3.13. ACBC.

Recall the reduced table for AC from section 3.10.
REDUCED AC

1. A $\cup . f A \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
2. A \cup. fA $\subseteq C \cup$. gC. INF. AL. ALF. FIN. NON.
3. A \cup. fA $\subseteq C \cup$. gB. INF. AL. ALF. FIN. NON.
4. B \cup. $f A \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
5. B \cup. fA $\subseteq C \cup$. gC. INF. AL. ALF. FIN. NON.
6. B \cup. fA $\subseteq C \cup$. gB. INF. AL. ALF. FIN. NON.

Recall the reduced table for $B C$ from section 3.8.
REDUCED BC
$1^{\prime} . B \cup . f B \subseteq C \cup . g B$. INF. AL. ALF. FIN. NON.
$2^{\prime} . \mathrm{B} \cup . f B \subseteq C \cup . g C$. INF. AL. ALF. FIN. NON.
$3^{\prime} . \mathrm{B} \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
$4^{\prime} . A \cup . f B \subseteq C \cup . g B . I N F . A L . A L F . F I N . N O N$.
5'. A $\cup . f B \subseteq C \cup . g C . I N F . A L . A L F . F I N$. NON.
$6^{\prime} . A \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
We can take advantage of symmetry through interchanging A with B as follows. Clearly (i,j') and (j,i') are equivalent, by interchanging A and B. So we can require that i $\leq j$. Thus we have the following 21 ordered pairs to consider.

We must determine the status of all attributes INF, AL, ALF, FIN, NON, for each pair.
$1,1^{\prime} . A \cup . f A \subseteq C \cup . g A, B \cup . f B \subseteq C \cup . g B . I N F . A L . A L F$. FIN. NON.
$1,2^{\prime} . A \cup . f A \subseteq C \cup . g A, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F$. FIN. NON.
1, 3'. A $\cup . f A \subseteq C \cup . g A, B \cup . f B \subseteq C \cup . g A . I N F . A L . A L F$. FIN. NON.
$1,4^{\prime} . A \cup . f A \subseteq C \cup . g A, A \cup . f B \subseteq C \cup . g B . I N F . A L . A L F$. FIN. NON.
$1,5^{\prime} . A \cup . f A \subseteq C \cup . g A, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ F I N . ~ N O N$.
$1,6^{\prime} . A \cup . f A \subseteq C \cup . g A, A \cup . f B \subseteq C \cup . g A . I N F . A L . A L F$. FIN. NON.
$2,2^{\prime} . A \cup . f A \subseteq C \cup . g C, B \cup . f B \subseteq C \cup . g C$ INF. AL. ALF. FIN. NON.
$2,3^{\prime} . A \cup . f A \subseteq C \cup . g C, B \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$.
$\neg A L F . ~ F I N . ~ N O N$.
2,4'. A $\cup . f A \subseteq C \cup . g C, A \cup . f B \subseteq C \cup . g B . \neg I N F . A L$.
$\neg A L F . ~ F I N . ~ N O N$.
$2,5^{\prime} . A \cup . f A \subseteq C \cup . g C, A \cup . f B \subseteq C \cup . g C$. INF. AL. ALF. FIN. NON.
$2,6^{\prime} . A \cup . f A \subseteq C \cup . g C, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F$. FIN. NON.
3, 3'. $A \cup . f A \subseteq C \cup . g B, B \cup . f B \subseteq C \cup . g A$. INF. AL. ALF. FIN. NON.
$3,4^{\prime} . A \cup . f A \subseteq C \cup . g B, A \cup . f B \subseteq C \cup . g B$. INF. AL. ALF. FIN. NON.
3, 5'. A $\cup . f A \subseteq C \cup . g B, A \cup . f B \subseteq C \cup . g C . \boldsymbol{I N F} . A L$. ALF. FIN. NON.
$3,6^{\prime} . A \cup . f A \subseteq C \cup . g B, A \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
$4,4^{\prime} . B \cup . f A \subseteq C \cup . g A, A \cup . f B \subseteq C \cup . g B$. INF. AL. ALF. FIN. NON.
$4,5^{\prime} . \mathrm{B} \cup . f A \subseteq C \cup . g A, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$.
$\neg A L F . ~ F I N . ~ N O N$.
$4,6^{\prime} . \mathrm{B} \cup . f A \subseteq C \cup . g A, A \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
5, 5'. $B \cup . f A \subseteq C \cup . g C, A \cup . f B \subseteq C \cup . g C$. INF. AL. ALF. FIN. NON.
5, $6^{\prime} . \mathrm{B} \cup . f A \subseteq C \cup . g C, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ F I N . ~ N O N$.
$6,6^{\prime} . \mathrm{B} \cup . f A \subseteq C \cup . g B, A \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.

It is among the 36 ordered pairs treated here that we finally find an ordered pair that cannot be handled within $R_{C A}{ }_{0}$. This is pair 3,5'. In fact, here only the attribute INF requires more than $R C A_{0}$. Note that we have notated this above in large underlined bold italics. The pair 3,5' with INF is called the Principal Exotic Case, and is treated as Proposition A in Chapters 4 and 5. The equivalence class of the Principal Exotic Case has 12 elements, and consists of the Exotic Cases.

The following pertains to 1,1' - 6, ${ }^{\prime}$.
LEMMA 3.13.1. X U. fY $\subseteq C$ U. gZ, W U. fU $\subseteq C$ U. gV has FIN, provided $X, Y, W, U \in\{A, B\}$.

Proof: Let $f, g \in \operatorname{EVSD}$. Let $A=B=\{n\}$, where n is sufficiently large.
case 1. $f(n, \ldots, n)=g(n, \ldots, n) . \operatorname{Let} C=\{n\}$.
case 2. $f(n, \ldots, n) \neq g(n, \ldots, n) . \operatorname{Let} C=\{n, f(n, \ldots, n)\}$.
In case 1, $A=B=C, f A=g A$, and $A \cap f A=\varnothing$. The two inclusions are identities.

In case 2, $X=Y=W=U=A=B$. So it suffices to verify that $A \cup . f A \subseteq C \cup . g Z$ and $A \cup . f A \subseteq C \cup . g V$. Note that A $\cap \mathrm{fA}=\mathrm{C} \cap \mathrm{gA}=\mathrm{C} \cap \mathrm{gB}=\mathrm{C} \cap \mathrm{gC}=\varnothing$. Also $\mathrm{A} \cup \mathrm{fA} \subseteq \mathrm{C}$. QED

LEMMA 3.13.2. 1, $\mathbf{1}^{\prime}, 1,3^{\prime}, 1,4^{\prime}, 1,6^{\prime}, 3,3^{\prime}, 3,4^{\prime}, 3,6^{\prime}$, 4,4', 4,6', 6,6' have INF, ALF, even for EVSD.

Proof: By the AC table, A U. fA \subseteq C U. gA has INF, ALF. Replace B by A in the cited ordered pairs. QED

LEMMA 3.13.3. 2,2', 2,5', 5,5' have INF, ALF.
Proof: By the AC table, A U. fA \subseteq C U. gC has INF, ALF. Replace B by A in the cited ordered pairs. QED

The following pertains to 1,2', 1,5'.
LEMMA 3.13.4. A U. fA $\subseteq C$ U. gA, $C \cap$ gC $=\varnothing$ has $\neg A L$.
Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n, f(m, n)=4 m, f(n, m)=4 m+1, g(n)=2 n+1$. Let $A \cup . f A \subseteq C \cup$. gA. $C \cap g C=\varnothing$, where A, B, C have at least 2 elements. Let n < m be from A .

Clearly $2 \mathrm{~m} \in \mathrm{fA}, 4 \mathrm{~m}+1 \in \mathrm{fA}, 2 \mathrm{~m} \in \mathrm{C}, 2 \mathrm{~m} \notin \mathrm{~A}, 4 \mathrm{~m}+1 \notin \mathrm{gA}, 4 \mathrm{~m}+1$ $\in C, 4 m+1 \in \mathrm{gC}$. This contradicts $\mathrm{C} \cap \mathrm{gC}=\varnothing$. QED

The following pertains to 2,3', 2, 6^{\prime}.
LEMMA 3.13.5. A $\cup . f A \subseteq C \cup . g C, f B \subseteq C \cup . g A$ has $\neg A L$.
Proof: Define f,g \in ELG as follows. For all $n<m<r$, let $\mathrm{f}(\mathrm{n}, \mathrm{n}, \mathrm{n})=2 \mathrm{n}, \mathrm{f}(\mathrm{n}, \mathrm{n}, \mathrm{m})=4 \mathrm{~m}, \mathrm{f}(\mathrm{n}, \mathrm{m}, \mathrm{n})=4 \mathrm{~m}+1, \mathrm{f}(\mathrm{m}, \mathrm{n}, \mathrm{n})=$ $8 \mathrm{~m}+1, \mathrm{~g}(\mathrm{n})=2 \mathrm{n}+1$. Let $A \cup . \mathrm{fA} \subseteq \mathrm{C} \cup . \mathrm{gC}, \mathrm{fB} \subseteq \mathrm{C} \cup . \mathrm{gA}$, where A, B, C have at least two elements. Let $n<m$ be from B.

Note that $2 m \in f B, 2 m \in C, 4 m+1 \in g C, 4 m+1 \notin C, 4 m+1 \in f B$, $4 \mathrm{~m}+1 \in \mathrm{gA}, 2 \mathrm{~m} \in \mathrm{~A}, 4 \mathrm{~m} \in \mathrm{fB}, 4 \mathrm{~m} \in \mathrm{C}, 8 \mathrm{~m}+1 \in \mathrm{gC}, 8 \mathrm{~m}+1 \notin \mathrm{C}$,
$8 \mathrm{~m}+1 \in \mathrm{fB}, 8 \mathrm{~m}+1 \in \mathrm{gA}, 4 \mathrm{~m} \in \mathrm{~A}, 4 \mathrm{~m} \in \mathrm{fA}$. This contradicts A $\cap \mathrm{fA}=\varnothing . \mathrm{QED}$

The following pertains to 2,4'.
LEMMA 3.13.6. A $\cup . f A \subseteq C \cup . g C, A \cup . f B \subseteq C \cup . g B$ has $\rightarrow I N F, ~ \neg A L F$.

Proof: Let f be as given by Lemma 3.2.1. Let f' \in ELG be given by $f^{\prime}(a, b, c, d)=f(a, b, c)$ if $c=d ; 2 f(a, b, c)+1$ if c $>d ; 2|a, b, c, d|+2$ if $c<d$. Let $g \in E L G$ be given by $g(n)=$ $2 n+1$. Let $A \cup . f^{\prime} A \subseteq C \cup . g C . A \cup . f^{\prime} B \subseteq C \cup$. $G B$, where A, B, C have at least two elements. Let $B^{\prime}=B \backslash\{m i n(B)\}$. Note that $f B \subseteq \mathrm{f}^{\prime} \mathrm{B}$.

Let $n \in f B^{\prime} \cap 2 N$. Then $n \in f^{\prime} B \cap 2 N, n \in C, 2 n+1 \in g C$, $2 \mathrm{n}+1 \notin \mathrm{C}$.

We claim that $2 \mathrm{n}+1 \in \mathrm{f}^{\prime} \mathrm{B}$. To see this, write $\mathrm{n}=\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$, $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{B}^{\prime}$. Then $2 \mathrm{n}+1=\mathrm{f}^{\prime}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{min}(\mathrm{B})) \in \mathrm{f}^{\prime} \mathrm{B}$.

Hence $2 \mathrm{n}+1 \in \mathrm{gB}, \mathrm{n} \in \mathrm{B}, \mathrm{n} \in \mathrm{B}^{\prime}$. Thus we have shown that $f \mathrm{~B}^{\prime}$ $\cap 2 N \subseteq B^{\prime}$. Hence by Lemma 3.2.1, $f B^{\prime}$ is cofinite. Since fB $\subseteq f^{\prime} B, f^{\prime} B$ is also cofinite. Therefore B is infinite and A is finite. The former establishes ᄀALF, and the latter establishes ᄀINF. QED

The following pertains to 2,4'.
LEMMA 3.13.7. A $\cup . f A \subseteq C \cup . g C, A \cup . f B \subseteq C \cup . g B$ has AL.
Proof: Let $f, g \in E L G$ and $p>0$. Let $A=[n, n+p]$, where n is sufficiently large. By Lemma 3.3.3, let C be unique such that $C \subseteq[n, \infty) \subseteq C \cup$. gC. Let $B=C$.

Clearly $A \cap f A=C \cap g C=A \cap f B=C \cap g B=\varnothing$.
Since $A \cup f A \cup f B \subseteq[n, \infty)$, we have $A \cup f A \subseteq C \cup g C, A \cup f B$ $\subseteq C \cup g B=C \cup g C$. Obviously $C=B$ is infinite. QED

The following pertains to 4,5'.
LEMMA 3.13.8. $\mathrm{B} \cup . \mathrm{fA} \subseteq \mathrm{C} \cup . \mathrm{gA}, \mathrm{A} \cup . f B \subseteq \mathrm{C} \cup . \mathrm{gC}$ has $\neg A L$.

Proof: Let f be as given by Lemma 3.2.1. Let $f^{\prime} \in E L G$ be defined by $f^{\prime}(a, b, c, d)=f(a, b, c)$ if $c=d ; 4 f(a, b, c)+3$ if
c > d; 2|a,b,c,d|+2 if c < d. Let g be as given by Lemma 3.6.1. Let B U. f'A $\subseteq C$ U. gA, $A \cup . f^{\prime} B \subseteq C U . g C$ where A, B, C have at least two elements. Let $A^{\prime}=A \backslash\{m i n(A)\}$.

Let $n \in f^{\prime} \cap 2 N$. Then $n \in f^{\prime} A \cap 2 N, n \in C, 4 n+3 \in g C$, $4 n+3 \notin C, 4 n+3 \in f^{\prime} A, 4 n+3 \in g A, n \in A, n \in A^{\prime}$. By Lemma 3.2.1, fA' is cofinite. Since fA \subseteq f'A, we see that f'A is cofinite.

We have established that $C \cup g A$ is cofinite and $C \cap g C=\varnothing$. Hence by Lemma 3.6.1, $C \subseteq A$. Since $f B$ contains an even element $2 r$, we have $2 r \in C, A, f^{\prime} B$. This contradicts $A \cap f^{\prime} B$ $=\varnothing$. QED

The following pertains to 5,6'.
LEMMA 3.13.9. B \cup. fA $\subseteq C \cup$. gC, $A \cup . f B \subseteq C \cup$. gA has \neg AL.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $\mathrm{f}(\mathrm{n}, \mathrm{n})=2 \mathrm{n}, \mathrm{f}(\mathrm{n}, \mathrm{m})=\mathrm{f}(\mathrm{m}, \mathrm{n})=4 \mathrm{~m}+1, \mathrm{~g}(\mathrm{n})=2 \mathrm{n}+1$. Let $\mathrm{B} \cup$. $f A \subseteq C \cup . g C . A \cup . f B \subseteq C \cup$. $g A$, where A, B, C have at least two elements. Let $\mathrm{n}<\mathrm{m}$ be from B .

Clearly $2 \mathrm{~m} \in \mathrm{fB}, 2 \mathrm{~m} \in \mathrm{C}, 4 \mathrm{~m}+1 \in \mathrm{gC}, 4 \mathrm{~m}+1 \notin \mathrm{C}, 4 \mathrm{~m}+1 \in \mathrm{fB}$, $4 \mathrm{~m}+1 \in \mathrm{gA}, 2 \mathrm{~m} \in \mathrm{~A}$. This contradicts $\mathrm{A} \cap \mathrm{fB}=\varnothing$. QED

The following pertains to 3, 5'.
LEMMA 3.13.10. A \cup. fA $\subseteq C \cup$. gB, $A \cup . f B \subseteq C \cup$. gC has ALF.

Proof: Let $f, g \in E L G$ and $p>0$. Let $A=[n, n+p]$, where n is sufficiently large. By Lemma 3.3.3, let S be unique such that $S \subseteq[n, \infty) \subseteq S \cup$. gS. Let $B=S \cap[n, \max (f A)]$. Let $C=$ $S \cap[n, \max (f B)]$.

Clearly $A \cap f A=A \cap f B=A \cap f S=A \cap g S=\varnothing$. Hence $A \subseteq$ S. Therefore $A \subseteq B, A \subseteq C, B \subseteq C$. Hence A, B, C are finite and have at least p elements.

Since $B, C \subseteq S$, we have $S \cap g S=\varnothing, C \cap g C \subseteq S \cap g S=\varnothing$, and $C \cap g B \subseteq S \cap g S=\varnothing$.

We claim $f A \subseteq C \cup g B$. To see this, let $m \in f A$. Then $m \in S$ \cup gS.

```
case 1. m \inS. Then m \in B, m \inC.
```



```
m}\in\textrm{gB}
We claim fB \subseteqC U gC. To see this, let m \in fB. Then m G S
U gS.
case 3.m G S. Then m C C.
```



```
m \in gC. QED
The Proposition asserting that 3,5' has INF is the subject
of the next two Chapters of this book. This is the
Principal Exotic Case. It is not provable in ZFC (assuming
ZFC is consistent). See Definitions 3.1.1 and 3.1.2.
```

