
 1 

3.2. Some Useful Lemmas. 
 
DEFINITION 3.2.1. The standard pairing function on N is the 
function P:N2 → N due (essentially) to Cantor: 
 

P(n,m) = (n2+m2+2nm+n+3m)/2 ≥ n,m. 
 
It is well known that P is a bijection, and also that for 
all n ≥ 0, [0,n(n+1)/2) ⊆ P[[0,n)2]. In addition, P is 
strictly increasing in each argument. 
 
Let T:N2 → N be such that T(2n,2m) = P(n,m), T(2n,2m+1) = 
T(2n+1,2m) = T(2n+1,2m+1) = 2n+2m+2. Then for all n ≥ 0, 
[0,n(n+1)/2) ⊆ T[([0,2n) ∩ 2N)2]. Hence for all n ≥ 8, 
every element of [0,n2/8) is realized as a value of T at 
even pairs from [0,n).  
 
It is clear that T(2n,2m) ≥ (n2+2n)/2,(m2+2m)/2 ≥ 2n,2m. 
Hence for n,m ≥ 2, T(n,m) ≥ n,m.   
 
LEMMA 3.2.1. There exists 3-ary f ∈ ELG ∩ SD such that the 
following holds. Let A ⊆ N be nonempty, where fA ∩ 2N ⊆ A. 
Then fA is cofinite. We can also require that for all n ≥ 0, 
f(n,n,n) ∈ 2N. 
 
Proof: We define f ∈ ELG ∩ SD as follows. Let p,q ∈ 
[2n,2n+1), n ≥ 0. Define f(2n,p,q) = min(2n+1+T(p-2n,q-
2n),2n+2). Note that for n ≥ 8, as p,q vary over the even 
elements of [2n,2n+1), every value in [2n+1,2n+2) is realized. 
Also note that for all n ≥ 0, f(2n,2n,2n) = 2n+1.    
 
For all n > 0, define f(n,n,n) to be the least 2k ≥ 2n; 
f(0,0,0) = 2.  
 
For all n < m < r, define f(r,n,n) = 2r+1, f(r,n,m) = 2r+2, 
f(r,n,r) = 2r+3, f(r,m,n) = 2r+4, f(r,r,n) = 2r+5. For all 
triples a,b,c, if f(a,b,c) has not yet been defined, define 
f(a,b,c) = 2|a,b,c|+1.   
 
It is obvious that f ∈ SD. To see that f ∈ ELG, we need 
only examine the definition of f(2n,p,q), p,q ∈ [2n,2n+1), 
where n is sufficiently large. If p,q ∈ [2n,2n+2n-1), then 
obviously f(2n,p,q) ≥ 2n+1 ≥ 4|2n,p,q|/3. If p,q ∉ [2n,2n+2n-
1), then f(2n,p,q) ≥ 2n+1+T(p-2n,q-2n) ≥ 2n+1 + 2n-1 ≥ 
5p/4,5q/4. Also,f(2n,p,q) ≤ 2n+2 ≤ 2p,2q. Therefore f ∈ ELG. 
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Let A ⊆ N be nonempty, where fA ∩ 2N ⊆ A. Let 
f(min(A),min(A),min(A)) = 2k ≥ 2. Then 2k ∈ fA ∩ 2N. 
Therefore 2k ∈ A.   
 
Suppose j ≥ k and 2j ∈ A. Then f(2j,2j,2j) = 2j+1 ∈ fA. We 
have thus established by induction that for all j ≥ k, 2j ∈ 
A.  
 
We now fix t such that t > 8,min(A), and 2t ∈ A. Then min(A) 
< 2t < 2t+1 are all in A. Hence {2t+2,2t+2+5] ⊆ fA.  
 
We inductively define α(0) = 6, α(i+1) = min((α(i)2-
1)/8,2t+i+3). Note that for all sufficiently large i, α(i) = 
2t+i+2.  
 
We now prove by induction on i that for all i ≥ 0, 
 
1) [2t+i+2,2t+i+2 + α(i)) ⊆ fA. 
 
We have already established that this is true for i = 0. 
Suppose this is true for a particular i ≥ 0. We claim that  
 
2) [2t+i+2,2i+t+2 + α(i)) ⊆ fA. 
3) [2t+i+2,2i+t+2 + α(i)) ∩ 2N ⊆ A. 
4) [2t+i+3,2t+i+3 + α(i+1)) ⊆ f(([2t+i+2,2t+i+2 + α(i)) ∩ 2N)2) ⊆ 
fA. 
 
2) is the induction hypothesis. 3) follows from 2) and fA ∩ 
2N ⊆ A.  
 
For 4), let x ∈ [2t+i+3,2t+i+3 + α(i+1)) ⊆ [2t+i+3,2t+i+4). Then 0 
≤ x-2t+i+3 < α(i+1) ≤ (α(i)2-1)/8. By the choice of T, let a,b 
< α(i), T(a,b) = x-2t+i+3, where a,b are even. Let p = 2t+i+2 + 
a, q = 2t+i+2 + b. Then p,q ∈ [2t+i+2,2t+i+2 + α(i)), p,q are 
even, and f(2t+2i+2,p,q) = x. 
 
This establishes that [2t+i+3,2t+i+3 + α(i+1)) ⊆ f[([2t+i+2,2t+i+1 
+ α(i)) ∩ 2N)2]. f[([2t+i+2,2t+i+1 + α(i)) ∩ 2N)2] ⊆ fA is 
immediate from [2t+i+2,2i+t+2 + α(i)) ∩ 2N ⊆ A.  
 
This concludes the inductive argument for 1). Since for 
sufficiently large i, α(i) = 2t+i+2, we see that fA is 
cofinite. QED 
 
We will need the following technical refinement of Lemma 
3.2.1.  
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LEMMA 3.2.2. There exists 4-ary g ∈ ELG ∩ SD such that the 
following holds. Let A ⊆ N have at least two elements, 
where (∀n ∈ gA ∩ 2N)(4n+3 ∈ gA → n ∈ A). Then gA is 
cofinite. We can also require that for all n ∈ N, 
g(n,n,n,n) ∈ 2N. 
 
Proof: Let f:N3 → N be as given by Lemma 3.2.1. We define 
g:N4 → N as follows. Let x ∈ N3. If n = |x| then define 
g(n,x) = f(x). If n < |x| then define g(n,x) = 4f(x)+3. If 
n > |x| then define g(n,x) = 2n+1. Note that g(n,n,n,n) = 
f(n,n,n) ∈ 2N. Also, if n < |m,r,s| then g(n,m,r,s) ≥ 
f(m,r,s) > m,r,s, and if n > m,r,s, then g(n,m,r,s) > 
n,m,r,s. Hence g ∈ ELG ∩ SD.  
 
Let A be as given. Let A’ = A\{min(A)}. Then A’ is 
nonempty. Let n ∈ fA’ ∩ 2N. Let n = f(x), x ∈ A'3. Hence 
4n+3 ∈ gA using min(A) as the first argument for g. 
Therefore n ∈ A, and so n ∈ A’.  
 
We have thus shown that fA’ ∩ 2N ⊆ A’. By Lemma 3.2.1, fA’ 
is cofinite. Hence gA is cofinite. QED 
 
We will need a refinement of Lemma 3.2.1 in a different 
direction (Lemma 3.2.4).  
 
LEMMA 3.2.3. Let f ∈ ELG ∩ SD have arity p. There exists 
g,h1,h2 ∈ ELG ∩ SD, with arities 2p,1,1 respectively, such 
that f(x1,...,xp) = g(h1(x1),...,h1(xp),h2(x1),...,h2(xp)) 
holds, with finitely many exceptional p-tuples. We can also 
require that rng(h1),rng(h2) ⊆ 2N, and each g(n,...,n) is 
even. 
 
Proof: Let f,p be as given. Let c,d > 1 be rational 
constants such that  
 

c|x| ≤ f(x) ≤ d|x| 
 
holds with finitely many exceptions. Let t be sufficiently 
large relative to c,d. We can assume that 1 < c < 2 < d. 
 
We first define h1,h2:[t,∞) → N by  
 

h1(x) = the first integer > c1/3x that is divisible by 4.  
h2(x) = h1(x) + 4(x mod 8) + 4. 

 
To see that h(x) = (h1(x),h2(x)) is one-one on [t,∞), 
suppose h1(x) = h1(y) and h2(x) = h2(y) and x < y. By 
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subtraction, 4(x mod 8) + 4 = 4(y mod 8) + 4, x ≡ y mod 8, 
and so y ≥ x+8. Hence the first integer > c1/3y is at least 
the first integer > c1/3x, plus 8. Hence h1(x) ≠ h1(y).  
 
Extend h1,h2 on [0,t) by  
 

h1(x) = h2(x) = 2x+2. 
 
Note that 
 

c1/3x ≤ h1(x),h2(x) ≤ 2x+2. 
 
Hence h1,h2 ∈ ELG ∩ SD, rng(h1) ∪ rng(h2) ⊆ 2N, and h is 
one-one. Also h1(x) ≤ h1(x+1), and h1(x) < h2(x) ≤ h1(x) + 
36.  
 
We define g:N2p → N as follows. 
 
case 1. (y1,z1),...,(yp,zp) ∈ rng(h), and 
|y1,...,yp,z1,...,zp| > ct. Set g(y1,...,yp,z1,...,zp) = f(h-
1(y1,z1),...,h-1(yp,zp)).  
 
case 2. Otherwise. Set g(y1,...,yp,z1,...,zp) = 
2|y1,...,yp,z1,...,zp|+2.  
 
We claim that g ∈ ELG ∩ SD. To see this, note that g 
restricted to case 2 lies in ELG ∩ SD. So it remains to 
consider case 1.  
 
Let h(x1) = (y1,z1),...,h(xp) = (yp,zp). Then for all i, 
 

h1(xi) = yi, h2(xi) = zi. 
yi,zi ≥ xi. 

 
Also let j be such that xj is largest. Then xj = |y1,...,yj| 
≥ t, and so xj ≥ |y1,...,yp,z1,...,zp| - 36. Hence  
 

xj ≥ c-1/3|yj,zj| ≥ c-1/2|y1,...,yp,z1,...,zp|. 
 

g(y1,...,yp,z1,...,zp) = f(x1,...,xp) ≤ d|x1,...,xp|  
≤ d|y1,...,yp,z1,...,zp|. 

 
g(y1,...,yp,z1,...,zp) = f(x1,...,xp) ≥ c|x1,...,xp| = cxj  
≥ cc-1/2|y1,...,yp,z1,...,zp| ≥ c1/2|y1,...,yp,z1,...,zp|. 

 
Hence g ∈ ELG ∩ SD. Note that the case g(n,...,n) must lie 
in case 2. Hence g(n,...,n) ∈ 2N.  
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Finally,  
 

f(x1,...,xp) = g(h1(x1),...,h1(xp),h2(x1),...,h2(xp)) 
 
holds according to case 1. The only exceptions are if 
|h1(x1),...,h1(xp),h2(x1),...,h2(xp)| ≤ ct. But that is at 
most finitely many exceptions. QED 
 
LEMMA 3.2.4. There exists a 8-ary F ∈ ELG ∩ SD such that 
the following holds. Let A ⊆ N be nonempty, where F(FA ∩ 
2N) ∩ 2N ⊆ A. Then FA is cofinite. 
 
Proof: Let f:N3 → N be as given by Lemma 3.2.1. By Lemma 
3.2.3, let g,h1,h2 ∈ ELG ∩ SD, with arities 6,1,1 
respectively, such that  
 

f(x,y,z) = g(h1(x),h1(y),h1(z),h2(x),h2(y),h2(z)) 
 
with finitely many exceptions, where rng(h1),rng(h2) ⊆ 2N, 
and each g(n,...,n) ∈ 2N. 
 
We now define F:N8 → N by cases. 
 
case 1. x1 = x2 = |x3,...,x8|. Set F(x1,...,x8) = 
g(x3,...,x8). 
 
case 2. x1 = x2 < x3 = ... = x8. Set F(x1,...,x8) = h1(x3). 
 
case 3. x1 < x2 < x3 = ... = x8. Set F(x1,...,x8) = h2(x3). 
 
case 4. x2 < x1 < |x3,x4,x5| = |x1,...,x8|. Set F(x1,...,x8) = 
f(x3,x4,x5). 
 
case 5. Otherwise. Set F(x1,...,x8) = 2|x1,...,x8|+1.   
 
It is obvious that F ∈ ELG ∩ SD.  
 
Assume F(FA ∩ 2N) ∩ 2N ⊆ A, where A is nonempty. Let n ∈ A. 
Then F(n,...,n) ∈ 2N, and we can keep applying F to 
diagonals, thereby obtaining an infinite subset of A ∩ 2N.  
 
Let A’ be the tail of A whose least element is greater than 
exactly two elements of A.  
 
We claim that fA’ ⊆ F(FA’ ∩ 2N). To see this, let n < m be 
the first two elements of A. Then by cases 2 and 3 above, 
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for all r ∈ A’, h1(r),h2(r) ∈ FA ∩ 2N. Let x,y,z ∈ A'. Now 
f(x,y,z) = g(h1(x),h1(y),h1(z),h2(x),h2(y),h2(z)) = 
F(p,p,h1(x),h1(y),h1(z),h2(x),h2(y),h2(z)) ∈ F(FA ∩ 2N), 
where p = |h1(x),h1(y),h1(z),h2(x),h2(y),h2(z)|.  
 
In particular, fA’ ∩ 2N ⊆ F(FA ∩ 2N) ∩ 2N ⊆ A. Since f is 
strictly dominating, fA’ ∩ 2N ⊆ A’. By Lemma 3.2.1, fA’ is 
cofinite. 
 
Clearly fA’ ⊆ FA by case 4. Hence FA is cofinite. QED   
 
Let f1,...,fk be indeterminate functions from EVSD. We 
consider the class of f1,...,fk,A-terms defined as follows. 
 
i. A is an f1,...,fk,A-term. 
ii. If s,t are f1,...,fk,A-terms, then s ∪ t is an 
f1,...,fk,A-term. 
iii. If s is an f1,...,fk,A-term, then each fis is an 
f1,...,fk,A-term.   
 
LEMMA 3.2.5. Let k ≥ 1, f1,...,fk ∈ EVSD, and t1,...,tr be 
f1,...,fk,A-terms. There exists A ∈ INF such that each A ∩ 
ti = ∅. We can require that min(A) be any given 
sufficiently large integer. 
 
Proof: Let f1,...,fk ∈ EVSD. Write each ti = ti(f1,...,fk,A). 
Let n be sufficiently large. We define integers n0 < n1 < 
...  as follows. Let n0 = n. Suppose nj has been defined, j 
≥ 0. Let nj+1 to be such that  
 

nj+1 is greater than nj and all elements of each 
ti(f1,...,fk,{n0,...,nj}). 

 
Take A = {nj: j ≥ 0}. QED 


