### 3.2. Some Useful Lemmas.

DEFINITION 3.2.1. The standard pairing function on $N$ is the function $P: N^{2} \rightarrow N$ due (essentially) to Cantor:

$$
P(n, m)=\left(n^{2}+m^{2}+2 n m+n+3 m\right) / 2 \geq n, m .
$$

It is well known that $P$ is a bijection, and also that for all $n \geq 0,[0, n(n+1) / 2) \subseteq P\left[[0, n)^{2}\right]$. In addition, $P$ is strictly increasing in each argument.

Let $T: N^{2} \rightarrow N$ be such that $T(2 n, 2 m)=P(n, m), T(2 n, 2 m+1)=$ $T(2 n+1,2 m)=T(2 n+1,2 m+1)=2 n+2 m+2$. Then for all $n \geq 0$, $[0, n(n+1) / 2) \subseteq T\left[([0,2 n) \cap 2 N)^{2}\right]$. Hence for all $n \geq 8$, every element of $\left[0, n^{2} / 8\right)$ is realized as a value of $T$ at even pairs from $[0, \mathrm{n})$.

It is clear that $T(2 n, 2 m) \geq\left(n^{2}+2 n\right) / 2,\left(m^{2}+2 m\right) / 2 \geq 2 n, 2 m$. Hence for $n, m \geq 2, T(n, m) \geq n, m$.

LEMMA 3.2.1. There exists 3 -ary $f \in E L G \cap \operatorname{si}$ such that the following holds. Let $A \subseteq N$ be nonempty, where $f A \cap 2 N \subseteq A$. Then fA is cofinite. We can also require that for all $n \geq 0$, $\mathrm{f}(\mathrm{n}, \mathrm{n}, \mathrm{n}) \in 2 \mathrm{~N}$.

Proof: We define $f \in E L G \cap \operatorname{SD}$ as follows. Let $p, q \in$ $\left[2^{n}, 2^{n+1}\right), n \geq 0$. Define $f\left(2^{n}, p, q\right)=\min \left(2^{n+1}+T\left(p-2^{n}, q-\right.\right.$ $\left.2^{\mathrm{n}}\right), 2^{\mathrm{n}+2}$ ). Note that for $\mathrm{n} \geq 8$, as $\mathrm{p}, \mathrm{q}$ vary over the even elements of $\left[2^{n}, 2^{n+1}\right)$, every value in $\left[2^{n+1}, 2^{n+2}\right)$ is realized. Also note that for all $n \geq 0, f\left(2^{n}, 2^{n}, 2^{n}\right)=2^{n+1}$.

For all $n>0$, define $f(n, n, n)$ to be the least $2^{k} \geq 2 n$; $f(0,0,0)=2$.

For all $n<m<r$, define $f(r, n, n)=2 r+1, f(r, n, m)=2 r+2$, $f(r, n, r)=2 r+3, f(r, m, n)=2 r+4, f(r, r, n)=2 r+5$. For all triples $a, b, c, i f f(a, b, c)$ has not yet been defined, define $f(a, b, c)=2|a, b, c|+1$.

It is obvious that $f \in S D$. To see that $f \in E L G$, we need only examine the definition of $f\left(2^{n}, p, q\right), p, q \in\left[2^{n}, 2^{n+1}\right)$, where $n$ is sufficiently large. If $p, q \in\left[2^{n}, 2^{n}+2^{n-1}\right)$, then obviously $f\left(2^{n}, p, q\right) \geq 2^{n+1} \geq 4\left|2^{n}, p, q\right| / 3$. If $p, q \notin\left[2^{n}, 2^{n}+2^{n-}\right.$ ${ }^{1}$ ), then $f\left(2^{n}, p, q\right) \geq 2^{n+1}+T\left(p-2^{n}, q-2^{n}\right) \geq 2^{n+1}+2^{n-1} \geq$ $5 p / 4,5 q / 4$. Also, $f\left(2^{n}, p, q\right) \leq 2^{n+2} \leq 2 p, 2 q$. Therefore $f \in \operatorname{ELG}$.

Let $A \subseteq N$ be nonempty, where $f A \cap 2 N \subseteq A$. Let $\mathrm{f}(\min (\mathrm{A}), \min (\mathrm{A}), \min (\mathrm{A}))=2^{\mathrm{k}} \geq 2$. Then $2^{\mathrm{k}} \in \mathrm{fA} \cap 2 \mathrm{~N}$. Therefore $2^{k} \in A$.

Suppose $j \geq k$ and $2^{j} \in A$. Then $f\left(2^{j}, 2^{j}, 2^{j}\right)=2^{j+1} \in f A$. We have thus established by induction that for all $j \geq k, 2^{j} \in$ A.

We now fix $t$ such that $t>8, m i n(A)$, and $2^{t} \in A$. Then min(A) $<2^{t}<2^{t+1}$ are all in A. Hence $\left\{2^{t+2}, 2^{t+2}+5\right\} \subseteq f A$.

We inductively define $\alpha(0)=6, \alpha(i+1)=\min \left(\left(\alpha(i)^{2}-\right.\right.$ 1) $\left./ 8,2^{t+i+3}\right)$. Note that for all sufficiently large $i, \alpha(i)=$ $2^{\mathrm{t}+\mathrm{i}+2}$.

We now prove by induction on $i$ that for all $i \geq 0$,

1) $\left[2^{t+i+2}, 2^{t+i+2}+\alpha(i)\right) \subseteq f A$.

We have already established that this is true for i $=0$. Suppose this is true for a particular i $\geq 0$. We claim that
2) $\left[2^{t+i+2}, 2^{i+t+2}+\alpha(i)\right) \subseteq f A$.
3) $\left[2^{t+i+2}, 2^{i+t+2}+\alpha(i)\right) \cap 2 N \subseteq A$.
4) $\left[2^{t+i+3}, 2^{t+i+3}+\alpha(i+1)\right) \subseteq f\left(\left(\left[2^{t+i+2}, 2^{t+i+2}+\alpha(i)\right) \cap 2 N\right)^{2}\right) \subseteq$ fA.
2) is the induction hypothesis. 3) follows from 2) and fA $\cap$ $2 \mathrm{~N} \subseteq \mathrm{~A}$.

For 4), let $x \in\left[2^{t+i+3}, 2^{t+i+3}+\alpha(i+1)\right) \subseteq\left[2^{t+i+3}, 2^{t+i+4}\right)$. Then 0 $\leq x-2^{t+i+3}<\alpha(i+1) \leq\left(\alpha(i)^{2}-1\right) / 8$. By the choice of $T$, let $a, b$ $<\alpha(i), T(a, b)=x-2^{t+i+3}$, where $a, b$ are even. Let $p=2^{t+i+2}+$ $a, q=2^{t+i+2}+b$. Then $p, q \in\left[2^{t+i+2}, 2^{t+i+2}+\alpha(i)\right), p, q$ are even, and $f\left(2^{t+2 i+2}, p, q\right)=x$.

This establishes that $\left[2^{t+i+3}, 2^{t+i+3}+\alpha(i+1)\right) \subseteq f\left[\left(\left[2^{t+i+2}, 2^{t+i+1}\right.\right.\right.$ $\left.+\alpha(i)) \cap 2 N)^{2}\right] . f\left[\left(\left[2^{t+i+2}, 2^{t+i+1}+\alpha(i)\right) \cap 2 N\right)^{2}\right] \subseteq f A$ is immediate from $\left[2^{\mathrm{t}+\mathrm{i}+2}, 2^{\mathrm{i}+\mathrm{t}+2}+\alpha(\mathrm{i})\right) \cap 2 \mathrm{~N} \subseteq \mathrm{~A}$.

This concludes the inductive argument for 1). Since for sufficiently large i, $\alpha(i)=2^{t+i+2}$, we see that $f A$ is cofinite. QED

We will need the following technical refinement of Lemma 3.2.1.

LEMMA 3.2.2. There exists 4 -ary $g \in E L G \cap$ SD such that the following holds. Let $\mathrm{A} \subseteq \mathrm{N}$ have at least two elements, where $(\forall n \in g A \cap 2 N)(4 n+3 \in g A \rightarrow n \in A)$. Then $g A$ is cofinite. We can also require that for all $n \in N$, $g(n, n, n, n) \in 2 N$.

Proof: Let $f: N^{3} \rightarrow N$ be as given by Lemma 3.2.1. We define $g: N^{4} \rightarrow N$ as follows. Let $x \in N^{3}$. If $n=|x|$ then define $g(n, x)=f(x)$. If $n<|x|$ then define $g(n, x)=4 f(x)+3$. If $n>|x|$ then define $g(n, x)=2 n+1$. Note that $g(n, n, n, n)=$ $f(n, n, n) \in 2 N$. Also, if $n<|m, r, s|$ then $g(n, m, r, s) \geq$ $f(m, r, s)>m, r, s$, and if $n>m, r, s$, then $g(n, m, r, s)>$ $n, m, r, s$. Hence $g \in E L G \cap S D$.

Let $A$ be as given. Let $A^{\prime}=A \backslash\{\min (A)\}$. Then $A^{\prime}$ is nonempty. Let $n \in f^{\prime} \cap 2 N$. Let $n=f(x), x \in A^{\prime}{ }^{3}$. Hence $4 \mathrm{n}+3 \in \mathrm{gA}$ using min(A) as the first argument for $g$. Therefore $n \in A$, and so $n \in A^{\prime}$.

We have thus shown that $\mathrm{fA}^{\prime} \cap 2 \mathrm{~N} \subseteq \mathrm{~A}^{\prime}$. By Lemma 3.2.1, $\mathrm{fA}^{\prime}$ is cofinite. Hence gA is cofinite. QED

We will need a refinement of Lemma 3.2.1 in a different direction (Lemma 3.2.4).

LEMMA 3.2.3. Let $f \in E L G \cap$ SD have arity $p$. There exists $g, h_{1}, h_{2} \in E L G \cap S D$, with arities $2 p, 1,1$ respectively, such that $f\left(x_{1}, \ldots, x_{p}\right)=g\left(h_{1}\left(x_{1}\right), \ldots, h_{1}\left(x_{p}\right), h_{2}\left(x_{1}\right), \ldots, h_{2}\left(x_{p}\right)\right)$ holds, with finitely many exceptional p-tuples. We can also require that $r n g\left(h_{1}\right), r n g\left(h_{2}\right) \subseteq 2 N$, and each $g(n, \ldots, n)$ is even.

Proof: Let f,p be as given. Let c,d > 1 be rational constants such that

$$
c|x| \leq f(x) \leq d|x|
$$

holds with finitely many exceptions. Let $t$ be sufficiently large relative to c,d. We can assume that $1<c<2<d$.

We first define $h_{1}, h_{2}:[t, \infty) \rightarrow N$ by

$$
\begin{gathered}
\mathrm{h}_{1}(\mathrm{x})=\text { the first integer }>\mathrm{c}^{1 / 3} \mathrm{x} \text { that is divisible by } 4 . \\
\mathrm{h}_{2}(\mathrm{x})=\mathrm{h}_{1}(\mathrm{x})+4(\mathrm{x} \bmod 8)+4 .
\end{gathered}
$$

To see that $h(x)=\left(h_{1}(x), h_{2}(x)\right)$ is one-one on $[t, \infty)$, suppose $h_{1}(x)=h_{1}(y)$ and $h_{2}(x)=h_{2}(y)$ and $x<y$. By
subtraction, $4(x \bmod 8)+4=4(y \bmod 8)+4, x \equiv y \bmod 8$, and so $y \geq x+8$. Hence the first integer $>c^{1 / 3} y$ is at least the first integer $>c^{1 / 3} x$, plus 8 . Hence $h_{1}(x) \neq h_{1}(y)$.

Extend $h_{1}, h_{2}$ on $[0, t)$ by

$$
h_{1}(x)=h_{2}(x)=2 x+2 .
$$

Note that

$$
c^{1 / 3} x \leq h_{1}(x), h_{2}(x) \leq 2 x+2 .
$$

Hence $h_{1}, h_{2} \in E L G \cap S D, r n g\left(h_{1}\right) \cup r n g\left(h_{2}\right) \subseteq 2 N$, and $h$ is one-one. Also $h_{1}(x) \leq h_{1}(x+1)$, and $h_{1}(x)<h_{2}(x) \leq h_{1}(x)+$ 36.

We define $g: N^{2 p} \rightarrow N$ as follows.
case 1. ( $\mathrm{y}_{1}, \mathrm{z}_{1}$ ),..., $\left(\mathrm{y}_{\mathrm{p}}, \mathrm{z}_{\mathrm{p}}\right) \in \mathrm{rng}(\mathrm{h})$, and
$\left|y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right|>c t . S e t g\left(y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right)=f\left(h^{-}\right.$ $\left.{ }^{1}\left(y_{1}, z_{1}\right), \ldots, h^{-1}\left(y_{p}, z_{p}\right)\right)$.
case 2. Otherwise. Set $g\left(y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right)=$ $2\left|y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right|+2$.

We claim that $g \in E L G \cap$ SD. To see this, note that $g$ restricted to case 2 lies in ELG $\cap$ SD. So it remains to consider case 1.

Let $h\left(x_{1}\right)=\left(y_{1}, z_{1}\right), \ldots, h\left(x_{p}\right)=\left(y_{p}, z_{p}\right)$. Then for all i,

$$
\begin{gathered}
\mathrm{h}_{1}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}, \mathrm{~h}_{2}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{z}_{\mathrm{i}} . \\
\mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}} \geq \mathrm{x}_{\mathrm{i}} .
\end{gathered}
$$

Also let $j$ be such that $x_{j}$ is largest. Then $x_{j}=\left|y_{1}, \ldots, y_{j}\right|$ $\geq t$, and so $x_{j} \geq\left|y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right|$ - 36. Hence

$$
\begin{gathered}
x_{j} \geq c^{-1 / 3}\left|y_{j}, z_{j}\right| \geq c^{-1 / 2}\left|y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right| . \\
g\left(y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right)=f\left(x_{1}, \ldots, x_{p}\right) \leq d\left|x_{1}, \ldots, x_{p}\right| \\
\leq d\left|y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right| .
\end{gathered}
$$

$g\left(y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right)=f\left(x_{1}, \ldots, x_{p}\right) \geq c\left|x_{1}, \ldots, x_{p}\right|=c x_{j}$ $\geq c^{-1 / 2}\left|y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right| \geq c^{1 / 2}\left|y_{1}, \ldots, y_{p}, z_{1}, \ldots, z_{p}\right|$.

Hence $g \in E L G \cap$ SD. Note that the case $g(n, . . ., n)$ must lie in case 2. Hence $g(n, . . ., n) \in 2 N$.

Finally,

$$
f\left(x_{1}, \ldots, x_{p}\right)=g\left(h_{1}\left(x_{1}\right), \ldots, h_{1}\left(x_{p}\right), h_{2}\left(x_{1}\right), \ldots, h_{2}\left(x_{p}\right)\right)
$$

holds according to case 1. The only exceptions are if $\left|h_{1}\left(x_{1}\right), \ldots, h_{1}\left(x_{p}\right), h_{2}\left(x_{1}\right), \ldots, h_{2}\left(x_{p}\right)\right| \leq c t . B u t ~ t h a t ~ i s ~ a t ~$ most finitely many exceptions. QED

LEMMA 3.2.4. There exists a 8 -ary $F \in E L G \cap \operatorname{SD}$ such that the following holds. Let $A \subseteq N$ be nonempty, where $F(F A \cap$ $2 N) \cap 2 N \subseteq A$. Then $F A$ is cofinite.

Proof: Let $f: N^{3} \rightarrow N$ be as given by Lemma 3.2.1. By Lemma 3.2.3, let $g, h_{1}, h_{2} \in \operatorname{ELG} \cap \operatorname{SD}$, with arities 6,1,1 respectively, such that

$$
f(x, y, z)=g\left(h_{1}(x), h_{1}(y), h_{1}(z), h_{2}(x), h_{2}(y), h_{2}(z)\right)
$$

with finitely many exceptions, where rng( $h_{1}$ ),rng( $h_{2}$ ) $\subseteq 2 N$, and each $g(n, \ldots, n) \in 2 N$.

We now define $F: N^{8} \rightarrow N$ by cases.
case 1. $x_{1}=x_{2}=\left|x_{3}, \ldots, x_{8}\right|$. Set $F\left(x_{1}, \ldots, x_{8}\right)=$ $g\left(x_{3}, \ldots, x_{8}\right)$.
case 2. $\mathrm{x}_{1}=\mathrm{x}_{2}<\mathrm{x}_{3}=\ldots=\mathrm{x}_{8}$. Set $\mathrm{F}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{8}\right)=\mathrm{h}_{1}\left(\mathrm{x}_{3}\right)$.
case 3. $x_{1}<x_{2}<x_{3}=\ldots=x_{8}$. Set $F\left(x_{1}, \ldots, x_{8}\right)=h_{2}\left(x_{3}\right)$.
case 4. $x_{2}<x_{1}<\left|x_{3}, x_{4}, x_{5}\right|=\left|x_{1}, \ldots, x_{8}\right|$. Set $F\left(x_{1}, \ldots, x_{8}\right)=$ $f\left(x_{3}, x_{4}, x_{5}\right)$.
case 5. Otherwise. Set $F\left(x_{1}, \ldots, x_{8}\right)=2\left|x_{1}, \ldots, x_{8}\right|+1$.
It is obvious that $F \in E L G \cap S D$.
Assume $\mathrm{F}(\mathrm{FA} \cap 2 \mathrm{~N}) \cap 2 \mathrm{~N} \subseteq \mathrm{~A}$, where A is nonempty. Let $\mathrm{n} \in \mathrm{A}$. Then $F(n, \ldots, n) \in 2 N$, and we can keep applying $F$ to diagonals, thereby obtaining an infinite subset of $A \cap 2 N$.

Let $A^{\prime}$ be the tail of $A$ whose least element is greater than exactly two elements of $A$.

We claim that $\mathrm{fA}^{\prime} \subseteq \mathrm{F}\left(\mathrm{FA}^{\prime} \cap 2 \mathrm{~N}\right)$. To see this, let $\mathrm{n}<\mathrm{m}$ be the first two elements of $A$. Then by cases 2 and 3 above,
for all $r \in A^{\prime}, h_{1}(r), h_{2}(r) \in F A \cap 2 N$. Let $x, y, z \in A^{\prime}$. Now $f(x, y, z)=g\left(h_{1}(x), h_{1}(y), h_{1}(z), h_{2}(x), h_{2}(y), h_{2}(z)\right)=$ $F\left(p, p, h_{1}(x), h_{1}(y), h_{1}(z), h_{2}(x), h_{2}(y), h_{2}(z)\right) \in F(F A \cap 2 N)$, where $p=\left|h_{1}(x), h_{1}(y), h_{1}(z), h_{2}(x), h_{2}(y), h_{2}(z)\right|$.

In particular, fA' $\cap 2 N \subseteq F(F A \cap 2 N) \cap 2 N \subseteq A$. Since $f$ is strictly dominating, fA' $\cap 2 \mathrm{~N} \subseteq \mathrm{~A}^{\prime}$. By Lemma 3.2.1, fA' is cofinite.

Clearly $f^{\prime}$ ' $\subseteq$ FA by case 4. Hence FA is cofinite. QED
Let $f_{1}, \ldots, f_{k}$ be indeterminate functions from EVSD. We consider the class of $f_{1}, \ldots, f_{k}$, A-terms defined as follows.
i. A is an $f_{1}, \ldots, f_{k}, A-t e r m$.
ii. If $s, t$ are $f_{1}, \ldots, f_{k}, A$-terms, then $s \cup t$ is an $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$, A-term.
iii. If $s$ is an $f_{1}, \ldots, f_{k}$, A-term, then each $f_{i} s$ is an $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$, A-term.

LEMMA 3.2.5. Let $k \geq 1, f_{1}, \ldots, f_{k} \in \operatorname{EVSD}$, and $t_{1}, \ldots, t_{r}$ be $f_{1}, \ldots, f_{k}, A$-terms. There exists $A \in I N F$ such that each $A \cap$ $t_{i}=\varnothing$. We can require that min(A) be any given sufficiently large integer.

Proof: Let $f_{1}, \ldots, f_{k} \in E V S D$. Write each $t_{i}=t_{i}\left(f_{1}, \ldots, f_{k}, A\right)$. Let n be sufficiently large. We define integers $\mathrm{n}_{0}<\mathrm{n}_{1}<$ ... as follows. Let $n_{0}=n$. Suppose $n_{j}$ has been defined, $j$ $\geq 0$. Let $n_{j+1}$ to be such that
$n_{j+1}$ is greater than $n_{j}$ and all elements of each $t_{i}\left(f_{1}, \ldots, f_{k},\left\{n_{0}, \ldots, n_{j}\right\}\right)$.

Take $A=\left\{n_{j}: j \geq 0\right\}$. QED

