3.2. Some Useful Lemmas.

DEFINITION 3.2.1. The standard pairing function on N is the
function P:N° — N due (essentially) to Cantor:

P(n,m) = (n’+m’+2nm+n+3m)/2 = n,m.

It is well known that P is a bijection, and also that for
all n =0, [0,n(n+l)/2) € P[[0,n)?]. In addition, P is
strictly increasing in each argument.

Let T:N° — N be such that T(2n,2m) = P(n,m), T(2n,2m+l) =
T(2n+1,2m) = T(2n+1,2m+1l) = 2n+2m+2. Then for all n = O,
[0,n(n+1)/2) € T[([0,2n) N 2N)?]. Hence for all n = 8,
every element of [0,n°/8) is realized as a value of T at
even pairs from [0,n).

(n+2n) /2, (m*+2m) /2 = 2n,2m.
n,m.

It is clear that T (2n,2m) =
Hence for n,m = 2, T(n,m) =
LEMMA 3.2.1. There exists 3-ary f € ELG N SD such that the
following holds. Let A C N be nonempty, where fA N 2N C A.
Then fA is cofinite. We can also require that for all n = O,
f(n,n,n) € 2N.

Proof: We define f € ELG N SD as follows. Let p,q &€
[2%,2™Y, n = 0. Define f(2",p,q) = min (2""'+T (p-2", g-
2™),2""?) . Note that for n = 8, as p,q vary over the even
elements of [2%,2"), every value in [2™},2""%) is realized.
Also note that for all n = 0, f(2",2",2% = 20,

For all n > 0, define f(n,n,n) to be the least 2% > 2n;
£(0,0,0) = 2.

For all n < m < r, define f(r,n,n) = 2r+1, f(r,n,m) = 2r+2,
f(r,n,r) = 2r+3, f(r,m,n) = 2r+4, f(r,r,n) = 2r+5. For all

triples a,b,c, if f(a,b,c) has not yet been defined, define
f(a,b,c) = 2]la,b,c|+1.

It is obvious that £ € SD. To see that f € ELG, we need
only examine the definition of f(2%,p,q), p,qg € [2",2"),
where n is sufficiently large. If p,q € [2",2°+2""), then
obviously f(2",p,q) = 2" = 42", p,ql/3. If p,q & [2",2"+2"
Yy, then £(2%,p,q) = 24T (p-2",g-2") = 2™ + 27! >
5p/4,59/4. Also,f(2%,p,q) 2™? < 2p,2q. Therefore f € ELG.
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Let A C N be nonempty, where fA N 2N C A. Let
f(min(A),min (A),min(A)) = 2% = 2. Then 2% € fA N 2N.
Therefore 2 € A.

Suppose j = k and 2’ € A. Then £(27,27,27) = 27" € fA. We
have thus established by induction that for all j = k, 27 €
A.

We now fix t such that t > 8,min(A), and 2° € A. Then min (A)
< 2% < 2! are all in A. Hence {2%%?,2%%245] C fA.

We inductively define a(0) = 6, o(i+l) = min((a(i)?-

1)/8,2*3) . Note that for all sufficiently large i, a(i) =
2t+i+2 .

We now prove by induction on i that for all i = O,
l) [2t+i+2’2t+i+2 + O(.(l) ) g fA.

We have already established that this is true for i = 0.
Suppose this is true for a particular i = 0. We claim that

[2t+:}+2’23}+t+2 + O(.(l) ) g fA.
[2t+1+2’ 21+t+2 + o (l) ) m 2N g AL

2)

3) . . . .

4) [2t+1+3’2t+1+3 + O(.(l-l'l)) g f( ([2t+1+2’2t+1+2 + O(.(l)) m 2N)2) g
A.

[

2) is the induction hypothesis. 3) follows from 2) and fA N
2N € A.

For 4), let x € [2M3, 2843 4 a(i+1)) C [2%%73, 2% | Then 0
< x-2""" < a(i+l) = (a(i)?-1)/8. By the choice of T, let a,b
< o(i), T(a,b) = x-2""""%, where a,b are even. Let p = 25" 4+
a, g = 2" + b. Then p,q € [2"%, 2" + a(i1)), p,g are
even, and f(2%*?,p,q) = x.

)

N

This establishes that [2t+i+3,2t+i+3 + o (i+1 C f[([2F2, otrird
+oa(i)) N 2N)%]. £[([257%, 27 4+ a(i)) N 2N)?) C fA is
immediate from [2F7%2,2%*"2 4+ q(i)) N 2N C A.

This concludes the inductive argument for 1). Since for
sufficiently large i, a(i) = 2%, we see that fA is
cofinite. QED

We will need the following technical refinement of Lemma
3.2.1.



LEMMA 3.2.2. There exists 4-ary g € ELG N SD such that the
following holds. Let A C N have at least two elements,
where (Vn € gA N 2N) (4n+3 € gA — n € A). Then gA is
cofinite. We can also require that for all n € N,
g(n,n,n,n) € 2N.

Proof: Let f:N° — N be as given by Lemma 3.2.1. We define

g:N4-+ N as follows. Let x € N°. If n = |x| then define
g(n,x) = f(x). If n < |x| then define g(n,x) = 4f(x)+3. If
n > |x| then define g(n,x) = 2n+l. Note that g(n,n,n,n) =

f(n,n,n) € 2N. Also, if n < |m,r,s| then g(n,m,r,s) =
f(m,r,s) > m,r,s, and if n > m,r,s, then g(n,m,r,s) >
n,m,r,s. Hence g € ELG N SD.

Let A be as given. Let A’ = A\{min(A)}. Then A’ 1is
nonempty. Let n € fA’ N 2N. Let n = f(x), x € A'’. Hence
4n+3 € gA using min(A) as the first argument for g.
Therefore n € A, and so n &€ A’.

We have thus shown that fA’ N 2N C A’. By Lemma 3.2.1, fA’
is cofinite. Hence gA is cofinite. QED

We will need a refinement of Lemma 3.2.1 in a different
direction (Lemma 3.2.4).

LEMMA 3.2.3. Let £ € ELG N SD have arity p. There exists
g,hi,h, € ELG N SD, with arities 2p,1,1 respectively, such

that £(x1,...,%xp) = g(hi(x1),...,h1(xp),h2(x1),...,h2(xp))
holds, with finitely many exceptional p-tuples. We can also
require that rng(hi),rng(h;) € 2N, and each g(n,...,n) is
even.

Proof: Let f,p be as given. Let c,d > 1 be rational
constants such that

clx| = f£(x) = d|x|

holds with finitely many exceptions. Let t be sufficiently
large relative to c¢,d. We can assume that 1 < ¢ < 2 < d.

We first define hi,h;:[t,®) — N by

h,(x) = the first integer > c!/°x that is divisible by 4.
ho(x) = hi(x) + 4(x mod 8) + 4.
To see that h(x) = (h1(x),h;(x)) 1s one-one on [t,®),

suppose h;(x) = hi(y) and hy(x) = hy(y) and x < y. By



subtraction, 4(x mod 8) + 4 = 4(y mod 8) + 4, x = y mod 8,

and so y = x+8. Hence the first integer > c”3y is at least

the first integer > c¢'’°x, plus 8. Hence hi(x) = hi(y).

Extend h;,h; on [0,t) by

hi(x) = hy(x) = 2x+2.
Note that

c®x = hi(x),h2(x) = 2x+2.

Hence hi;,h, € ELG N SD, rng(h:;) U rng(h,) € 2N, and h is
one-one. Also h;(x) = hi(x+1l), and h;(x) < hy(x) = h;(x) +
36.
We define g:N** — N as follows.
case 1. (vi,21),..., (¥ps2p) € rng(h), and
|VireeerYprZiy«..,2pl > ct. Set g(yis.e.eerVYpr2is...,2p) = £(h"

1(Y1, Z1) .. -lh_l(YPl Zp) ) .

case 2. Otherwise. Set g(Viy ../ YprZis«..,2p) =
2|y1l---IYplzll---/Zp|+2-

We claim that g € ELG N SD. To see this, note that g
restricted to case 2 lies in ELG M SD. So it remains to
consider case 1.

Let h(x1) = (vi,21),...,h(xp) = (¥Yp,2p). Then for all i,

hi(x1) = vi, ha(xy) = z;.
YirZi = Xj.

Also let j be such that x5 is largest. Then x5 = |Vi,...,Y;l
= t, and so x5 2 |Yi,++.,YprZi,...,2pl — 36. Hence
-1/3 -1/2
Xy = C |y]',Zj| = C |y1,...,yp,zl,...,zp|.
(Y1iseeerYprZiseoer2p) = E(X1,000,%Xp) = dIxXe,...,%p
< dlIViyeeerYprZigeeorZpl.
g(yi,../.,yp,zl,.. crZp) = E(x1,.. .vxp) 2 ClX1,...,%| = Cxy
-1/2 1/2
= cc Vi oo ey Ypr2is«..,2pl =2 C | Viy oo e r YprZis e ooy Zpl.

Hence g € ELG N SD. Note that the case g(n,...,n) must lie
in case 2. Hence g(n,...,n) € 2N.



Finally,
f(x1ye0orxp) = g(ha(xa), .00 i (Xp) ,ho(%1), 000, 2 (%p))

holds according to case 1. The only exceptions are if
lhi (x1) ..., hi(xp) , ho(x1), ..., ho(xp) | = ct. But that is at
most finitely many exceptions. QED

LEMMA 3.2.4. There exists a 8-ary F € ELG M SD such that
the following holds. Let A C N be nonempty, where F(FA N

2N) N 2N € A. Then FA is cofinite.
Proof: Let f:N° — N be as given by Lemma 3.2.1. By Lemma

3.2.3, let g,h;,h, € ELG N SD, with arities 6,1,1
respectively, such that

f(x,y,2) = g(hi(x),h1(y),hi(z),h2(x),h2(y),h2(2))

with finitely many exceptions, where rng(h:),rng(h;) C 2N,
and each g(n,...,n) € 2N.

We now define F:N® — N by cases.

case 1. X1 = X = |X3,...,%Xg]. Set F(X1,...,Xg) =

g (X3, «..,Xg) .

case 2. X1 = X, < X3 = ... = Xg. Set F(x1,...,Xg) = hi(x3).
case 3. X1 < X, < X3 = ... = Xg. Set F(x1,...,Xg) = hy(x3).
case 4. x, < X1 < |X3,X4,%X5] = |X1,...,%Xg]l. Set F(X1,...,Xg) =

f(x3,%X4,%X5) .
case 5. Otherwise. Set F(xX1,...,Xg) = 21X1,...,Xg|+1.

It is obvious that F &€ ELG N SD.

Then F(n,...,n) € 2N, and we can keep applying F to
diagonals, thereby obtaining an infinite subset of A M 2N.

Assume F(FA N 2N) N 2N C A, where A is nonempty. Let n € A.

Let A’ be the tail of A whose least element is greater than
exactly two elements of A.

We claim that fA’ C F(FA’ N 2N). To see this, let n < m be

the first two elements of A. Then by cases 2 and 3 above,



for all r € A’, hi(r),hx(r) € FA N 2N. Let x,y,z € A'. Now

f(x,v,2) = g(hi(x),hi(y),hi(z),hy(x),ho(y),ha(z)) =
F(p,p,h1(x),hi(y),hi(z),hy(x),ho(y),ha(2z)) € F(FA N 2N),
where p = |hi1(x),hi(y),hi1(z),h2(x),h2(y),h2(z) .

In particular, fA’ N 2N C F(FA N 2N) N 2N C A. Since f is
strictly dominating, fA’ N 2N C A’. By Lemma 3.2.1, fA’ is
cofinite.

Clearly fA’ C FA by case 4. Hence FA is cofinite. QED

Let f1,...,fx be indeterminate functions from EVSD. We
consider the class of f{,...,fx,A-terms defined as follows.
i. A is an fi,...,fx,A-term.

ii. If s,t are f{,...,fx,A-terms, then s U t is an
fi,...,fx,A-term.

iii. If s is an f;,...,fx,A-term, then each f;s is an

fi,...,fx,A-term.

LEMMA 3.2.5. Let k =1, f4,...,fx € EVSD, and ti,...,tr be
fi,...,fx,A-terms. There exists A &€ INF such that each A N
t; = . We can require that min(2A) be any given
sufficiently large integer.

Proof: Let f,,...,fx € EVSD. Write each t; = ti(f1,...,fx,A).
Let n be sufficiently large. We define integers ng < n; <

as follows. Let no = n. Suppose ny has been defined, j
= 0. Let ny41 to be such that

ny+1 1s greater than ny and all elements of each
ti(fll°°°Ifkl{nOI°°°lnj})°

Take A = {ny: j = 0}. QED



