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CHAPTER 3 
6561 CASES OF EQUATIONAL 
BOOLEAN RELATION THEORY 
 
3.1. Preliminaries. 
3.2. Some Useful Lemmas. 
3.3. Single Clauses (duplicates). 
3.4. AAAA. 
3.5. AAAB. 
3.6. AABA. 
3.7. AABB. 
3.8. AABC. 
3.9. ABAB. 
3.10. ABAC. 
3.11. ABBA. 
3.12. ABBC. 
3.13. ACBC. 
3.14. Annotated Table.  
3.15. Some Observations.  
 
In this Chapter, we study 6561 = 38 assertions of EBRT in 
A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF) of a particularly 
simple form. We cannot come close to analyzing all 
assertions of EBRT in A,B,C,fA,fB,fC,gA,gB,gC on (ELG,INF), 
or even of EBRT in A,B,C,fA,fB,gB,gC,⊆ on (ELG,INF).  
 
Recall the notation A ∪. B, introduced in Definition 1.3.1. 
Thus  
 

A ∪. B ⊆ C ∪. D 
 
means  
 

A ∩ B = ∅ ∧ C ∩ D = ∅ ∧ A ∪ B ⊆ C ∪ D. 
 
This is a very natural concept, and is illustrated by the 
following diagram. 
 
 
 ______________________________ 
| C                            | 
|                              | 
|        ______________        | 
|       | A     | B    |       | 
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|       |       |      |       | 
|_______|_______|______|_______|  
| D     |       |      |       | 
|       |       |      |       | 
|       |_______|______|       | 
|                              | 
|                              | 
|______________________________| 
 
 
Our 6561 = 38 cases take the following form. 
 
TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that  

X ∪. fY ⊆ V ∪. gW 
 P ∪. fR ⊆ S ∪. gT. 

 
Here X,Y,V,W,P,R,S,T are among the three letters A,B,C. We 
refer to the statements X ∪. fY ⊆ V ∪. gW, for X,Y,V,W ∈ 
{A,B,C}, as clauses.   
 
In this Chapter, we determine the truth values of all of 
these 6561 statements. We prove a number of specific 
results about the Template. Here “Temp” is read “Template”. 
 
TEMP 1. Every assertion in the Template is either provable 
or refutable in SMAH+. There exist 12 assertions in the 
Template, provably equivalent in RCA0, such that the 
remaining 6549 assertions are each provable or refutable in 
RCA0. Furthermore, these 12 are provably equivalent to the 
1-consistency of SMAH over ACA’ (Theorem 5.9.11).  
 
We can be specific about the 12 exceptional cases.  
 
DEFINITION 3.1.1. The Principal Exotic Case is Proposition 
A below. It is an instance of the Template. 
 
PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF 
such that  

A ∪. fA ⊆ C ∪. gB 
 A ∪. fB ⊆ C ∪. gC. 

 
In Chapter 4, we prove Proposition A in SMAH+. In Chapter 5, 
we show that Proposition A is provably equivalent to 1-
Con(SMAH) over ACA’.  
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DEFINITION 3.1.2. The Exotic Cases consist of the 12 
variants of Proposition A where we (optionally) interchange 
the two clauses, and (optionally) permute the three letters 
A,B,C. 
 
The Principal Exotic Case is among the Exotic Cases.  
 
The Template is based on the BRT setting (ELG,INF). What if 
we use (ELG ∩ SD,INF), (SD,INF), (EVSD,INF)?  
 
TEMP 2. Every one of the 6561 assertions in the Template, 
other than the 12 Exotic Cases, are provably equivalent to 
the result of replacing ELG by any of ELG ∩ SD, SD, EVSD. 
All 12 Exotic Cases are refutable in RCA0 if ELG is replaced 
by SD or EVSD (Theorem 6.3.5).  
 
TEMP 3. The Template behaves very differently for MF. For 
example, the Template is true (even provable in RCA0) with A 
∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gB, yet false (even 
refutable in RCA0) with ELG replaced by MF. 
 
DEFINITION 3.1.3. The “template attributes” are as follows. 
Below, α,β are clauses in the sense of the Template. 
 
INF(α,β). For all f,g ∈ ELG there exist A,B,C ∈ INF such 
that α,β hold. 
 
AL(α,β). For all f,g ∈ ELG and n ≥ 0, there exist A,B,C ⊆ 
N, each with at least n elements (possibly infinite), such 
that α,β holds. Here AL is read “arbitrarily large”.  
 
ALF(α,β). For all f,g ∈ ELG and n ≥ 0, there exist finite 
A,B,C ⊆ N, each with at least n elements, such that α,β 
holds. Here ALF is read “arbitrarily large finite”.  
 
FIN(α,β). For all f,g ∈ ELG there exist nonempty finite 
A,B,C ⊆ N such that α,β holds. Here FIN is read “nonempty 
finite”. 
 
NON(α,β). For all f,g ∈ ELG there exist nonempty A,B,C ⊆ N 
such that α,β hold. Here NON is read “nonempty”.  
 
Note that the Template is based on INF(α,β).  
 
We write ¬INF(α,β), ¬AL(α,β), ¬ALF(α,β), ¬FIN(α,β), 
¬NON(α,β) for the negations of the template attributes.  
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We analyze the following Extended Template based on the 
template attributes. 
 
EXTENDED TEMPLATE. X(α,β), where X ∈ {INF, AL, ALF, FIN, 
NON}, and α,β are among the X ∪. fY ⊆ V ∪. gW, with X,Y,V,W 
∈ {A,B,C}.  
 
Every assertion in the Template is an assertion in the 
Extended Template, using X = INF. The number of assertions 
in the Extended Template is obviously 5(81)(81) = 32,805.   
 
We determine the truth value of every one of these 32,805 
assertions in this Chapter.  
 
Now 32,805 is a rather daunting number, and we take full 
advantage of an obvious symmetry and some general facts in 
order to carry out such a large tabular classification. 
 
The obvious symmetry is that we can permute any two 
clauses, and also permute the three letters A,B,C. This 
results in an obvious equivalence relation on the ordered 
pairs of clauses, where the equivalence classes have at 
most 12 elements. In fact, the typical equivalence class 
has 12 elements, and we compute that there are exactly 574 
equivalence classes under this equivalence relation. This 
equivalence relation is called the pair equivalence 
relation, and is introduced formally in Definition 3.1.1. 
 
Thus, in this Chapter, we will be making a total of 5(574) 
= 2870 determinations up to pair equivalence.  
 
Here is one of our main results of this Chapter. “ETEMP” is 
read “Extended Template”.  
 
ETEMP. Every assertion in the Extended Template, other than 
the 12 Exotic Cases with INF, is provable or refutable in 
RCA0.  
 
The determination of the truth value of all assertions in 
the Extended Template is presented in section 3.14 as an 
annotated table.  
 
The annotated table lists a representative from all 574 of 
the equivalence classes of the ordered pairs of clauses. To 
its right is the sequence of template attributes INF, ALF, 
ALF, FIN, NON, where none, some, or all appear with a 
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negation sign in front. There are 5(574) = 2870 entries in 
the annotative table. 
 
The 12 Exotic Cases then appear as entry 28 under ACBC, in 
the annotated table: 
 
28. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 

FIN. NON. 
 
This is the Principal Exotic Case. The justification of 
this single entry (with INF only) uses SMAH+, and is given 
in Chapter 4.  
 
In section 3.15, we make some observations about the 
classification in the annotated table of section 3.14. The 
most important is "BRT Transfer", which tells us that for 
the purposes of this Chapter, INF and ALF are equivalent.  
 
We shall see that BRT Transfer is itself provably 
equivalent to the 1-consistency of SMAH over ACA'.  
 
3.1. Preliminaries. 
 
We begin with two background Theorems which show the 
equivalence of  
 

ELG and ELG ∩ SD. 
SD and EVSD. 

 
for the Extended Template.  
 
THEOREM 3.1.1. Suppose that for all f,g ∈ ELG ∩ SD there 
exist A,B,C ∈ INF such that X ∪. fY ⊆ V ∪. gW and P ∪. fR 
⊆ S ∪. gT. Then for all f,g ∈ ELG there exist A,B,C ∈ INF 
such that X ∪. fY ⊆ V ∪. gW and P ∪. fR ⊆ S ∪. gT. The 
same is true if we replace “A,B,C ∈ INF” by “arbitrarily 
large A,B,C ⊆ N”, “arbitrarily large finite A,B,C ⊆ N”, 
“nonempty finite A,B,C ⊆ N”, or “nonempty A,B,C ⊆ N”.  
 
Proof: Assume the hypothesis. Let f,g ∈ ELG, with arities 
p,q, respectively. Let f,g be strictly dominating on [n,∞)p 
and [n,∞)q, respectively.  
 
Let f’,g’ be defined by f’(x) = f(x+n)-n and g’(y) = 
g(y+n)-n. We claim that f’,g’ ∈ ELG ∩ SD. To see this, 
first note that f’(x) = f(x+n)-n > |x+n|-n = |x|, and g’(y) 
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= g(y+n)-n > |y+n|-n = |y|. Hence f’,g’ ∈ SD. Now let 1 < c 
< d be such that  
 

c|x| ≤ f(x) ≤ d|x| 
c|y| ≤ g(y) ≤ d|y| 

 
hold for all |x|,|y| > t. Then  
 

c|x+n| ≤ f(x+n) = f’(x)+n ≤ d|x+n| 
c|y+n| ≤ g(y+n) = g’(y)+n ≤ d|y+n| 

 
hold for all |x|,|y| > t. Hence  
 

c|x+n|-n ≤ f’(x) ≤ d|x+n|-n 
c|y+n|-n ≤ g’(y) ≤ d|y+n|-n 

 
hold for all |x|,|y| > t.  
 
Hence  
 

c|x| ≤ f’(x) ≤ d(|x|+n)-n = d|x|+(d-1)n ≤ (d+dn)|x| 
c|y| ≤ g’(y) ≤ d(|y|+n)-n = d|y|+(d-1)n ≤ (d+dn)|y| 

 
hold for all |x|,|y| > t. Hence f’,g’ ∈ ELG. So f’,g’ ∈ ELG 
∩ SD. 
 
Applying the hypothesis to f’,g’, let A,B,C ∈ INF, where X 
∪. f'Y ⊆ V ∪. g'W and P ∪. fR ⊆ S ∪. gT. Let A’ = A+n, B’ 
= B+n, C’ = C+n. Obviously A’,B’,C’ ∈ INF, and 
X’,Y’,V’,W’,P’,R’,S’,T’ = X+n,Y+n,V+n,W+n,P+n,R+n,S+n,T+n, 
respectively, also lie in INF.  
 
We claim that for all E ⊆ N, f(E+n) = (f’E)+n. To see this, 
note that r ∈ f(E+n) ↔ (∃x ∈ E)(r = f(x+n)) ↔ (∃x ∈ E)(r-n 
= f(x+n)-n) ↔ (∃x ∈ E)(r-n = f’(x)) ↔ r-n ∈ f’E ↔ r ∈ 
(f’E)+n. Analogously, g(E+n) = (g'E)+n.  
 
We now have  
 
X’ ∪ fY’ = X+n ∪ f(Y+n) = X+n ∪ (f’Y)+n = (X ∪ f’Y)+n ⊆ (V 
∪ g’W)+n = V+n ∪ (g’W)+n = V+n ∪ g(W+n) = V’ ∪ gW’.  
 
X’ ∩ fY’ = X+n ∩ f(Y+n) = X+n ∩ (f’Y)+n = (X ∩ f’Y)+n = ∅. 
V’ ∩ gW’ = V+n ∩ g(W+n) = V+n ∩ (g’W)+n = (V ∩ g’W)+n = ∅. 
 
The second clause  
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P’ ∪. fR’ ⊆ S’ ∪. gT’ 
 
is verified in the same way.  
 
For the other four attributes, note that for all E ⊆ N, E 
and E+n have the same cardinality. QED  
 
Theorem 3.1.1 does not mean that ELG and ELG ∩ SD behave 
the same way in other BRT contexts - e.g., in EBRT in A,fA. 
Nor does it mean that EVSD and SD behave the same way in 
other BRT contexts, either.  
 
In fact, consider the equation A ∪. fA = U (the 
Complementation Theorem). This equation is correct in EBRT 
in A,fA on (SD,INF), but incorrect in EBRT in A,fA on 
(ELG,INF). The function f(x) = 2x serves as a 
counterexample.    
 
THEOREM 3.1.2. Suppose that for all f,g ∈ SD there exist 
A,B,C ∈ INF such that X ∪. fY ⊆ V ∪. gW and P ∪. fR ⊆ S ∪. 
gT. Then for all f,g ∈ EVSD there exist A,B,C ∈ INF such 
that X ∪. fY ⊆ V ∪. gW and P ∪. fR ⊆ S ∪. gT. The same is 
true if we replace “A,B,C ∈ INF” by “arbitrarily large 
A,B,C ⊆ N”, “arbitrarily large finite A,B,C ⊆ N”, “nonempty 
finite A,B,C ⊆ N”, or “nonempty A,B,C ⊆ N”.  
 
Proof: Follow the proof of Theorem 3.1.1. The only 
difference between the proofs is that here we need only 
verify that if f,g ∈ EVSD then f',g' ∈ SD. QED 
 
We have observed that ELG, ELG ∩ SD, SD, EVSD behave the 
same with regard to the Template (i.e., with INF), except 
for the Exotic Cases (see Theorem 6.3.5). Thus in this 
Chapter, we will be using EVSD whenever we are proving INF. 
 
We know that ELG (or equivalently, ELG ∩ SD) and SD (or 
equivalently EVSD) do behave differently on some of the 
five attributes, even with the non Exotic Cases. See 
Theorem 3.3.10 for an example with the attribute AL. 
 
Note that there are exactly 81 clauses and 812 = 38 = 6561 
ordered pairs of clauses used in the Template. This is a 
large number of cases to analyze, and so we will take full 
advantage of whatever shortcuts we can find.  
 
The main shortcut that we use very effectively is syntactic 
equivalence. We also need to make sure that we in fact 
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determine all 6561 truth values, without leaving any cases 
out. This requires some effective organization of the work.   
 
DEFINITION 3.1.4. We say that (α,β) and (γ,δ) are pair 
equivalent if and only if there is a permutation π of 
{A,B,C} such that  
 

i) πα = γ ∧ πβ = δ; or 
ii) πα = δ ∧ πβ = γ. 

 
Obviously, if two ordered pairs of clauses are pair 
equivalent then the truth values of the corresponding 
Template statements are the same.  
 
In this section, we generate a unique set of 
representatives for all the equivalence classes under the 
ordered pair equivalence relation. These representatives 
are organized into 11 groups that correspond to sections 
3.3 - 3.13.  
 
We find that there are a total of 574 equivalence classes 
under the pair equivalence relation. In sections 3.3 - 
3.13, we determine the truth values of the 574 
corresponding Template statement, within RCA0, with the one 
exception of the Exotic Cases.  
 
Section 3.14 annotates the set of representatives 
constructed in this section with these truth values. 
Section 3.15 is devoted to observed facts about the 
classification in section 3.14. 
 
LEMMA 3.1.3. The following is provable in RCA0. Let 
(α,β),(γ,δ) be two pair equivalent ordered pairs of clauses, 
and let P be any one of our five attributes INF, AL, ALF, 
FIN, NON. Then P(α,β) ↔ P(γ,δ). Moreover, if α = β then 
P(α) ↔ P(β) ↔ P(α,α) ↔ P(β,β). 
 
Proof: Obvious. QED 
 
Let the ordered pair of clauses  
 

α = X ∪. fY ⊆ V ∪. gW 
β = P ∪. fR ⊆ S ∪. gT 

 
be given.  
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DEFINITION 3.1.5. The inner (outer) trace of (α,β) is YVRS 
(XWPT).  
 
We also consider traces independently of ordered pairs of 
clauses.  
 
DEFINITION 3.1.6. A trace is a length 4 string from 
{A,B,C}. There are 34 = 81 traces. 
 
DEFINITION 3.1.7. Let XYVW be a trace. The reverse of XYVW 
is VWXY.  
 
Any permutation π of {A,B,C} transforms any trace XYVW to 
the trace πXπYπVπW.  
 
DEFINITION 3.1.8. Two traces are equivalent if and only if 
there is a permutation that transforms the first into the 
second, or a permutation that transforms the first into the 
reverse of the second.  
 
Equivalence of inner (outer) traces is easily seen to be an 
equivalence relation. 
 
LEMMA 3.1.4. If two ordered pairs of clauses are pair 
equivalent, then their inner (outer) traces are equivalent.  
 
Proof: Obvious. QED 
 
LEMMA 3.1.5. Every trace is equivalent to exactly one of 
the following traces.  
1. AAAA. 
2. AAAB. 
3. AABA. 
4. AABB. 
5. AABC. 
6. ABAB. 
7. ABAC. 
8. ABBA. 
9. ABBC. 
10. ABCB. 
 
Proof: We first show that every trace is equivalent to at 
least one of these 10. Let α be a trace. We go through a 
series of steps resulting in one of these 10. 
 
First permute α so that the first term is A. Next, if the 
second term is C, interchange C with B so that the first 
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two terms are AB. Note that the first two terms are AA or 
AB. 
 
We now split into cases according to the first three terms. 
 
case 1. AAA. Note that AAAA and AAAB are already on the 
list. AAAC is equivalent to AAAB. 
 
case 2. AAB. Note that all three continuations are on the 
list. 
 
case 3. AAC. Permute C and B, and apply case 2. 
 
case 4. ABA. ABAB and ABAC are on the list. ABAA is the 
reversal of AAAB, and hence ABAA is equivalent to AAAB. 
AAAB is on the list.  
 
case 5. ABB. ABBA and ABBC are on the list. ABBB is 
equivalent to BBAB and to AABA, which is on the list. 
 
case 6. ABC. ABCA is equivalent to CAAB and to ABBC, which 
is on the list. ABCB is on the list. ABCC is equivalent to 
CCAB and to AABC, which is on the list.   
 
Now we show that all 10 are inequivalent. 
 
1. AAAA. This has the following property preserved under 
equivalence: just one letter is used. The remaining 9 do 
not have this property. 
2. AAAB. This has the following property preserved under 
equivalence: there are exactly three equal letters and the 
first and third letters are the same. The remaining 9 do 
not have this property. 
3. AABA. This has the following property preserved under 
equivalence: there are exactly three equal letters and the 
first and third letters are different. The remaining 9 do 
not have this property. 
4. AABB. This has the following property preserved under 
equivalence: the first two letters equal, the last two 
letters are equal, and not all letters are equal. The 
remaining 9 do not have this property. 
5. AABC. This has the following property preserved under 
equivalence: all three letters are used, and either the 
first two letters are the same, or the last two letters are 
the same. The remaining 9 do not have this property. 
6. ABAB. This has the following property preserved under 
equivalence: the first and third letters are the same, the 
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second and fourth letters are the same, and not all letters 
are equal. The remaining 9 do not have this property. 
7. ABAC. This has the following property preserved under 
equivalence: all three letters are used, where the first 
and third letters are equal. The remaining 9 do not have 
this property. 
8. ABBA. This has the following property preserved under 
equivalence: the first and last letters are equal, the 
middle two letters are equal, and not all letters are 
equal. The remaining 9 do not have this property. 
9. ABBC. This has the following property preserved under 
equivalence: all three letters are used, where the two 
middle letters are equal, or the first and last letters are 
equal. The remaining 9 do not have this property. 
10. ABCB. This has the following property preserved under 
equivalence: all three letters are used, where the second 
and fourth letters are equal. The remaining 9 do not have 
this property. 
 
QED 
 
LEMMA 3.1.6. Every ordered pair of clauses is pair 
equivalent to an ordered pair of clauses whose inner trace 
is among  
1. AAAA. 
2. AAAB. 
3. AABA. 
4. AABB. 
5. AABC. 
6. ABAB. 
7. ABAC. 
8. ABBA. 
9. ABBC. 
10. ACBC. 
 
Proof: Immediate from Lemma 3.1.5. Note that we have 
changed item 10 from Lemma 1.3 by interchanging B and C. 
The reason for this change is that the inner trace of the 
ordered pair of clauses in Proposition A is ACBC, and we 
like the exact choice of letters in Proposition A. QED 
 
In section 3.3 we handle all of the duplicates (α,α). We 
remove these duplicates from consideration in sections 3.4 
and 3.9 where they arise. Obviously, they do not arise in 
the remaining sections. 
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We now wish to give the unique set of representatives of 
the pair equivalence classes of the ordered pairs of 
clauses that we use to tabulate our results in the 
annotated tables of section 3.14.  
 
To support our choice of unique representatives, we 
establish a number of facts. 
 
We have been working with pair equivalence, and inner 
(outer) traces, for ordered pairs of clauses. It is 
convenient to have these notions for a single clause:  
 
DEFINITION 3.1.9. Two individual clauses are considered 
equivalent if and only if there is a permutation of {A,B,C} 
then sends one to the other. The inner (outer) trace of the 
single clause X ∪. fY ⊆ V ∪. gW. is defined to be YV, XW, 
respectively. 
 
LEMMA 3.1.7. Every clause is equivalent to a clause where  
i) the inner trace is AA; or 
ii) the inner trace is AB. 
No clause in one of these two categories is equivalent to 
any clause in the other of these two categories.  
 
Proof: If the inner trace begins with B or C, then permute 
it with A, so that the inner trace now begins with A. If 
the inner trace is AC, then permute C and B, so that the 
inner trace is now AB.  
 
Let π be a permutation of {A,B,C}. It is clear that π must 
map any clause with inner trace AA to a clause with trace 
XX. Hence no clause in category i) can be equivalent to a 
clause in category ii). Also, π must map any clause with 
inner trace AB to a clause with inner trace XY, X ≠ Y. Hence 
no clause in category ii) can be equivalent to a clause in 
category i). QED 
 
Lemma 3.1.7 supports the unique set of representatives of 
individual clauses (or, equivalently, duplicates), 
presented in the following way.  
 
We list all individual clauses according to Lemma 3.1.7, 
ordered first by the two categories i),ii), and then 
lexicographically (reading the four letters from left to 
right). These are consecutively numbered starting with 1. 
But if a clause is equivalent to some earlier clause, then 
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we label it with an x, and also point to the earlier 
numbered clause to which it is equivalent. 
 
SINGLE CLAUSES (14) 
 
1. A ∪. fA ⊆ A ∪. gA. 
2. A ∪. fA ⊆ A ∪. gB. 
x. A ∪. fA ⊆ A ∪. gC. ≡ 2. 
 
3. B ∪. fA ⊆ A ∪. gA. 
4. B ∪. fA ⊆ A ∪. gB.  
5. B ∪. fA ⊆ A ∪. gC.  
 
x. C ∪. fA ⊆ A ∪. gA. ≡ 3. 
x. C ∪. fA ⊆ A ∪. gB. ≡ 5.  
x. C ∪. fA ⊆ A ∪. gC. ≡ 4. 
 
6. A ∪. fA ⊆ B ∪. gA. 
7. A ∪. fA ⊆ B ∪. gB. 
8. A ∪. fA ⊆ B ∪. gC. 
 
9. B ∪. fA ⊆ B ∪. gA. 
10. B ∪. fA ⊆ B ∪. gB.  
11. B ∪. fA ⊆ B ∪. gC.  
 
12. C ∪. fA ⊆ B ∪. gA. 
13. C ∪. fA ⊆ B ∪. gB. 
14. C ∪. fA ⊆ B ∪. gC. 
 
The numbered part of this table, annotated, appears in 
section 3.14. 
 
DEFINITION 3.1.10. An AAAA ordered pair is an ordered pair 
of distinct clauses whose inner trace is AAAA. We also use 
this terminology for the other 9 traces in Lemma 3.1.6 
(which are the titles of sections 3.5 - 3.13).  
 
Thus we are using the ten inner traces of Lemma 3.1.6 to 
divide the (non duplicate) ordered pairs mod pair 
equivalence into ten more manageable categories. The 
ordered pairs within each category have different outer 
traces.  
 
LEMMA 3.1.8. Every AAAA ordered pair is pair equivalent to 
an AAAA ordered pair whose outer trace   
i) uses exactly A,B; or 
ii) uses exactly B,C, with outer trace beginning with B; or 
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iii) uses exactly A,B,C, whose outer trace begins with 
AA,AB, or B. 
No ordered pair of clauses in any one of these three 
categories is pair equivalent to any ordered pair of 
clauses in any other of these categories.  
 
Proof: Let α be an AAAA ordered pair. The outer trace of α 
cannot use exactly one letter, since then the items in the 
ordered pair would be identical.  
 
Suppose the outer trace of α uses exactly B or exactly C. 
Then the two components of β are the same, which is 
impossible.  
 
Suppose the outer trace of α uses exactly A,C. By 
interchanging B,C, we obtain an AAAA ordered pair whose 
outer trace uses exactly A,B.  
 
Suppose the outer trace of α uses exactly B,C, with outer 
trace beginning with C. By interchanging B,C, we obtain an 
AAAA ordered pair whose outer trace uses exactly B,C, and 
which begins with B. 
 
Suppose the outer trace of α uses exactly A,B,C, and begins 
with C. By interchanging B,C, we obtain an AAAA ordered 
pair whose outer trace uses exactly A,B,C, and which begins 
with B.  
 
Suppose the outer trace of α uses exactly A,B,C, and begins 
with AC. By interchanging B,C, we obtain an AAAA ordered 
pair whose outer trace uses exactly A,B,C, and which begins 
with AB.  
 
Note that categories i)-iii) list all possibilities other 
than the ones in the previous five paragraphs. Hence i)-
iii) is inclusive. 
 
Now suppose α ≠ β be pair equivalent AAAA ordered pairs. Let 
π transform α to β. Then πA = A. Clearly π cannot take us 
from an ordered pair in any category i)-iii) to any ordered 
pair in a different category i)-iii). This establishes the 
final claim. QED 
 
Lemma 3.1.8 supports the unique set of representatives for 
AAAA ordered pairs, presented in the following way. 
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We list all ordered pairs of clauses according to Lemma 
3.1.8, ordered first by the four categories i)-iii), and 
then lexicographically (reading the eight letters from left 
to right). These are consecutively numbered starting with 
1. But if an ordered pair is pair equivalent to some 
earlier ordered pair, then we label it with an x, and also 
point to the earlier numbered ordered pair of clauses to 
which it is pair equivalent.  
 
In fact, the previous paragraph describes exactly how we 
will present the ordered pairs according to later Lemmas.  
 
AAAA (20) 
 
1. A ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ A ∪. gB. 
2. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gA. 
3. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gB. 
 
x. A ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gA. ≡ 1. 
4. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gA. 
5. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gB. 
 
x. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ A ∪. gA. ≡ 2. 
x. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ A ∪. gB. ≡ 4. 
6. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gB. 
 
x. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gA. ≡ 3. 
x. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gB. ≡ 5. 
x. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gA. ≡ 6. 
 
7. B ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gC. 
8. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gB. 
9. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gC. 
 
x. B ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ A ∪. gB. ≡ 7. 
10. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gB.  
x. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gC. ≡ 8. 
 
11. A ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gC. 
x. A ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gB. ≡ 11. 
 
12. A ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gC. 
13. A ∪. fA ⊆ A ∪. gB, B ∪. fA ⊆ A ∪. gC. 
14. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gA. 
15. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gB. 
16. A ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gC. 
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x. B ∪. fA ⊆ A ∪. gA, A ∪. fA ⊆ A ∪. gC. ≡ 14. 
17. B ∪. fA ⊆ A ∪. gA, B ∪. fA ⊆ A ∪. gC. 
18. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gA. 
19. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gB. 
20. B ∪. fA ⊆ A ∪. gA, C ∪. fA ⊆ A ∪. gC. 
 
x. B ∪. fA ⊆ A ∪. gB, A ∪. fA ⊆ A ∪. gC. ≡ 16. 
x. B ∪. fA ⊆ A ∪. gB, C ∪. fA ⊆ A ∪. gA. ≡ 20. 
 
x. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ A ∪. gA. ≡ 11. 
x. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ A ∪. gB. ≡ 13. 
x. B ∪. fA ⊆ A ∪. gC, A ∪. fA ⊆ A ∪. gC. ≡ 15.  
x. B ∪. fA ⊆ A ∪. gC, B ∪. fA ⊆ A ∪. gA. ≡ 17. 
x. B ∪. fA ⊆ A ∪. gC, C ∪. fA ⊆ A ∪. gA. ≡ 19. 
 
The numbered part of this AAAA table, annotated, appears in 
section 3.14. 
 
LEMAM 3.1.9. No AAAB ordered pair is pair equivalent to any 
other AAAB ordered pair. All 81 AAAB ordered pairs are pair 
inequivalent.   
 
Proof: Let α ≠ β be AAAB ordered pairs. First suppose π 
transforms α to β. Then πA = A and πB = B. Hence π is the 
identity, and α = β. 
 
Now suppose π transforms α to the reverse of β. Note that 
the reverse of β is an ABAA ordered pair. Then πA = A and πA 
= B, which is impossible. QED 
 
Since all 81 AABA ordered pairs are pair inequivalent, 
there is no point in listing them here. The annotated AAAB 
table appears in section 3.14.  
 
LEMMA 3.1.10. No AABA ordered pair is pair equivalent to 
any other AABA ordered pair. All 81 AABA ordered pairs are 
pair inequivalent.   
 
Proof: Let α ≠ β be AABA ordered pairs. First suppose π 
transforms α to β. Then πA = A and πB = B. Hence π is the 
identity, and α = β. 
 
Now suppose π transforms α to the reverse of β. Note that 
the reverse of β is a BAAA ordered pair. Then πA = B and πA 
= A, which is impossible. QED 
 
The AABA table, annotated, appears in section 3.14.  
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LEMMA 3.1.11. Every AABB ordered pair is pair equivalent to 
an AABB ordered pair whose outer trace  
i) uses exactly A; or 
ii) uses exactly C; or 
iii) uses exactly A,B; or  
iv) uses exactly A,C; or 
v) uses exactly A,B,C.  
No ordered pair in any one of these 5 categories is pair 
equivalent to a ordered pair in any other category.  
 
Proof: Let α be an AABB ordered pair. Suppose the outer 
trace of α uses exactly B. By interchanging A,B, we obtain 
a BBAA ordered pair β whose outer trace uses exactly A. Note 
that the reverse of β is an AABB ordered pair whose outer 
trace uses exactly A.  
 
Suppose the outer trace of α uses exactly B,C. By 
interchanging A,B, we obtain a BBAA ordered pair β whose 
outer trace uses exactly A,C. Note that the reverse of β is 
an AABB ordered pair whose outer trace uses exactly A,C. 
 
Note that categories i)-v) list all possibilities other 
than exactly B, exactly B,C, and so i)-v) is inclusive. 
 
Now suppose α ≠ β be pair equivalent AABB ordered pairs. Let 
π transform α to β. Then πA = A, πB = B, and so π is the 
identity Hence α = β, which is impossible. Let π transform α 
to the reverse of β. Then π interchanges A,B. Clearly π 
cannot take us from an ordered pair in any category i)-v) 
to any ordered pair in a different category i)-v). This 
establishes the final claim. QED 
 
We now list the AABB ordered pairs in our by now standard 
way.  
 
AABB (45) 
 
1. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gA. 
2. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gC. 
 
3. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gB. 
4. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gA. 
5. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gB. 
 
6. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gA.  
7. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gB.  
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8. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gA. 
x. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gB. ≡ 4. 
 
9. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gA. 
10. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gB. 
x. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gA. ≡ 7. 
x. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gB. ≡ 3. 
 
11. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gA. 
x. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gB. ≡ 9.  
x. B ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gA. ≡ 6. 
 
12. A ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gC. 
13. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA. 
14. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC. 
 
15. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gA.  
16. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gC.  
17. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gA. 
18. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gC. 
 
19. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gA. 
20. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gC. 
21. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA. 
22. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC. 
 
23. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gA. 
24. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gC. 
25. C ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gA. 
 
26. A ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gC. 
27. A ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB. 
 
28. A ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gC.  
29. A ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gC.  
30. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA.  
31. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gB.  
32. A ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gC.  
 
33. A ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gB.  
x. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gA. ≡ 29.  
x. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gB. ≡ 26.  
34. A ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gC.  
35. A ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gB. 
 
36. B ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gC.  
x. B ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gC. ≡ 33. 
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37. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gA.  
38. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB.  
39. B ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gC.  
 
40. B ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gC. 
41. B ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA. 
 
x. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gA. ≡ 40.  
x. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gB. ≡ 36. 
42. B ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gC.  
x. B ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gA. ≡ 28.  
43. B ∪. fA ⊆ A ∪. gC, C ∪. fB ⊆ B ∪. gA. 
 
x. C ∪. fA ⊆ A ∪. gA, A ∪. fB ⊆ B ∪. gB. ≡ 38.  
x. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gA. ≡ 31. 
x. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gB.  ≡ 27. 
x. C ∪. fA ⊆ A ∪. gA, B ∪. fB ⊆ B ∪. gC. ≡ 35. 
44. C ∪. fA ⊆ A ∪. gA, C ∪. fB ⊆ B ∪. gB. 
 
x. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gA. ≡ 41.  
x. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gB. ≡ 37.   
x. C ∪. fA ⊆ A ∪. gB, A ∪. fB ⊆ B ∪. gC. ≡ 43. 
x. C ∪. fA ⊆ A ∪. gB, B ∪. fB ⊆ B ∪. gA. ≡ 30.  
45. C ∪. fA ⊆ A ∪. gB, C ∪. fB ⊆ B ∪. gA. 
 
x. C ∪. fA ⊆ A ∪. gC, A ∪. fB ⊆ B ∪. gB. ≡ 39.   
x. C ∪. fA ⊆ A ∪. gC, B ∪. fB ⊆ B ∪. gA. ≡ 32. 
 
The numbered part of this AABB table, annotated, appears in 
section 3.14. 
 
LEMMA 3.1.12. No AABC ordered pair is pair equivalent to 
any other AABC ordered pair. All 81 AABC ordered pairs are 
pair inequivalent. 
 
Proof: Let α ≠ β be AABC ordered pairs. First suppose π 
transforms α to β. Then πA = A, πB = B, πC = C. Hence π is 
the identity, and α = β. 
 
Now suppose π transforms α to the reverse of β. Note that 
the reverse of β is a BCAA ordered pair. Then πA = B and πA 
= C, which is impossible. QED 
 
The AABC table, annotated, appears in section 3.14.  
 
LEMMA 3.1.13. Two distinct ABAB ordered pairs α,β are pair 
equivalent if and only if the reverse of α is β. 
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Proof: Let α ≠ β be pair equivalent ABAB ordered pairs. Let 
π transform α to β. Then πA = A, πB = B, and so π is the 
identity. Hence α = β, 
 
Now suppose π transforms α to the reverse of β. Then again π 
is the identity, and so α is the reverse of β. QED 
 
ABAB (36) 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. 
2. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gC. 
3. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gA. 
4. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gB. 
5. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gC. 
6. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gA. 
7. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. 
8. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. 
 
x. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gA. ≡ 1.  
9. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gC. 
10. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gA. 
11. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gB. 
12. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gC. 
13. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. 
14. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gB. 
15. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. 
 
x. A ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gA. ≡ 2. 
x. A ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gB. ≡ 9.  
16. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gA. 
17. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gB. 
18. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gC. 
19. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. 
20. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. 
21. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gC. 
 
x. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gA. ≡ 3. 
x. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. ≡ 10.  
x. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gC. ≡ 16.  
22. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gB. 
23. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gC. 
24. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gA. 
25. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. 
26. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. 
 
x. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gA. ≡ 4. 
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x. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gB. ≡ 11.  
x. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gC. ≡ 17. 
x. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gA. ≡ 22.   
27. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gC. 
28. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. 
29. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gB. 
30. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. 
 
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gA. ≡ 5.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gB. ≡ 12.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gC. ≡ 18. 
x. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gA. ≡ 23.  
x. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gB. ≡ 27. 
31. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. 
32. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. 
33. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gC. 
 
x. C ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gA. ≡ 6.  
x. C ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gB. ≡ 13.  
x. C ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ B ∪. gC. ≡ 19. 
x. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gA. ≡ 24.  
x. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gB. ≡ 28. 
x. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ B ∪. gC. ≡ 31. 
34. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gB. 
35. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ B ∪. gC. 
 
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gA. ≡ 7.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gB. ≡ 14.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ B ∪. gC. ≡ 20. 
x. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gA. ≡ 25.  
x. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gB. ≡ 29.  
x. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ B ∪. gC. ≡ 32. 
x. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gA. ≡ 34. 
36. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ B ∪. gC. 
 
x. C ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gA. ≡ 8.  
x. C ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gB. ≡ 15.  
x. C ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ B ∪. gC. ≡ 21.  
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gA. ≡ 26.  
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gB. ≡ 30. 
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ B ∪. gC. ≡ 33. 
x. C ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gA. ≡ 35. 
x. C ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ B ∪. gB. ≡ 36.  
 
The numbered part of this ABAB table, annotated, appears in 
section 3.14.  
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LEMMA 3.1.14. Every ABAC ordered pair is pair equivalent to 
an ABAC ordered pair whose outer trace  
i) uses exactly A; or 
ii) uses exactly B; or 
iii) uses exactly A,B; or 
iv) uses exactly B,C; or 
v) uses exactly A,B,C. 
No ordered pair in any one of these 5 categories is pair 
equivalent to an ordered pair in any other category.  
 
Proof: Let α be an ABAC ordered pair. Suppose the outer 
trace of α uses exactly C. By interchanging B,C, we obtain 
a pair equivalent ACAB ordered pair whose outer trace uses 
exactly B. Its reverse is a pair equivalent ABAC ordered 
pair whose outer trace uses exactly B. 
 
Suppose the outer trace of α uses exactly A,C. By 
interchanging B,C, we obtain a pair equivalent ACAB ordered 
pair whose outer trace uses exactly A,B. Its reverse is a 
pair equivalent ABAC ordered pair whose outer trace uses 
exactly A,B. 
 
Note that categories i)-v) list all possibilities other 
than exactly C, exactly A,C, and so i)-v) is inclusive. 
 
Now suppose α ≠ β are pair equivalent ABAC ordered pairs. 
Let π transform α to β. Then πA = A, πB = B, πC = C, and so 
π is the identity. Hence α = β, which is impossible. Let π 
transform α to the reverse of β. Then π interchanges B,C. 
Clearly π cannot take us from an ordered pair in any 
category i)-v) to any ordered pair in a different category 
i)-v). This establishes the final claim. QED 
 
ABAC (45) 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gA. 
2. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gB.  
 
3. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB.  
4. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA.  
5. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. 
 
6. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gA. 
7. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB.  
8. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gA.  
9. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gB. 
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10. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gA. 
11. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB.  
12. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA.  
13. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. 
 
14. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gA. 
15. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB.  
16. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gA.  
 
17. B ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gC. 
18. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gB.  
19. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gC.  
 
20. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gB. 
21. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gC. 
22. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gB.  
x. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gC. ≡ 18.  
 
23. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gB. 
24. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gC. 
x. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gB. ≡ 21.  
x. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gC. ≡ 17.   
 
25. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gB. 
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gC. ≡ 23. 
x. C ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gB. ≡ 20. 
 
26. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. 
27. A ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gB. 
 
28. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gC.  
29. A ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gC.  
30. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gA.  
31. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gB. 
32. A ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gC.  
 
33. A ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gB.  
34. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gA.  
35. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gB.  
36. A ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gC. 
37. A ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gB. 
 
x. B ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gC. ≡ 30. 
38. B ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC.  
39. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gA.  
40. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gB. 
41. B ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gC.  
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x. B ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gC. ≡ 32. 
x. B ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gA. ≡ 41. 
 
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gA. ≡ 27.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gB. ≡ 37.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gC. ≡ 31.  
42. B ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gA. 
x. B ∪. fA ⊆ B ∪. gC, C ∪. fA ⊆ C ∪. gA. ≡ 40.  
 
x. C ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB. ≡ 34. 
43. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA.  
44. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB.  
45. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. 
x. C ∪. fA ⊆ B ∪. gA, C ∪. fA ⊆ C ∪. gB. ≡ 42.  
 
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gA. ≡ 26.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB. ≡ 36.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gC. ≡ 29.  
x. C ∪. fA ⊆ B ∪. gB, B ∪. fA ⊆ C ∪. gA. ≡ 45.  
x. C ∪. fA ⊆ B ∪. gB, C ∪. fA ⊆ C ∪. gA. ≡ 38.  
 
x. C ∪. fA ⊆ B ∪. gC, A ∪. fA ⊆ C ∪. gB. ≡ 35.  
x. C ∪. fA ⊆ B ∪. gC, B ∪. fA ⊆ C ∪. gA. ≡ 44. 
 
The numbered part of this ABAC table, annotated, appears in 
section 3.14. 
 
LEMMA 3.1.15. Every ABBA ordered pair is pair equivalent to 
an ABBA ordered pair whose outer trace  
i) uses exactly A; or 
ii) uses exactly C; or 
iii) uses exactly A,B; or  
iv) uses exactly A,C; or 
v) uses exactly A,B,C.  
No ordered pair in any one of these 5 categories is pair 
equivalent to an ordered pair in any other category. Two 
distinct ABBA ordered pairs are pair equivalent if and only 
if the result of interchanging A,B in α is the reverse of β. 
 
Proof: Let α be an ABBA ordered pair. Suppose the outer 
trace of α uses exactly B. By interchanging A,B, we obtain 
a pair equivalent BAAB ordered pair whose outer trace uses 
exactly A. Its reverse is a pair equivalent ABBA ordered 
pair whose outer trace uses exactly A. 
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Suppose the outer trace of α uses exactly B,C. By 
interchanging A,B, we obtain a pair equivalent BAAB ordered 
pair whose outer trace uses exactly A,C. Its reverse is a 
pair equivalent ABBA ordered pair whose outer trace uses 
exactly A,C. 
 
Note that categories i)-v) list all possibilities other 
than exactly B, exactly B,C, and so i)-v) is inclusive. 
 
Let α ≠ β be pair equivalent ABBA ordered pairs. Let π be a 
permutation of {A,B,C} that transforms α to β. Then πA = A, 
πB = B, and so π is the identity. Hence α = β, which is 
impossible. Suppose π transforms α to the reverse of β. Then 
β is a BAAB ordered pair, and so πA = B, πB = A. Clearly π 
cannot take us from an ordered pair in any category i)-v) 
to any ordered pair in a different category i)-v). This 
establishes the final claim. QED 
 
ABBA (45) 
 
1. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gA. 
2. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. 
 
3. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gB. 
4. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gA. 
5. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gB. 
 
6. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gA.  
7. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gB.  
8. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gA. 
x. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gB. ≡ 4. 
 
9. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gA. 
10. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gB. 
x. B ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gA. ≡ 7. 
x. B ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gB. ≡ 3. 
 
11. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gA. 
x. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gB. ≡ 9.  
x. B ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gA. ≡ 6. 
 
12. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gC. 
13. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. 
14. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. 
 
15. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gA.  
16. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gC.  
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17. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. 
18. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gC. 
 
19. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gA. 
20. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gC. 
21. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA. 
22. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC. 
 
23. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gA. 
24. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gC. 
25. C ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. 
 
26. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gC. 
27. A ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. 
 
28. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gC.  
29. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gC.  
30. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA.  
31. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gB.  
32. A ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gC.  
 
33. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gB.  
x. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gA. ≡ 29.  
x. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gB. ≡ 26.  
34. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gC.  
35. A ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gB. 
 
36. B ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gC.  
x. B ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gC. ≡ 33. 
37. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gA.  
38. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB.  
39. B ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gC.  
 
40. B ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gC. 
41. B ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. 
 
x. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gA. ≡ 40.  
x. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gB. ≡ 36. 
42. B ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gC.  
x. B ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gA. ≡ 28.  
43. B ∪. fA ⊆ B ∪. gC, C ∪. fB ⊆ A ∪. gA. 
 
x. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ A ∪. gB. ≡ 38.  
x. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gA. ≡ 31. 
x. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gB. ≡ 27. 
x. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ A ∪. gC. ≡ 35. 
44. C ∪. fA ⊆ B ∪. gA, C ∪. fB ⊆ A ∪. gB. 
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x. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gA. ≡ 41.  
x. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gB. ≡ 37.   
x. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ A ∪. gC. ≡ 43. 
x. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ A ∪. gA. ≡ 30.  
45. C ∪. fA ⊆ B ∪. gB, C ∪. fB ⊆ A ∪. gA. 
 
x. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ A ∪. gB. ≡ 39.   
x. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ A ∪. gA. ≡ 32. 
 
The numbered part of this ABBA list, annotated, appears in 
section 3.14. 
 
LEMMA 3.1.16. No ABBC ordered pair is pair equivalent to 
any other ABBC ordered pair. All 81 ABBC ordered pairs are 
pair inequivalent.  
 
Proof: Let α ≠ β be ABBC ordered pairs. First suppose π 
transforms α to β. Then πA = A, πB = B, πC = C. Hence π is 
the identity, and α = β. 
 
Now suppose π transforms α to the reverse of β. Note that 
the reverse of β is a BCAB ordered pair. Then πB = C, πB = 
A, which is a contradiction. QED 
 
The ABBC table, annotated, appears in section 3.14. 
 
LEMMA 3.1.17. Every ACBC ordered pair is pair equivalent to 
an ACBC ordered pair whose outer trace  
i) uses exactly A; or 
ii) uses exactly C; or  
iii) uses exactly A,C; or  
iv) uses exactly A,B; or  
v) uses exactly A,B,C. 
No ordered pair in any one of these 5 categories is pair 
equivalent to an ordered pair in any other category.  
 
Proof: Let α be an ACBC ordered pair. Suppose the outer 
trace of α uses exactly B. By interchanging A,B, we obtain 
a pair equivalent BCAC ordered pair whose outer trace uses 
exactly A. Its reverse is a pair equivalent ACBC ordered 
pair whose outer trace uses exactly A. 
 
Suppose the outer trace of α uses exactly B,C. By 
interchanging A,B, we obtain a pair equivalent BCAC ordered 
pair whose outer trace uses exactly A,C. Its reverse is a 
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pair equivalent ACBC ordered pair whose outer trace uses 
exactly A,C. 
 
Note that categories i)-v) list all possibilities other 
than exactly B, exactly B,C, and so i)-v) is inclusive. 
 
Let α ≠ β be pair equivalent ACBC ordered pairs. Let π be a 
permutation of {A,B,C} that transforms α to β. Then πA = A, 
πC = C, and so π is the identity. Hence α = β, which is 
impossible. Suppose π transforms α to the reverse of β. Then 
β is a BCAC ordered pair, and so πA = B, πB = A. Clearly β 
cannot transform any ordered pair in any category 1)-v) to 
any ordered pair in any different category i)-v). This 
establishes the final claim. QED 
 
ACBC (45) 
 
1. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. 
2. C ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gC. 
 
3. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. 
4. A ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gA. 
5. A ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gC. 
 
6. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. 
7. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. 
8. A ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gA. 
9. A ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gC. 
 
10. C ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. 
11. C ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. 
12. C ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gA. 
13. C ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gC. 
 
14. C ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. 
15. C ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. 
16. C ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gA. 
 
17. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. 
18. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gA. 
19. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gB. 
 
20. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. 
21. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gB. 
22. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gA. 
x. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gB. ≡ 18. 
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23. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. 
24. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. 
x. B ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gA. ≡ 21. 
x. B ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gB. ≡ 17. 
 
25. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. 
x. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gB. ≡ 23.  
x. B ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gA. ≡ 20. 
 
26. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gC. 
27. A ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gB. 
 
28. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. 
29. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gC. 
30. A ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gA. 
31. A ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gB. 
32. A ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gC. 
 
33. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB. 
x. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gA. ≡ 29. 
x. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gB. ≡ 26.  
34. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gC. 
35. A ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gB. 
 
36. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. 
x. B ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gC. ≡ 33.  
37. B ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gA. 
38. B ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gB. 
39. B ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gC. 
 
40. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. 
41. B ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gA. 
 
x. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. ≡ 40. 
x. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB. ≡ 36.  
42. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. 
x. B ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gA. ≡ 28. 
43. B ∪. fA ⊆ C ∪. gC, C ∪. fB ⊆ C ∪. gA. 
 
x. C ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. ≡ 38. 
x. C ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gA. ≡ 31.  
x. C ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gB. ≡ 27. 
x. C ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gC. ≡ 35.  
44. C ∪. fA ⊆ C ∪. gA, C ∪. fB ⊆ C ∪. gB. 
 
x. C ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. ≡ 41.  
x. C ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gB. ≡ 37.  
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x. C ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. ≡ 43.  
x. C ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gA. ≡ 30. 
45. C ∪. fA ⊆ C ∪. gB, C ∪. fB ⊆ C ∪. gA. 
 
C ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB. ≡ 39. 
C ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gA. ≡ 32. 
 
The numbered part of this ACBC table, annotated, appears in 
section 3.14.  
 
THEOREM 3.1.18. There are exactly 574 ordered pairs of 
clauses up to pair equivalence.  
 
Proof: From the above tables and lemmas, we have the 
following counts.  
 
SINGLE CLAUSES (DUPLICATES). 14. 
AAAA. 20. 
AAAB. 81. 
AABA. 81. 
AABB. 45. 
AABC. 81. 
ABAB. 36. 
ABAC. 45. 
ABBA. 45. 
ABBC. 81. 
ACBC. 45.  
 
This adds up to a total of 574 ordered pairs up to 
equivalence (including the 14 duplicates). As expected, 
this number is a bit larger than 6561/12 = 546.75, since 
the overwhelmingly majority of equivalence classes have 12 
elements, with a few exceptions. QED 
 


