clause, also has ¬NON, and does not have to be further 
considered. This will allow us to cut down significantly on 
the number of pairs of clauses that have to be considered 
in sections 3.4 - 3.13.  
 
By Lemma 3.1.5, we see that every clause is equivalent to a 
clause whose inner signature is AA or AB. 
 
Here are what we call the AA and AB tables, together with 
the outcomes of our five attributes, INF, AL, ALF, FIN, 
NON, introduced in section 3.1. These entries are justified 
by the Lemmas that follow. 
 
AA 
 
1. A ∪. fA ⊆ A ∪. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
2. A ∪. fA ⊆ A ∪. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
3. A ∪. fA ⊆ A ∪. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
4. B ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
5. B ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
6. B ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
7. C ∪. fA ⊆ A ∪. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 
8. C ∪. fA ⊆ A ∪. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 
9. C ∪. fA ⊆ A ∪. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 
 
AB 
 
1. A ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
4. B ∪. fA ⊆ B ∪. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
5. B ∪. fA ⊆ B ∪. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
6. B ∪. fA ⊆ B ∪. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 
7. C ∪. fA ⊆ B ∪. gA. INF. AL. ALF. FIN. NON. 
8. C ∪. fA ⊆ B ∪. gB. INF. AL. ALF. FIN. NON. 
9. C ∪. fA ⊆ B ∪. gC. INF. AL. ALF. FIN. NON. 
 
According to the procedure specified at the beginning of 
this Chapter, in order to validate TEMP 3, we use EVSD for 
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the positive entries with attribute INF (other than the 
Exotic Case). Otherwise, we will always use ELG.   
 
The following pertains to AA 1-3. Note that in the 
statement of Lemma 3.3.1, we use X as an unknown 
representing A,B, or C. We will make use of this convention 
throughout this Chapter. 
 
LEMMA 3.3.1. A ∪. fA ⊆ A ∪. gX has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. Let f(n) = 2n, g(n) = 
2n+1. Let A ∪. fA ⊆ A ∪. gX, where A,X are nonempty. Let n 
∈ A. Then 2n ∈ fA, 2n ∈ A. This contradicts A ∩ fA = ∅. 
QED 
 
The following pertains to AA 4-9.  
 
LEMMA 3.3.2. X ∪. fA ⊆ A ∪. gY has ¬INF, ¬FIN.  
 
Proof: Let f be as given by Lemma 3.2.1. Let g ∈ ELG be 
defined by g(n) = 2n+1. Suppose X ∪. fA ⊆ A ∪. gY, where 
X,A,Y are nonempty. Then fA ∩ 2N ⊆ A. Hence fA is cofinite. 
Since X ∩ fA = ∅, we have that A is infinite and X is 
finite. This establishes that ¬INF, ¬FIN. QED 
 
LEMMA 3.3.3. Let g ∈ EVSD. Let n be sufficiently large. For 
all S ⊆ [n,∞), there exists a unique A ⊆ S ⊆ A ∪. gA. 
Furthermore, if S is infinite then A is infinite.  
 
Proof: This is a variant of the Complementation Theorem 
from Section 1.3. Since n is sufficiently large, g is 
strictly dominating at all tuples x with |x| ≥ n. 
 
We define A ⊆ S by induction on k ∈ S. Suppose membership 
in A for all i ∈ S ∩ [n,k) has been determined, where k ∈ 
S. We put k in A if and only if k is not yet a value of g 
at arguments from A. Note that if k is not yet a value of g 
at arguments from A, then k will never become a value of g 
at arguments from A. Hence S ⊆ A ∪. gA. It is clear from 
this inclusion that if S is infinite, then A is infinite.  
 
For uniqueness, let A ⊆ S ⊆ A ∪. gA and B ⊆ S ⊆ B ∪. gB. 
Let k be least such that k ∈ A ↔ k ∉ B. Obviously, k ∈ S 
and 
 

k ∈ A ↔ k ∉ gA. 
k ∈ B ↔ k ∉ gB. 
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Since g is strictly dominating on [n,∞), A,B ⊆ [n,∞), and k 
≥ n, we see that  
 

k ∈ gA ↔ k ∈ g(A ∩ [0,k)). 
k ∈ gB ↔ k ∈ g(B ∩ [0,k)). 

 
Hence  
 

k ∈ A ↔ k ∉ g(A ∩ [0,k)). 
k ∈ B ↔ k ∉ g(B ∩ [0,k)). 

 
Since A ∩ [0,k) = B ∩ [0,k), we have  
 

k ∈ A ↔ k ∈ B 
 
contradicting the choice of k. QED 
 
The following pertains to AA 4. 
 
LEMMA 3.3.4. B ∪. fA ⊆ A ∪. gA has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let n be sufficiently 
large. Then [n,n +p] ∉ f[[n,∞)] ∪ g[[n,∞)]. By Lemma 3.3.3, 
let A ⊆ [n,∞) ⊆ A ∪. gA. Then [n,n+p] ⊆ A. Let B = 
[n,n+p]. QED  
 
The following pertains to AA 5. 
 
LEMMA 3.3.5. B ∪. fA ⊆ A ∪. gB has AL.  
 
Proof:  Let f,g ∈ ELG and p > 0. Let B = [n,n+p], where n 
is sufficiently large. Let A = [n,∞)\gB. Since B ∪ fA ⊆ 
[n,∞), we have B ∪ fA ⊆ A ∪ gB. Also B ∩ f([n,∞)) = ∅. QED  
 
The following pertains to AA 4 - 9. 
 
LEMMA 3.3.6. X ∪. fA ⊆ A ∪. gY has AL, provided X ∈ {B,C}. 
 
Proof: Let f,g ∈ ELG and p > 0. By Lemma 3.3.4, let A,B 
have at least p elements, where B ∪. fA ⊆ A ∪. gA. By 
setting C = B, we see that AA 7 has AL.  
 
By Lemma 3.3.5, let A,B have at least p elements, where B 
∪. fA ⊆ A ∪. gB. By setting C = B, we see that AA 6,8,9 
have AL. QED  
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The following pertains to AB 4 - 6.  
 
LEMMA 3.3.7. B ∪. fA ⊆ B ∪. gX has ¬NON. 
 
Proof: Define f,g ∈ ELG by f(n) = 2n, g(n) = 2n+1. Let B ∪. 
fA ⊆ B ∪. gX, where A,B,X are nonempty. Let n ∈ A. Then 2n 
∈ fA, 2n ∈ B. This contradicts B ∩ fA = ∅. QED 
 
The following pertains to AB 1,3,7,9. 
 
LEMMA 3.3.8. X ∪. fA ⊆ B ∪. gY has INF, ALF, provided X,Y ∈ 
{A,C}, even for EVSD.  
 
Proof: Let f,g ∈ EVSD. By Theorem 3.2.5, let A be infinite, 
where A ∩ fA = A ∩ gA = ∅. Let C = A and B = (A ∪ fA)\gA. 
Then A ⊆ B, and so A,B,C are infinite. This establishes 
INF. 
 
For ALF, let p > 0. Let A be the first p elements of the 
above A, where A ∩ fA = A ∩ gA = ∅. Let C = A and B = (A ∪ 
fA)\gA. Then A ⊆ B, and so |B| ≥ p and A,B,C are finite. 
QED 
 
The following pertains to AB 2,8. 
 
LEMMA 3.3.9. X ∪. fA ⊆ B ∪. gB has INF, ALF, provided X ∈ 
{A,C}, even for EVSD. 
 
Proof: Let f,g ∈ EVSD and n be sufficiently large. By 
Theorem 3.2.5, let A ⊆ [n,∞) be infinite, where A ∩ fA = A 
∩ gA = ∅. By Lemma 3.3.3, let B be unique such that B ⊆ A 
∪ fA ⊆ B ∪. gB. Let C = A. Since A ∪ fA is infinite, B is 
infinite. This establishes INF. 
 
Now let p > 0 be given. Let A be the first p elements of 
the above A. Then A ∩ fA = A ∩ gA = ∅. Let B be the unique 
B ⊆ A ∪ fA such that A ∪ fA ⊆ B ∪. gB. Let C = A. Since A 
∩ gB = ∅, we have A ⊆ B. This establishes ALF. QED 
 
The information contained in these Lemmas is sufficient to 
justify all determinations made on the AA and AB tables, 
using the obvious implications 
 

ALF → AL → NON. 
ALF → FIN → NON. 
INF → AL → NON. 
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and contrapositives. 
 
Lemma 3.3.7 is particularly useful. It allows us to remove 
a large number of pairs of clauses in sections 3.4 - 3.13 
(e.g., see the reduced AA table at the beginning of section 
3.4). Also, it allows us to automatically annotate a very 
large number of entries in the annotated tables of section 
3.14.  
 
We now illustrate a difference between ELG and SD with 
respect to AL. We have the following, in contrast to Lemma 
3.3.4.  
 
THEOREM 3.3.10. There exist f,g ∈ SD such that the 
following holds. Let B ∪. fA ⊆ A ∪. gA. If A is nonempty 
then B has at most one element. In particular, this clause 
for SD has attribute ¬AL, and this clause for ELG has 
attribute AL (Lemma 3.3.4). 
 
Proof: For n < m, let f(n,n) = n+1, f(n,m) = m+1, f(m,n) = 
m+2. Let g(n) = 2n+3. Let B ∪. fA ⊆ A ∪. gA, where A is 
nonempty. Let n = min(A). Then n+1 ∈ A ∪ gA, n+1 ∉ gA, n+1 
∈ A.  
 
We claim that [n+1,∞) ⊆ fA. Since n ∈ A, clearly n+1 ∈ fA. 
Hence n+1 ∈ A ∪ gA. Now n+1 ∈ gA is impossible since n = 
min(A). Hence n+1 ∈ A, n+2 ∈ fA.  
 
Now let [n+1,m] ⊆ fA, m ≥ n+2. To establish the claim, it 
suffices to prove that m+1 ∈ fA. Now m ∈ fA, m ∈ A ∪ gA. If 
m ∈ A then m+1 ∈ fA. So it suffices to assume that m ∈ gA. 
Hence m is odd. Also m-1 ∈ fA, m-1 ∈ A ∪ gA. Since m-1 is 
even, m-1 ∈ A. Let r < m-1, r ∈ A. Then f(m-1,r) = m+1 ∈ 
fA. 
 
We have thus established that [n+1,∞) ⊆ fA.  
 
Now let r ∈ B. By the above claim, r ≤ n, r ∈ A ∪ gA, r ∈ 
A, r = n. Hence B has exactly one element. QED 


