3.2. Some Useful Lemmas.

DEFINITION 3.2.1. The standard pairing function on N is the function $P:N^2 \rightarrow N$ due (essentially) to Cantor:

 $P(n,m) = (n^2 + m^2 + 2nm + n + 3m) / 2 \ge n, m.$

It is well known that P is a bijection, and also that for all $n \ge 0$, $[0,n(n+1)/2) \subseteq P[[0,n)^2]$. In addition, P is strictly increasing in each argument.

Let $T:N^2 \rightarrow N$ be such that T(2n, 2m) = P(n,m), T(2n, 2m+1) = T(2n+1, 2m) = T(2n+1, 2m+1) = 2n+2m+2. Then for all $n \ge 0$, $[0, n(n+1)/2) \subseteq T[([0, 2n) \cap 2N)^2]$. Hence for all $n \ge 8$, every element of $[0, n^2/8)$ is realized as a value of T at even pairs from [0, n).

It is clear that $T(2n, 2m) \ge (n^2+2n)/2, (m^2+2m)/2 \ge 2n, 2m$. Hence for $n,m \ge 2$, $T(n,m) \ge n,m$.

LEMMA 3.2.1. There exists 3-ary $f \in ELG \cap SD$ such that the following holds. Let $A \subseteq N$ be nonempty, where $fA \cap 2N \subseteq A$. Then fA is cofinite. We can also require that for all $n \ge 0$, $f(n,n,n) \in 2N$.

Proof: We define $f \in ELG \cap SD$ as follows. Let $p,q \in [2^n, 2^{n+1})$, $n \ge 0$. Define $f(2^n, p, q) = \min(2^{n+1}+T(p-2^n, q-2^n), 2^{n+2})$. Note that for $n \ge 8$, as p,q vary over the even elements of $[2^n, 2^{n+1})$, every value in $[2^{n+1}, 2^{n+2})$ is realized. Also note that for all $n \ge 0$, $f(2^n, 2^n, 2^n) = 2^{n+1}$.

For all n > 0, define f(n, n, n) to be the least $2^k \ge 2n$; f(0, 0, 0) = 2.

For all n < m < r, define f(r,n,n) = 2r+1, f(r,n,m) = 2r+2, f(r,n,r) = 2r+3, f(r,m,n) = 2r+4, f(r,r,n) = 2r+5. For all triples a,b,c, if f(a,b,c) has not yet been defined, define f(a,b,c) = 2|a,b,c|+1.

It is obvious that $f \in SD$. To see that $f \in ELG$, we need only examine the definition of $f(2^n, p, q)$, $p, q \in [2^n, 2^{n+1})$, where n is sufficiently large. If $p, q \in [2^n, 2^{n+2^{n-1}})$, then obviously $f(2^n, p, q) \ge 2^{n+1} \ge 4|2^n, p, q|/3$. If $p, q \notin [2^n, 2^n+2^{n-1}]$, then $f(2^n, p, q) \ge 2^{n+1}+T(p-2^n, q-2^n) \ge 2^{n+1} + 2^{n-1} \ge$ 5p/4, 5q/4. Also, $f(2^n, p, q) \le 2^{n+2} \le 2p, 2q$. Therefore $f \in ELG$.

Let $A \subseteq N$ be nonempty, where $fA \cap 2N \subseteq A$. Let $f(\min(A), \min(A), \min(A)) = 2^k \ge 2$. Then $2^k \in fA \cap 2N$. Therefore $2^k \in A$. Suppose $j \ge k$ and $2^j \in A$. Then $f(2^j, 2^j, 2^j) = 2^{j+1} \in fA$. We have thus established by induction that for all $j \ge k$, $2^{j} \in k$ Α. We now fix t such that t > 8, min(A), and $2^t \in A$. Then min(A) < 2^{t} < 2^{t+1} are all in A. Hence { $2^{t+2}, 2^{t+2}+5$ } \subseteq fA. We inductively define $\alpha(0) = 6$, $\alpha(i+1) = \min((\alpha(i)^2 - 1))$ 1)/8,2^{t+i+3}). Note that for all sufficiently large i, $\alpha(i) =$ 2^{t+i+2} . We now prove by induction on i that for all $i \ge 0$, 1) $[2^{t+i+2}, 2^{t+i+2} + \alpha(i)) \subseteq fA.$ We have already established that this is true for i = 0. Suppose this is true for a particular $i \ge 0$. We claim that 2) $[2^{t+i+2}, 2^{i+t+2} + \alpha(i)) \subseteq fA.$ 3) $[2^{t+i+2}, 2^{i+t+2} + \alpha(i)) \cap 2N \subseteq A.$ 4) $[2^{t+i+3}, 2^{t+i+3} + \alpha(i+1)) \subseteq f(([2^{t+i+2}, 2^{t+i+2} + \alpha(i)) \cap 2N)^2) \subseteq$ fA. 2) is the induction hypothesis. 3) follows from 2) and fA \cap $2N \subset A$. For 4), let $x \in [2^{t+i+3}, 2^{t+i+3} + \alpha(i+1)) \subseteq [2^{t+i+3}, 2^{t+i+4})$. Then 0 $\leq x-2^{t+i+3} < \alpha(i+1) \leq (\alpha(i)^2-1)/8$. By the choice of T, let a,b < α (i), T(a,b) = x-2^{t+i+3}, where a,b are even. Let p = 2^{t+i+2} + a, $q = 2^{t+i+2} + b$. Then $p,q \in [2^{t+i+2}, 2^{t+i+2} + \alpha(i))$, p,q are even, and $f(2^{t+2i+2}, p, q) = x$. This establishes that $[2^{t+i+3}, 2^{t+i+3} + \alpha(i+1)) \subseteq f[([2^{t+i+2}, 2^{t+i+1}])]$ + $\alpha(i)$) \cap 2N)²]. f[([2^{t+i+2}, 2^{t+i+1} + $\alpha(i)$) \cap 2N)²] \subseteq fA is immediate from $[2^{t+i+2}, 2^{i+t+2} + \alpha(i)) \cap 2N \subseteq A$. This concludes the inductive argument for 1). Since for sufficiently large i, $\alpha(i) = 2^{t+i+2}$, we see that fA is cofinite. QED We will need the following technical refinement of Lemma 3.2.1.

LEMMA 3.2.2. There exists 4-ary $g \in ELG \cap SD$ such that the following holds. Let $A \subseteq N$ have at least two elements, where $(\forall n \in qA \cap 2N)$ (4n+3 $\in qA \rightarrow n \in A$). Then qA is cofinite. We can also require that for all $n \in N$, $q(n,n,n,n) \in 2N$. Proof: Let $f:\mathbb{N}^3 \to \mathbb{N}$ be as given by Lemma 3.2.1. We define $q: \mathbb{N}^4 \rightarrow \mathbb{N}$ as follows. Let $x \in \mathbb{N}^3$. If n = |x| then define q(n,x) = f(x). If n < |x| then define q(n,x) = 4f(x)+3. If n > |x| then define g(n,x) = 2n+1. Note that g(n,n,n,n) = $f(n,n,n) \in 2N$. Also, if n < |m,r,s| then $g(n,m,r,s) \ge$ f(m,r,s) > m,r,s, and if n > m,r,s, then g(n,m,r,s) >n, m, r, s. Hence $q \in ELG \cap SD$. Let A be as given. Let $A' = A \{ \min(A) \}$. Then A' is nonempty. Let $n \in fA' \cap 2N$. Let n = f(x), $x \in A'^3$. Hence $4n+3 \in qA$ using min(A) as the first argument for q. Therefore $n \in A$, and so $n \in A'$. We have thus shown that fA' \cap 2N \subseteq A'. By Lemma 3.2.1, fA' is cofinite. Hence qA is cofinite. QED We will need a refinement of Lemma 3.2.1 in a different direction (Lemma 3.2.4). LEMMA 3.2.3. Let $f \in ELG \cap SD$ have arity p. There exists $g, h_1, h_2 \in ELG \cap SD$, with arities 2p,1,1 respectively, such that $f(x_1, \ldots, x_p) = g(h_1(x_1), \ldots, h_1(x_p), h_2(x_1), \ldots, h_2(x_p))$ holds, with finitely many exceptional p-tuples. We can also require that $rng(h_1), rng(h_2) \subseteq 2N$, and each $g(n, \ldots, n)$ is even. Proof: Let f, p be as given. Let c, d > 1 be rational constants such that $c|x| \leq f(x) \leq d|x|$ holds with finitely many exceptions. Let t be sufficiently large relative to c,d. We can assume that 1 < c < 2 < d. We first define $h_1, h_2: [t, \infty) \rightarrow N$ by $h_1(x)$ = the first integer > $c^{1/3}x$ that is divisible by 4. $h_2(x) = h_1(x) + 4(x \mod 8) + 4$. To see that $h(x) = (h_1(x), h_2(x))$ is one-one on $[t, \infty)$, suppose $h_1(x) = h_1(y)$ and $h_2(x) = h_2(y)$ and x < y. By

subtraction, $4(x \mod 8) + 4 = 4(y \mod 8) + 4$, $x = y \mod 8$, and so $y \ge x+8$. Hence the first integer > $c^{1/3}y$ is at least the first integer > $c^{1/3}x$, plus 8. Hence $h_1(x) \neq h_1(y)$. Extend h_1, h_2 on [0,t) by $h_1(x) = h_2(x) = 2x+2$. Note that $c^{1/3}x \le h_1(x), h_2(x) \le 2x+2.$ Hence $h_1, h_2 \in ELG \cap SD$, rng $(h_1) \cup rng(h_2) \subseteq 2N$, and h is one-one. Also $h_1(x) \le h_1(x+1)$, and $h_1(x) < h_2(x) \le h_1(x) +$ 36. We define $g: N^{2p} \rightarrow N$ as follows. case 1. $(y_1, z_1), \ldots, (y_p, z_p) \in rng(h)$, and $|y_1, \ldots, y_p, z_1, \ldots, z_p| > ct. Set g(y_1, \ldots, y_p, z_1, \ldots, z_p) = f(h^{-1}(y_1, z_1), \ldots, h^{-1}(y_p, z_p)).$ case 2. Otherwise. Set $g(y_1, \ldots, y_p, z_1, \ldots, z_p) =$ $2 | y_1, \ldots, y_p, z_1, \ldots, z_p | + 2$. We claim that $q \in$ ELG \cap SD. To see this, note that qrestricted to case 2 lies in ELG \cap SD. So it remains to consider case 1. Let $h(x_1) = (y_1, z_1), \dots, h(x_p) = (y_p, z_p)$. Then for all i, $h_1(x_i) = y_i, h_2(x_i) = z_i.$ $y_i, z_i \geq x_i$. Also let j be such that x_j is largest. Then $x_j = |y_1, \dots, y_j|$ \geq t, and so $x_j \geq |y_1, \dots, y_p, z_1, \dots, z_p|$ - 36. Hence $x_j \ge c^{-1/3} |y_j, z_j| \ge c^{-1/2} |y_1, \dots, y_p, z_1, \dots, z_p|.$ $g(y_1, \ldots, y_p, z_1, \ldots, z_p) = f(x_1, \ldots, x_p) \le d|x_1, \ldots, x_p|$ $\leq d | y_1, \ldots, y_p, z_1, \ldots, z_p |$. $g(y_1, \ldots, y_p, z_1, \ldots, z_p) = f(x_1, \ldots, x_p) \ge c|x_1, \ldots, x_p| = cx_j$ $\geq cc^{-1/2} |y_1, \dots, y_p, z_1, \dots, z_p| \geq c^{1/2} |y_1, \dots, y_p, z_1, \dots, z_p|.$ Hence $q \in ELG \cap SD$. Note that the case $q(n, \ldots, n)$ must lie

in case 2. Hence $g(n, \ldots, n) \in 2N$.

Finally,

 $f(x_1, \ldots, x_p) = g(h_1(x_1), \ldots, h_1(x_p), h_2(x_1), \ldots, h_2(x_p))$

holds according to case 1. The only exceptions are if $|h_1(x_1), \ldots, h_1(x_p), h_2(x_1), \ldots, h_2(x_p)| \le \text{ct.}$ But that is at most finitely many exceptions. QED

LEMMA 3.2.4. There exists a 8-ary $F \in ELG \cap SD$ such that the following holds. Let $A \subseteq N$ be nonempty, where $F(FA \cap 2N) \cap 2N \subseteq A$. Then FA is cofinite.

Proof: Let $f:N^3 \rightarrow N$ be as given by Lemma 3.2.1. By Lemma 3.2.3, let $g,h_1,h_2 \in ELG \cap SD$, with arities 6,1,1 respectively, such that

 $f(x, y, z) = g(h_1(x), h_1(y), h_1(z), h_2(x), h_2(y), h_2(z))$

with finitely many exceptions, where $rng(h_1), rng(h_2) \subseteq 2N$, and each $g(n, \ldots, n) \in 2N$.

We now define $F: \mathbb{N}^8 \rightarrow \mathbb{N}$ by cases.

case 1. $x_1 = x_2 = |x_3, \dots, x_8|$. Set $F(x_1, \dots, x_8) = g(x_3, \dots, x_8)$.

case 2. $x_1 = x_2 < x_3 = \ldots = x_8$. Set $F(x_1, \ldots, x_8) = h_1(x_3)$.

case 3. $x_1 < x_2 < x_3 = \ldots = x_8$. Set $F(x_1, \ldots, x_8) = h_2(x_3)$.

case 4. $x_2 < x_1 < |x_3, x_4, x_5| = |x_1, \dots, x_8|$. Set $F(x_1, \dots, x_8) = f(x_3, x_4, x_5)$.

case 5. Otherwise. Set $F(x_1, ..., x_8) = 2|x_1, ..., x_8|+1$.

It is obvious that $F \in ELG \cap SD$.

Assume $F(FA \cap 2N) \cap 2N \subseteq A$, where A is nonempty. Let $n \in A$. Then $F(n, \ldots, n) \in 2N$, and we can keep applying F to diagonals, thereby obtaining an infinite subset of $A \cap 2N$.

Let A' be the tail of A whose least element is greater than exactly two elements of A.

We claim that $fA' \subseteq F(FA' \cap 2N)$. To see this, let n < m be the first two elements of A. Then by cases 2 and 3 above,

for all $r \in A'$, $h_1(r), h_2(r) \in FA \cap 2N$. Let $x, y, z \in A'$. Now $f(x, y, z) = g(h_1(x), h_1(y), h_1(z), h_2(x), h_2(y), h_2(z)) =$ $F(p, p, h_1(x), h_1(y), h_1(z), h_2(x), h_2(y), h_2(z)) \in F(FA \cap 2N),$ where $p = |h_1(x), h_1(y), h_1(z), h_2(x), h_2(y), h_2(z)|$. In particular, fA' \cap 2N \subseteq F(FA \cap 2N) \cap 2N \subseteq A. Since f is strictly dominating, $fA' \cap 2N \subseteq A'$. By Lemma 3.2.1, fA' is cofinite. Clearly fA' ⊆ FA by case 4. Hence FA is cofinite. QED Let f_1, \ldots, f_k be indeterminate functions from EVSD. We consider the class of f_1, \ldots, f_k , A-terms defined as follows. i. A is an f_1, \ldots, f_k, A -term. ii. If s,t are f_1, \ldots, f_k , A-terms, then s U t is an $f_1, \ldots, f_k, A-term.$ iii. If s is an f_1, \ldots, f_k , A-term, then each f_i s is an $f_1, \ldots, f_k, A-term.$ LEMMA 3.2.5. Let $k \ge 1$, $f_1, \ldots, f_k \in EVSD$, and t_1, \ldots, t_r be f_1, \ldots, f_k, A -terms. There exists $A \in INF$ such that each $A \cap$ $t_i = \emptyset$. We can require that min(A) be any given sufficiently large integer. Proof: Let $f_1, \ldots, f_k \in EVSD$. Write each $t_i = t_i(f_1, \ldots, f_k, A)$. Let n be sufficiently large. We define integers $n_0 < n_1 <$... as follows. Let $n_0 = n$. Suppose n_j has been defined, j \geq 0. Let n_{i+1} to be such that n_{i+1} is greater than n_i and all elements of each $t_i(f_1, \ldots, f_k, \{n_0, \ldots, n_j\})$. Take $A = \{n_j: j \ge 0\}$. QED