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3.13. ACBC. 
 
Recall the reduced table for AC from section 3.10. 
 
REDUCED AC  
 
1. A ∪. fA ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
4. B ∪. fA ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
5. B ∪. fA ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
6. B ∪. fA ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
 
Recall the reduced table for BC from section 3.8. 
 
REDUCED BC 
 
1’. B ∪. fB ⊆ C ∪. gB. INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ C ∪. gC. INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. FIN. NON. 
4’. A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. FIN. NON. 
5’. A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. FIN. NON. 
6’. A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. FIN. NON. 
 
We can take advantage of symmetry through interchanging A 
with B as follows. Clearly (i,j’) and (j,i’) are 
equivalent, by interchanging A and B. So we can require 
that i ≤ j. Thus we have the following 21 ordered pairs to 
consider.   
 
We must determine the status of all attributes INF, AL, 
ALF, FIN, NON, for each pair. 
 
1,1’. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
1,2’. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
1,3’. A ∪. fA ⊆ C ∪. gA, B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
1,4’. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
1,5’. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
1,6’. A ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
2,2’. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
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2,3’. A ∪. fA ⊆ C ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
2,4’. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. AL. 
¬ALF. FIN. NON. 
2,5’. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
2,6’. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
3,3’. A ∪. fA ⊆ C ∪. gB, B ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON.   
3,4’. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON.   

3,5’. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC. INF. AL. 
ALF. FIN. NON.  
3,6’. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON.   
4,4’. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
4,5’. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
4,6’. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
5,5’. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
5,6’. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
6,6’. B ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
 
It is among the 36 ordered pairs treated here that we 
finally find an ordered pair that cannot be handled within 
RCA0. This is pair 3,5’. In fact, here only the attribute 
INF requires more than RCA0. Note that we have notated this 
above in large underlined bold italics. The pair 3,5’ with 
INF is called the Principal Exotic Case, and is treated as 
Proposition A in Chapters 4 and 5. The equivalence class of 
the Principal Exotic Case has 12 elements, and consists of 
the Exotic Cases.  
 
The following pertains to 1,1’ - 6,6’. 
 
LEMMA 3.13.1. X ∪. fY ⊆ C ∪. gZ, W ∪. fU ⊆ C ∪. gV has 
FIN, provided X,Y,W,U ∈ {A,B}.  
 
Proof: Let f,g ∈ EVSD. Let A = B = {n}, where n is 
sufficiently large.  
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case 1. f(n,...,n) = g(n,...,n). Let C = {n}. 
 
case 2. f(n,...,n) ≠ g(n,...,n). Let C = {n,f(n,...,n)}. 
 
In case 1, A = B = C, fA = gA, and A ∩ fA = ∅. The two 
inclusions are identities. 
 
In case 2, X = Y = W = U = A = B. So it suffices to verify 
that A ∪. fA ⊆ C ∪. gZ and A ∪. fA ⊆ C ∪. gV. Note that A 
∩ fA = C ∩ gA = C ∩ gB = C ∩ gC = ∅. Also A ∪ fA ⊆ C. QED 
 
LEMMA 3.13.2. 1,1’, 1,3’, 1,4’, 1,6’, 3,3’, 3,4’, 3,6’, 
4,4’, 4,6’, 6,6’ have INF, ALF, even for EVSD. 
 
Proof: By the AC table, A ∪. fA ⊆ C ∪. gA has INF, ALF. 
Replace B by A in the cited ordered pairs. QED 
 
LEMMA 3.13.3. 2,2’, 2,5’, 5,5’ have INF, ALF. 
 
Proof: By the AC table, A ∪. fA ⊆ C ∪. gC has INF, ALF. 
Replace B by A in the cited ordered pairs. QED 
 
The following pertains to 1,2’, 1,5’. 
 
LEMMA 3.13.4. A ∪. fA ⊆ C ∪. gA, C ∩ gC = ∅ has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(m,n) = 4m, f(n,m) = 4m+1,  g(n) = 2n+1. Let 
A ∪. fA ⊆ C ∪. gA. C ∩ gC = ∅, where A,B,C have at least 2 
elements. Let n < m be from A.  
 
Clearly 2m ∈ fA, 4m+1 ∈ fA, 2m ∈ C, 2m ∉ A, 4m+1 ∉ gA, 4m+1 
∈ C, 4m+1 ∈ gC. This contradicts C ∩ gC = ∅. QED 
 
The following pertains to 2,3’, 2,6’. 
 
LEMMA 3.13.5. A ∪. fA ⊆ C ∪. gC, fB ⊆ C ∪. gA has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m < r, let 
f(n,n,n) = 2n, f(n,n,m) = 4m, f(n,m,n) = 4m+1, f(m,n,n) = 
8m+1, g(n) = 2n+1. Let A ∪. fA ⊆ C ∪. gC, fB ⊆ C ∪. gA, 
where A,B,C have at least two elements. Let n < m be from 
B. 
 
Note that 2m ∈ fB, 2m ∈ C, 4m+1 ∈ gC, 4m+1 ∉ C, 4m+1 ∈ fB, 
4m+1 ∈ gA, 2m ∈ A, 4m ∈ fB, 4m ∈ C, 8m+1 ∈ gC, 8m+1 ∉ C, 
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8m+1 ∈ fB, 8m+1 ∈ gA, 4m ∈ A, 4m ∈ fA. This contradicts A 
∩ fA = ∅. QED   
 
The following pertains to 2,4’. 
 
LEMMA 3.13.6. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB has 
¬INF, ¬ALF.   
 
Proof: Let f be as given by Lemma 3.2.1. Let f’ ∈ ELG be 
given by f’(a,b,c,d) = f(a,b,c) if c = d; 2f(a,b,c)+1 if c 
> d; 2|a,b,c,d|+2 if c < d. Let g ∈ ELG be given by g(n) = 
2n+1. Let A ∪. f’A ⊆ C ∪. gC. A ∪. f’B ⊆ C ∪. gB, where 
A,B,C have at least two elements. Let B’ = B\{min(B)}. Note 
that fB ⊆ f'B.  
 
Let n ∈ fB’ ∩ 2N. Then n ∈ f’B ∩ 2N, n ∈ C, 2n+1 ∈ gC, 
2n+1 ∉ C. 
 
We claim that 2n+1 ∈ f’B. To see this, write n = f(a,b,c), 
a,b,c ∈ B'. Then 2n+1 = f'(a,b,c,min(B)) ∈ f'B. 
 
Hence 2n+1 ∈ gB, n ∈ B, n ∈ B’. Thus we have shown that fB’ 
∩ 2N ⊆ B’. Hence by Lemma 3.2.1, fB’ is cofinite. Since fB 
⊆ f’B, f'B is also cofinite. Therefore B is infinite and A 
is finite. The former establishes ¬ALF, and the latter 
establishes ¬INF. QED  
 
The following pertains to 2,4’. 
 
LEMMA 3.13.7. A ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gB has AL. 
 
Proof: Let f,g ∈ ELG and p > 0. Let A = [n,n+p], where n is 
sufficiently large. By Lemma 3.3.3, let C be unique such 
that C ⊆ [n,∞) ⊆ C ∪. gC. Let B = C.  
 
Clearly A ∩ fA = C ∩ gC = A ∩ fB = C ∩ gB = ∅.  
 
Since A ∪ fA ∪ fB ⊆ [n,∞), we have A ∪ fA ⊆ C ∪ gC, A ∪ fB 
⊆ C ∪ gB = C ∪ gC. Obviously C = B is infinite. QED 
 
The following pertains to 4,5’. 
 
LEMMA 3.13.8. B ∪. fA ⊆ C ∪. gA, A ∪. fB ⊆ C ∪. gC has 
¬AL.  
 
Proof: Let f be as given by Lemma 3.2.1. Let f’ ∈ ELG be 
defined by f’(a,b,c,d) = f(a,b,c) if c = d; 4f(a,b,c)+3 if 
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c > d; 2|a,b,c,d|+2 if c < d. Let g be as given by Lemma 
3.6.1. Let B ∪. f’A ⊆ C ∪. gA, A ∪. f’B ⊆ C ∪. gC, where 
A,B,C have at least two elements. Let A’ = A\{min(A)}. 
 
Let n ∈ fA’ ∩ 2N. Then n ∈ f’A ∩ 2N, n ∈ C, 4n+3 ∈ gC, 
4n+3 ∉ C, 4n+3 ∈ f’A, 4n+3 ∈ gA, n ∈ A, n ∈ A'. By Lemma 
3.2.1, fA' is cofinite. Since fA ⊆ f'A, we see that f'A is 
cofinite. 
 
We have established that C ∪ gA is cofinite and C ∩ gC = ∅. 
Hence by Lemma 3.6.1, C ⊆ A. Since fB contains an even 
element 2r, we have 2r ∈ C,A,f’B. This contradicts A ∩ f’B 
= ∅. QED 
 
The following pertains to 5,6’. 
 
LEMMA 3.13.9. B ∪. fA ⊆ C ∪. gC, A ∪. fB ⊆ C ∪. gA has 
¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n, f(n,m) = f(m,n) = 4m+1, g(n) = 2n+1. Let B ∪. 
fA ⊆ C ∪. gC. A ∪. fB ⊆ C ∪. gA, where A,B,C have at least 
two elements. Let n < m be from B. 
 
Clearly 2m ∈ fB, 2m ∈ C, 4m+1 ∈ gC, 4m+1 ∉ C, 4m+1 ∈ fB, 
4m+1 ∈ gA, 2m ∈ A. This contradicts A ∩ fB = ∅. QED 
 
The following pertains to 3,5’. 
 
LEMMA 3.13.10. A ∪. fA ⊆ C ∪. gB, A ∪. fB ⊆ C ∪. gC has 
ALF. 
 
Proof: Let f,g ∈ ELG and p > 0. Let A = [n,n+p], where n is 
sufficiently large. By Lemma 3.3.3, let S be unique such 
that S ⊆ [n,∞) ⊆ S ∪. gS. Let B = S ∩ [n,max(fA)]. Let C = 
S ∩ [n,max(fB)].  
 
Clearly A ∩ fA = A ∩ fB = A ∩ fS = A ∩ gS = ∅. Hence A ⊆ 
S. Therefore A ⊆ B, A ⊆ C, B ⊆ C. Hence A,B,C are finite 
and have at least p elements.  
 
Since B,C ⊆ S, we have S ∩ gS = ∅, C ∩ gC ⊆ S ∩ gS = ∅, 
and C ∩ gB ⊆ S ∩ gS = ∅. 
 
We claim fA ⊆ C ∪ gB. To see this, let m ∈ fA. Then m ∈ S 
∪ gS.  
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case 1. m ∈ S. Then m ∈ B, m ∈ C.  
 
case 2. m ∈ gS. Write m = g(s1,...,sq), s1,...,sq ∈ S ⊆ 
[n,∞). Then s1,...,sq < m ≤ max(fA). Hence s1,...,sq ∈ B. So 
m ∈ gB. 
 
We claim fB ⊆ C ∪ gC. To see this, let m ∈ fB. Then m ∈ S 
∪ gS.  
 
case 3. m ∈ S. Then m ∈ C.  
 
case 4. m ∈ gS. Write m = g(t1,...,tq), t1,...,tq ∈ S ⊆ 
[n,∞). Then t1,...,tq < m ≤ max(fB). Hence t1,...,tq ∈ C. So 
m ∈ gC. QED 
 
The Proposition asserting that 3,5’ has INF is the subject 
of the next two Chapters of this book. This is the 
Principal Exotic Case. It is not provable in ZFC (assuming 
ZFC is consistent). See Definitions 3.1.1 and 3.1.2. 


