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3.12. ABBC. 
 
Recall the following reduced table for AB from section 3.5.  
 
REDUCED AB 
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
The reduced table for BC is obtained from the reduced table 
for AB via the permutation that sends A to B, B to C, and C 
to A. We use 1'-6' to avoid confusion. 
 
REDUCED BC 
 
1’. B ∪. fB ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
2’. B ∪. fB ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
3’. B ∪. fB ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
4’. A ∪. fB ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
5’. A ∪. fB ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
6’. A ∪. fB ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
 
This results in 36 ordered pairs, which we divide into six 
cases. We begin with two Lemmas.  
 
We will determine the status of all attributes INF, AL, 
ALF, FIN, NON, for all ordered pairs.  
 
LEMMA 3.12.1. C ∪. fX ⊆ B ∪. gY, Z ∪. fB ⊆ C ∪. gW has 
¬INF, ¬FIN. 
 
Proof: Let f be as given by Lemma 3.2.1. Let g ∈ ELG be 
given by g(n) = 2n+1. Let C ∪. fX ⊆ B ∪. gY, Z ∪. fB ⊆ C 
∪. gW, where A,B,C are nonempty. 
 
Clearly fB ∩ 2N ⊆ C. By C ⊆ B ∪ gY, we have fB ∩ 2N ⊆ B. 
Hence by Lemma 3.2.1, fB is cofinite. Hence B is infinite. 
This establishes that ¬FIN. Also Z is finite. This 
establishes that ¬INF. QED  
 
LEMMA 3.12.2. C ∪. fX ⊆ B ∪. gY, Z ∪. fB ⊆ C ∪. gW, B ∩ fB 
= ∅ has ¬NON. 
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Proof: We can continue the proof of Lemma 3.12.1. Using fB 
is cofinite and B is finite, we obtain an immediate 
contradiction from B ∩ fB = ∅. QED  
 
We use Lemmas 3.12.1 and 3.12.2 in cases 5,6 below.  
 
part 1. A ∪. fA ⊆ B ∪. gA. 
 
1,1’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
1,2’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
1,3’. A ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON.  
1,4’. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
1,5’. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
1,6’. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
 
The following pertains to 1,4’, 1,6’. 
 
LEMMA 3.12.3. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gX has 
INF, ALF provided X ∈ {A,B}, even for EVSD.  
 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ fA). Let B = (A ∪ fA)\gA, and C = 
(A ∪ fB)\gX.  
 
Clearly A ∩ fA = B ∩ gA = A ∩ fB = C ∩ gX = A ∩ gA = A ∩ 
gB = ∅. Hence A ⊆ B and A ⊆ C. Also fA ⊆ B ∪ gA and fB ⊆ C 
∪ gX. This establishes INF. 
 
We can repeat the argument where A is chosen to be of any 
finite cardinality. This establishes ALF. QED 
 
The following pertains to 1,5’. 
 
LEMMA 3.12.4. A ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ fA) ∪ g(A ∪ f(A ∪ fA)). Let B = (A 
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∪ fA)\gA. By Lemma 3.3.3, let C be unique such that C ⊆ A ∪ 
fB ⊆ C ∪. gC. 
 
Clearly A ∩ fA = B ∩ gA = A ∩ fB = C ∩ gC = A ∩ gA = A ∩ 
gC = ∅. Hence A ⊆ B and A ⊆ C. Also fA ⊆ B ∪ gA and fB ⊆ C 
∪ gC. This establishes INF. 
 
We can repeat the proof where A is chosen to be of any 
finite cardinality. This establishes ALF. QED 
 
The following pertains to 1,1’, 1,2’, 1,3’. 
 
LEMMA 3.12.5. A ∪. fA ⊆ B ∪. gA, B ∩ fB = ∅ has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. Let f(n) = 2n+2 and 
g(n) = 2n+1. Let A ∪. fA ⊆ B ∪. gA, B ∩ fB = ∅, where A,B 
are nonempty.  
 
Let n = min(A). Then n ∉ gA, n ∈ B, 2n+2 ∈ fB, 2n+2 ∈ fA, 
2n+2 ∈ B. This contradicts B ∩ fB = ∅. QED  
 
part 2. A ∪. fA ⊆ B ∪. gB. 
 
2,1’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
2,2’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
2,3’. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON.  
2,4’. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
2,5’. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
2,6’. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
 
The following pertains to 2,4’, 2,6’. 
 
LEMMA 3.12.6. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gX has 
INF, ALF, provided X ∈ {A,B}, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ fA). By Lemma 3.3.3, let B be unique 
such that B ⊆ A ∪ fA ⊆ B ∪. gB. Let C = (A ∪ fB)\gX.  
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Clearly A ∩ fA = B ∩ gB = A ∩ fB = C ∩ gX = A ∩ gB = A ∩ 
gA = ∅. Hence A ⊆ B and A ⊆ C. Also fA ⊆ B ∪ gB and fB ⊆ C 
∪ gX. This establishes INF. 
 
We can repeat the argument where A is chosen to be of any 
finite cardinality. This establishes ALF. QED 
 
The following pertains to 2,5’. 
 
LEMMA 3.12.7. A ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ fA) ∪ g(A ∪ f(A ∪ fA)). By Lemma 
3.3.3, let B be unique such that B ⊆ A ∪ fA ⊆ B ∪. gB. By 
Lemma 3.3.3, let C be unique such that C ⊆ A ∪ fB ⊆ C ∪. 
gC. 
 
Clearly A ∩ fA = B ∩ gB = A ∩ fB = C ∩ gC = A ∩ gB = A ∩ 
gC = ∅. Hence A ⊆ B and A ⊆ C. Also fA ⊆ B ∪ gB and fB ⊆ C 
∪ gC. This establishes INF. 
 
We can repeat the argument where A is chosen to be of any 
finite cardinality. This establishes ALF. QED 
 
The following pertains to 2,1’, 2,3’. 
 
LEMMA 3.12.8. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gX has 
FIN, provided X ∈ {A,B}. 
 
Proof: Let f,g ∈ ELG. We claim that there exists 
arbitrarily large n such that f(n,...,n) ≠ 
f(g(n,...,n),...,g(n,...,n)). Suppose this is false. I.e., 
let r be such that for all n ≥ r, f(n,...,n) = 
f(g(n,...,n),...,g(n,...,n)). We can assume that r is 
chosen so that f,g is strictly dominating on [r,∞).  
 
Define t0 = r, ti+1 = g(ti,...,ti). An obvious induction 
shows that r ≤ t0 < t1 < ... .  
 
We now prove by induction that for all i ≥ 0,  
 

f(r,...,r) = f(ti,...,ti). 
 
Obviously this is true for i = 0. Suppose this is true for 
a given i ≥ 0. Then  
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f(r,...,r) = f(ti,...,ti). 

ti ≥ r. 
f(ti,...,ti) = f(g(ti,...,ti),...,g(ti,...,ti)). 

f(r,...,r) = f(ti+1,...,ti+1). 
 
However some ti is greater than f(r,...,r), since the t’s 
are strictly increasing. This is a contradiction. The claim 
is now established.    
 
Now let n be sufficiently large with the property that 
f(n,...,n) ≠ f(g(n,...,n),...,g(n,...,n)). Let A = 
{g(n,...,n)}. Let B = {n,f(g(n,...,n),...,g(n,...,n))}. Let 
C = (B ∪ fB)\gX.  
 
Clearly A ∩ fA = B ∩ gB = B ∩ fB = C ∩ gX = ∅. Also A ⊆ 
gB, fA ⊆ B, B ∪ fB ⊆ C ∪ gX. In addition, n ∉ gX, n ∈ B, 
and so n ∈ C. Hence A,B,C are nonempty finite sets. QED 
 
The following pertains to 2,2’. 
 
LEMMA 3.12.9. A ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gC has 
FIN. 
 
Proof: Let f,g ∈ ELG. We define n,A,B exactly as in the 
proof of Lemma 3.12.8. By Lemma 3.3.3, let C be unique such 
that C ⊆ B ∪ fB ⊆ C ∪. gC.  
 
Clearly A ∩ fA = B ∩ gB = B ∩ fB = C ∩ gC = ∅. Also A ⊆ 
gB, fA ⊆ B, B ∪ fB ⊆ C ∪ gC. In addition, n ∉ gC, and so n 
∈ C. Hence A,B,C are nonempty finite sets. QED 
 
The following pertains to 2,1’, 2,2’, 2,3’. 
 
LEMMA 3.12.10. fA ⊆ B ∪. gX, B ∩ fB = ∅ has ¬AL. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(m,n) = f(n,m) = 4m+6, g(n) = 2n+1. Let fA 
⊆ B ∪. gX, B ∩ fB = ∅, where A,B,C have at least two 
elements. Let n < m be from A. Then 2m+2,4m+6 ∈ fA, 
2m+2,4m+6 ∈ B, 4m+6 ∈ fB. This contradicts B ∩ fB = ∅. QED  
 
part 3. A ∪. fA ⊆ B ∪. gC. 
 
3,1’. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
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3,2’. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
3,3’. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. FIN. NON. 
3,4’. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
3,5’. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
3,6’. A ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON. 
 
LEMMA 3.12.11. 3,1’ - 3,3’ have ¬AL.  
 
Proof: By Lemma 3.12.10. QED 
 
The following pertains to 3,1’, 3,3’. 
 
LEMMA 3.12.12. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gX has 
FIN, where X ∈ {A,B}. 
 
Proof: Let f,g ∈ ELG. Let n be sufficiently large. Define A 
= {g(n,...,n)}, B = {f(g(n,...,n),...,g(n,...,n))}, C = (B 
∪ fB ∪ {n})\gX.  
 
Obviously A ∩ fA = B ∩ fB = C ∩ gX = ∅. Also n ∉ gX, n ∈ 
C. Hence A ⊆ gC and fA ⊆ B. Therefore A ∪ fA ⊆ B ∪ gC. 
Obviously B ∪ fB ⊆ C ∪ gX.  
 
It remains to verify that B ∩ gC = ∅. Every element of C is 
either n or f(g(n,...,n),...,g(n,...,n)) or the value of a 
term of depth ≤ 3 in f,g,n with f(g(n,...,n),...,g(n,...,n)) 
as a subterm. Hence every element of gC is either 
g(n,...,n) or the value of a term in f,g,n of depth ≤ 4 with 
f(g(n,...,n),...,g(n,...,n)) as a proper subterm. Since n 
is sufficiently large, f(g(n,...,n),...,g(n,...,n)) does 
not lie in gC. QED  
 
The following pertains to 3,2’. 
 
LEMMA 3.12.13. A ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gC has 
FIN. 
 
Proof: Let f,g ∈ ELG. Let n be sufficiently large. Define A 
= {g(n,...,n)}, B = {f(g(n,...,n),...,g(n,...,n))}. By 
Lemma 3.3.3, let C be unique such that C ⊆ B ∪ fB ∪ {n} ⊆ C 
∪. gC.  
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Obviously A ∩ fA = B ∩ fB = C ∩ gC = ∅. Also n ∉ gC, n ∈ 
C. A ⊆ gC, and fA ⊆ B. Therefore A ∪ fA ⊆ B ∪ gC. In 
addition, B ∪ fB ⊆ C ∪ gC.   
 
It remains to verify that B ∩ gC = ∅. Argue exactly as in 
the proof of Lemma 3.12.12. QED 
 
The following pertains to 3,4’, 3,5’, 3,6’.  
 
LEMMA 3.12.14. A ∪. fA ⊆ B ∪. gC. A ∪. fB ⊆ C ∪. gX has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. Let n be sufficiently large. By 
Lemma 3.2.5, let A ⊆ [n,∞) be infinite, where A is disjoint 
from f(A ∪ fA) ∪ g(A ∪ f(A ∪ fA)). We inductively 
determine membership in B,C for all elements of [n,∞). B,C 
will have no elements < n. 
 
Suppose membership in B,C has been determined for all 
elements of [n,k), k ≥ n. We now determine membership in B,C 
for k. If k is already in A ∪ fA and k is not yet in gC, 
put k ∈ B. If k is already in A ∪ fB and k is not yet in 
gX, put k in C.  
 
Clearly B ⊆ A ∪ fA and C ⊆ A ∪ fB ⊆ A ∪ f(A ∪ fA). Hence A 
∩ fA = A ∩ fB = C ∩ gX = ∅. Also A ∪ fA ⊆ B ∪ gC and A ∪ 
fB ⊆ C ∪ gX. In addition, A ∩ gC ⊆ A ∩ g(A ∪ fB) ⊆ A ∩ g(A 
∪ f(A ∪ fA)) = ∅, and so A ∩ gX = ∅. Hence A ⊆ B, A ⊆ C. 
This establishes INF.  
 
We can instead use A of any finite cardinality. We obtain 
finite B,C with A ⊆ B,C. This establishes ALF. QED 
 
part 4. C ∪. fA ⊆ B ∪. gA. 
 
4,1’. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,2’. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,3’. C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,4’. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF.  ¬FIN. ¬NON. 
4,5’. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,6’. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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The following pertains to 4,1’, 4,2’, 4,3’.  
 
LEMMA 3.12.15. C ∪. fA ⊆ B ∪. gA. B ∪. fB ⊆ C ∪. gX has 
¬NON. 
 
Proof: Let f be as given by Lemma 3.2.1. Define g ∈ ELG by 
g(n) = 2n+1. Let C ∪. fA ⊆ B ∪. gA, B ∪. fB ⊆ C ∪. gX, 
where A,B,C are nonempty.  
 
Let n ∈ fB ∩ 2N. Then n ∈ C, n ∈ B. Hence fB ∩ 2N ⊆ B. By 
Lemma 3.2.1, fB is cofinite. Hence B is infinite. This 
contradicts B ∩ fB = ∅. QED 
 
The following pertains to 4,4’. 
 
LEMMA 3.12.16. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(2n,2n,2n) = f(2n+1,2n+1,2n+1) = 4n, f(n,m,m) = 2m, 
f(n,m,n) = 4m, f(m,n,n) = 8m, g(2n) = g(2n+1) = 4n+1. For 
all other triples a,b,c, let f(a,b,c) = 2|a,b,c|.   
 
We claim that  
 

f(f(m,m,m),f(m,m,m),f(m,m,m)) = f(g(m),g(m),g(m)). 
 
To see this, let m = 2r ∨ m = 2r+1. Then  
 

f(f(m,m,m),f(m,m,m),f(m,m,m)) = f(4r,4r,4r) = 8r 
 
and  
 

f(g(m),g(m),g(m)) = f(4r+1,4r+1,4r+1) = 8r. 
 
Now let C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gB, where A,B,C 
are nonempty. Let n ∈ A. Then n ∈ C ∪. gB. 
 
case 1. n ∈ C. Then n ∈ B ∪ gA. First suppose n ∈ B. Then 
f(n,n,n) ∈ C ∪ gB. Hence f(n,n,n) ∈ C. This contradicts C ∩ 
fA = ∅. 
 
Now suppose n ∈ gA. Let n = g(m), m ∈ A, m < n. Then 2n-
2,4n-4,8n-8 ∈ fA, and so 2n-2,4n-4,8n-8 ∈ B, 8n-8 ∈ fB, 8n-
8 ∈ C. This contradicts C ∩ fA = ∅.   
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case 2. n ∈ gB. Let n = g(m), m ∈ B. Then f(m,m,m) ∈ fB, 
f(m,m,m) ∈ C. Hence f(m,m,m) ∈ B. Therefore 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ fB, 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ C. Note that 
f(f(m,m,m),f(m,m,m),f(m,m,m)) = f(g(m),g(m),g(m)) = 
f(n,n,n) ∈ fA. This contradicts C ∩ fA = ∅.   
 
QED 
 
The following pertains to 4,6’. 
 
LEMMA 3.12.17. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g as in the proof of Lemma 3.12.16. Now let 
C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gA, where A,B,C are 
nonempty. Let n ∈ A. Then n ∈ C ∪. gA. 
 
case 1. n ∈ gA. Let n = g(m), m ∈ A, m < n. Then 2n-2,4n-
4,8n-8 ∈ fA, 2n-2,4n-4,8n-8 ∈ B, 8n-8 ∈ fB, 8n-8 ∈ C. This 
contradicts C ∩ fA = ∅.   
 
case 2. n ∈ C. Then n ∉ gA, n ∈ B, f(n,n,n) ∈ fB, f(n,n,n) 
∈ C. Since f(n,n,n) ∈ fA, this contradicts C ∩ fA = ∅. 
 
QED 
 
The following pertains to 4,5’. 
 
LEMMA 3.12.18. C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Define f,g as in the proof of Lemma 3.12.16. Now let 
C ∪. fA ⊆ B ∪. gA, A ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty. Let n = min(A). Then n ∈ C ∪. gC. 
 
case 1. n ∈ C. By the choice of n, n ∉ gA, n ∈ B. Hence 
f(n,n,n) ∈ fB, f(n,n,n) ∈ C. Since f(n,n,n) ∈ fA, this 
contradicts C ∩ fA = ∅.  
 
case 2. n ∈ gC. Let n = g(m), m ∈ C, m < n. Then m ∈ B ∪ 
gA. By the choice of n, m ∉ gA, m ∈ B. Hence f(m,m,m) ∈ fB, 
f(m,m,m) ∈ C, f(m,m,m) ∈ B ∪ gA.  
 
We claim that f(m,m,m) ∉ gA. To see this, note that by 
quantitative considerations, f(m,m,m) ∈ gA implies that 
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there is an element of A that is ≤ m < n, which contradicts 
the choice of n.  
 
Hence f(m,m,m) ∈ B. Therefore  
 

f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ fB. 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ C. 

 
As in the proof of Lemma 3.12.16,  
 

f(f(m,m,m),f(m,m,m),f(m,m,m)) =  
f(g(m),g(m),g(m)) = f(n,n,n) ∈ fA. 

 
This contradicts C ∩ fA = ∅.  
 
QED 
 
part 5. C ∪. fA ⊆ B ∪. gB. 
 
5,1’. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,2’. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,3’. C ∪. fA ⊆ B ∪. gB, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,4’. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,5’. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,6’. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
LEMMA 3.12.19. 5,1’, 5,2’, 5,3’ have ¬NON. 
 
Proof: By Lemma 3.12.2. QED 
 
The following pertains to 5,4’. 
 
LEMMA 3.12.20. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+1, g(n) = 4n+5. Let C 
∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gB, where A,B,C are 
nonempty.  
 
Let n ∈ A. Then n ∈ C ∪ gB.   
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case 1. n ∈ C\gB. Then n ∈ B, 2n+2 ∈ fB, 2n+2 ∈ C, 2n+2 ∈ 
fA. This contradicts C ∩ fA = ∅.  
 
case 2. n ∈ gB. Let n = 4m+5, m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ 
C, 2m+2 ∈ B. Since m < 2m+2 are from B, we have 4m+5 ∈ fB. 
Since 4m+5 = n ∈ A, this contradicts A ∩ fB = ∅. QED  
 
The following pertains to 5,6’. 
 
LEMMA 3.12.21. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = f(m,n) = 2m+1, g(n) = 4n+5. Let C 
∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gA, where A,B,C are 
nonempty.  
 
Let n = min(A). Then n ∈ C ∪ gA. Clearly n ∉ gA, n ∈ C, n 
∈ B ∪ gB.  
 
case 1. n ∈ B. Then 2n+2 ∈ fB, 2n+2 ∈ C, 2n+2 ∈ fA. This 
contradicts C ∩ fA = ∅.  
 
case 2. n ∈ gB. Let n = 4m+5, m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ 
C, 2m+2 ∈ B. Since m < 2m+2 are from B, we have 4m+5 ∈ fB. 
Since 4m+5 ∈ A, this contradicts A ∩ fB = ∅. QED  
 
The following pertains to 5,5’. 
 
LEMMA 3.12.22. C ∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Define f,g ∈ ELG as follows. For all n < m, let 
f(n,n) = 2n+2, f(n,m) = 2m, f(m,n) = 4m, g(n) = 2n+1. Let C 
∪. fA ⊆ B ∪. gB, A ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty.  
 
Let n ∈ A. Then 2n+2 ∈ fA, n ∈ C ∪ gC.  
 
case 1. n ∈ C. Then n ∈ B ∪ gB.  
 
Suppose n ∈ B. Then 2n+2 ∈ fB, 2n+2 ∈ C. Since 2n+2 ∈ fA, 
this contradicts C ∩ fA = ∅. 
 
Suppose n ∈ gB. Let n = 2m+1, m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ 
C, 2m+2 ∈ B. Since m < 2m+2 are from B, we have 4m+4 = 2n+2 
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∈ fB, 2n+2 ∈ C. Since 2n+2 ∈ fA, this contradicts C ∩ fA = 
∅. 
 
case 2. n ∈ gC. Let n = 2m+1, m ∈ C, m ∈ B ∪ gB.  
 
Suppose m ∈ B. Then 2m+2 ∈ fB, 2m+2 ∈ C, 2m+2 ∈ B. Since m 
< 2m+2 are from B, we have 4m+4 = 2n+2 ∈ fB, 2n+2 ∈ C. 
Since 2n+2 ∈ fA, this contradicts C ∩ fA = ∅.  
 
Suppose m ∈ gB. Let m = 2r+1, r ∈ B. Then 2r+2 ∈ fB, 2r+2 ∈ 
C, 2r+2 ∈ B. Since r < 2r+2 are from B, we have 8r+8 = 4m+4 
= 2n+2 ∈ fB, 2n+2 ∈ C. Since 2n+2 ∈ fA, this contradicts C 
∩ fA = ∅.   
 
QED 
 
part 6. C ∪. fA ⊆ B ∪. gC. 
 
6,1’. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,2’. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,3’. C ∪. fA ⊆ B ∪. gC, B ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,4’. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,5’. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
6,6’. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
LEMMA 3.12.23. 6,1’ - 6,3’ have ¬NON. 
 
Proof: By Lemma 3.12.2. QED 
 
The following pertains to 6,5’. 
 
LEMMA 3.12.24. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC has 
¬NON. 
 
Proof: Let f,g ∈ ELG be defined as follows. For all n < m, 
let f(n,n) = 2n+2, f(n,m) = f(m,n)= 2m+1, g(n) = 4n+5. Let 
C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gC, where A,B,C are 
nonempty.  
 
Let n ∈ A. Then n ∈ C ∪ gC, 2n+2 ∈ fA.  
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case 1. n ∈ C. Then n ∈ B ∪ gC, n ∉ gC, n ∈ B, 2n+2 ∈ fB, 
2n+2 ∈ C. This contradicts C ∩ fA = ∅. 
 
case 2. n ∈ gC. Let n = 4r+5, r ∈ C. Then r ∈ B ∪ gC, r ∈ 
B, 2r+2 ∈ fB, 2r+2 ∈ C, 2r+2 ∈ B ∪ gC, 2r+2 ∈ B. Since r < 
2r+2 are from B, we have 4r+5 = n ∈ fB. Since n ∈ A, this 
contradicts A ∩ fB = ∅.   
 
QED 
 
The following pertains to 6,4’. 
 
LEMMA 3.12.25. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB has 
¬NON. 
 
Proof: Let f,g ∈ ELG be defined as in the proof of Lemma 
3.12.16, whose definitions we repeat here. For all n < m, 
let f(2n,2n,2n) = f(2n+1,2n+1,2n+1) = 4n, f(n,m,m) = 2m, 
f(n,m,n) = 4m, f(m,n,n) = 8m, g(2n) = g(2n+1) = 4n+1. For 
all other triples a,b,c, let f(a,b,c) = 2max(a,b,c). Let C 
∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gB, where A,B,C are 
nonempty.  
 
Let n = min(A). Then n ∈ C ∪ gB.  
 
case 1. n ∈ C. Then n ∈ B ∪ gC.  
 
case 1a. n ∈ C, n ∈ B. Clearly f(n,n,n) ∈ fB, f(n,n,n) ∈ C. 
Since f(n,n,n) ∈ fA, this contradicts C ∩ fA = ∅. 
 
case 1b. n ∈ C, n ∈ gC. Let n’ = min(C ∩ gC). Let n’ = 
g(m), m ∈ C. Then m ∈ B ∪ gC. If m ∈ B then n’ ∈ gB, which 
contradicts C ∩ gB = ∅. Hence m ∈ gC. So m ∈ C ∩ gC and m 
< n’, which is a contradiction.  
 
case 2. n ∈ gB. Let n = g(m), m ∈ B. Then f(m,m,m) ∈ fB, 
f(m,m,m) ∈ C, f(m,m,m) ∈ B. So 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ fB, 
f(f(m,m,m),f(m,m,m),f(m,m,m)) ∈ C.  
 
By the proof of Lemma 3.12.16,  
 
f(f(m,m,m),f(m,m,m),f(m,m,m)) = f(g(m),g(m),g(m)) = 
f(n,n,n) ∈ fA. 
 
This contradicts C ∩ fA = ∅. QED 
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The following pertains to 6,6'.  
 
LEMMA 3.12.26. C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C ∪. gA has 
¬NON. 
 
Proof: Let f,g ∈ ELG be defined as follows. For all n < m, 
let f(n,n,n) = 2n, f(n,n,m) = 2n+2, f(n,m,n) = 4m+2, 
f(n,m,m) = 4m-3, g(n) = 4n+1. At all other triples define 
f(a,b,c) = |a,b,c|+2. Let C ∪. fA ⊆ B ∪. gC, A ∪. fB ⊆ C 
∪. gA, where A,B,C are nonempty. 
 
Let n = min(A). We claim that n ∉ B. To see this, let n ∈ 
B. Then 2n ∈ fB, 2n ∉ gA, 2n ∈ C, 2n ∈ fA. This contradicts 
C ∩ fA = ∅.  
 
Since n ∈ C ∪ gA, we have n ∈ C, n ∈ B ∪ gC, n ∈ gC.  
 
Let n = 4m+1, m ∈ C. Suppose m ∉ gC. Then m ∈ B, 2m ∈ fB, 
2m ∈ C, 2m ∈ B. Since m,2m ∈ B, we have 4m+1 ∈ fB, 4m+1 ∈ 
A, contradicting A ∩ fB = ∅. Hence m ∈ gC. 
 
Let p be greatest such that the sequence n,g-1(n),...,g-p(n) 
is defined and remains in C. Then p ≥ 2.  
 
Note that g-p(n) ∈ C\gC, g-p(n) ∈ B ∪ gC, g-p(n) ∈ B. We have 
gone down by g-1. We can go back up from g-p(n) ∈ B as 
follows.  
 
First we apply the function 2n followed by the function 
2n+2 (available through f(n,n,n) and f(n,n,m)). After 
applying the function 2n, we obtain an even element of fB, 
which must lie in C,B. After applying the function 2n+2, we 
arrive at g-p+1(n)+1, which is also even and lies in C,B. 
Then we apply the function 4n+2 successively until arriving 
at g-1(n)+1, which lies in C,B. Finally apply the function 
4n-3, which arrives at n, and lies in fB. Since n ∈ A, we 
have contradicted A ∩ fB = ∅. QED 
 


