3.12. ABBC.

Recall the following reduced table for AB from section 3.5.
REDUCED AB

1. A \cup. $f A \subseteq B \cup$. gA. INF. AL. ALF. FIN. NON.
2. A \cup. $f A \subseteq B \cup$. $g B$. INF. AL. ALF. FIN. NON.
3. A \cup. fA \subseteq B \cup. gC. INF. AL. ALF. FIN. NON.
4. $C \cup . f A \subseteq B \cup$. gA. INF. AL. ALF. FIN. NON.
5. $C \cup(f A \subseteq B \cup . g B$. INF. AL. ALF. FIN. NON.
6. $C \cup$. $f A \subseteq B \cup$. gC. INF. AL. ALF. FIN. NON.

The reduced table for $B C$ is obtained from the reduced table for AB via the permutation that sends A to B, B to C, and C to A. We use 1'-6' to avoid confusion.

REDUCED BC
$1^{\prime} . B \cup . f B \subseteq C \cup . g B . \quad I N F . A L$. ALF. FIN. NON.
$2^{\prime} . B \cup . f B \subseteq C \cup . g C . \quad I N F . A L . A L F . F I N . N O N$.
$3^{\prime} . \mathrm{B} \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
$4^{\prime} . A \cup . f B \subseteq C \cup . g B$. INF. AL. ALF. FIN. NON.
$5^{\prime} . A \cup . f B \subseteq C \cup . g C . \quad I N F . A L . A L F . F I N . N O N$.
$6^{\prime} . A \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.
This results in 36 ordered pairs, which we divide into six cases. We begin with two Lemmas.

We will determine the status of all attributes INF, AL, ALF, FIN, NON, for all ordered pairs.

LEMMA 3.12.1. $C \cup . f X \subseteq B \cup . g Y, Z \cup . f B \subseteq C \cup . g W$ has $\rightarrow I N F, ~ \neg F I N$.

Proof: Let f be as given by Lemma 3.2.1. Let $g \in E L G$ be given by $g(n)=2 n+1$. Let $C \cup . f X \subseteq B U . g Y, Z \cup . f B \subseteq C$ U. gW, where A,B,C are nonempty.

Clearly $f B \cap 2 N \subseteq C . B y C \subseteq B \cup g Y$, we have $f B \cap 2 N \subseteq B$. Hence by Lemma 3.2.1, $f B$ is cofinite. Hence B is infinite. This establishes that \neg FIN. Also Z is finite. This establishes that \neg INF. QED

LEMMA 3.12.2. $\mathrm{C} \cup . \mathrm{fX} \subseteq \mathrm{B} \cup . \mathrm{gY}, \mathrm{Z} \cup . \mathrm{fB} \subseteq \mathrm{C} \cup . \mathrm{gW}, \mathrm{B} \cap \mathrm{fB}$ $=\varnothing$ has \neg NON.

Proof: We can continue the proof of Lemma 3.12.1. Using fB is cofinite and B is finite, we obtain an immediate contradiction from $B \cap f B=\varnothing$. QED

We use Lemmas 3.12.1 and 3.12.2 in cases 5,6 below.
part 1. A \cup. fA \subseteq B U. gA.
$1,1^{\prime} . A \cup . f A \subseteq B \cup . g A, B \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$1,2^{\prime} . A \cup . f A \subseteq B \cup . g A, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$1,3^{\prime} . A \cup . f A \subseteq B \cup . g A, B \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$1,4^{\prime} . A \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup$. AB. INF. AL. ALF. FIN. NON.
$1,5^{\prime} . A \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup . g C . \operatorname{INF} . A L . A L F$. FIN. NON. $1, \sigma^{\prime} . A \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.

The following pertains to 1,4', 1, 6^{\prime}.
LEMMA 3.12.3. A $\cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup . g X$ has INF, ALF provided $X \in\{A, B\}$, even for $E V S D$.

Proof: Let $f, g \in \operatorname{EVSD}$. Let n be sufficiently large. By Lemma 3.2.5, let $A \subseteq[n, \infty)$ be infinite, where A is disjoint from $f(A \cup f A) \cup g(A \cup f A)$. Let $B=(A \cup f A) \backslash g A$, and $C=$ $(A \cup f B) \backslash g X$.

Clearly $A \cap f A=B \cap g A=A \cap f B=C \cap g X=A \cap g A=A \cap$ $g B=\varnothing$. Hence $A \subseteq B$ and $A \subseteq C$. Also $f A \subseteq B \cup g A$ and $f B \subseteq C$ U gX. This establishes INF.

We can repeat the argument where A is chosen to be of any finite cardinality. This establishes ALF. QED

The following pertains to 1,5'.
LEMMA 3.12.4. A \cup. fA \subseteq B \cup. gA, $A \cup . f B \subseteq C \cup . g C$ has INF, ALF, even for EVSD.

Proof: Let $f, g \in \operatorname{EVSD}$. Let n be sufficiently large. By Lemma 3.2.5, let $A \subseteq[n, \infty)$ be infinite, where A is disjoint from $f(A \cup f A) \cup g(A \cup f A) \cup g(A \cup f(A \cup f A))$. Let $B=(A$
$\cup f A) \backslash g A$. By Lemma 3.3.3, let C be unique such that $C \subseteq A \cup$ $f B \subseteq C \cup . g C$.

Clearly $A \cap f A=B \cap g A=A \cap f B=C \cap g C=A \cap g A=A \cap$ $g C=\varnothing$. Hence $A \subseteq B$ and $A \subseteq C$. Also $f A \subseteq B \cup g A$ and $f B \subseteq C$ \cup gC. This establishes INF.

We can repeat the proof where A is chosen to be of any finite cardinality. This establishes ALF. QED

The following pertains to $1,1^{\prime}, 1,2^{\prime}, 1,3^{\prime}$.
LEMMA 3.12.5. A \cup. $f A \subseteq B \cup . g A, B \cap f B=\varnothing$ has $\neg N O N$.
Proof: Define f,g \in ELG as follows. Let $f(n)=2 n+2$ and $g(n)=2 n+1$. Let $A \cup . f A \subseteq B \cup$. $g A, B \cap f B=\varnothing$, where A, B are nonempty.

Let $n=\min (A)$. Then $n \notin g A, n \in B, 2 n+2 \in f B, 2 n+2 \in f A$, $2 \mathrm{n}+2 \in \mathrm{~B}$. This contradicts $\mathrm{B} \cap \mathrm{fB}=\varnothing$. QED
part 2. A $\cup . f A \subseteq B \cup$. $g B$.
$2,1^{\prime} . A \cup . f A \subseteq B \cup . g B, B \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ F I N . ~ N O N$.
$2,2^{\prime} . A \cup . f A \subseteq B \cup . g B, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . F I N$. NON.
$2,3^{\prime} . A \cup . f A \subseteq B \cup . g B, B \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ F I N . ~ N O N$.
$2,4^{\prime} . A \cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup . g B . I N F . A L . A L F$. FIN. NON.
$2,5^{\prime} . A \cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup . g C . I N F . A L . A L F$. FIN. NON.
2, 6^{\prime}. A $\cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.

The following pertains to 2,4', 2,6'.
LEMMA 3.12.6. A $\cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup . g X$ has INF, ALF, provided $X \in\{A, B\}$, even for EVSD.

Proof: Let $f, g \in$ EVSD. Let n be sufficiently large. By Lemma 3.2.5, let $A \subseteq[n, \infty)$ be infinite, where A is disjoint from $f(A \cup f A) \cup g(A \cup f A)$. By Lemma 3.3.3, let B be unique such that $B \subseteq A \cup f A \subseteq B \cup$. $g B$. Let $C=(A \cup f B) \backslash g X$.

Clearly $A \cap f A=B \cap g B=A \cap f B=C \cap g X=A \cap g B=A \cap$ $g A=\varnothing$. Hence $A \subseteq B$ and $A \subseteq C$. Also $f A \subseteq B \cup g B$ and $f B \subseteq C$ \cup gX. This establishes INF.

We can repeat the argument where A is chosen to be of any finite cardinality. This establishes ALF. QED

The following pertains to 2,5'.
LEMMA 3.12.7. A $\cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup . g C$ has INF, ALF, even for EVSD.

Proof: Let f,g \in EVSD. Let n be sufficiently large. By Lemma 3.2.5, let $A \subseteq[n, \infty)$ be infinite, where A is disjoint from $f(A \cup f A) \cup g(A \cup f A) \cup g(A \cup f(A \cup f A))$. By Lemma 3.3.3, let B be unique such that $B \subseteq A \cup f A \subseteq B \cup$. gB. By Lemma 3.3.3, let C be unique such that $C \subseteq A \cup f B \subseteq C \cup$. gC.

Clearly $A \cap f A=B \cap g B=A \cap f B=C \cap g C=A \cap g B=A \cap$ $g C=\varnothing$. Hence $A \subseteq B$ and $A \subseteq C$. Also $f A \subseteq B \cup g B$ and $f B \subseteq C$ U gC. This establishes INF.

We can repeat the argument where A is chosen to be of any finite cardinality. This establishes ALF. QED

The following pertains to 2,1', 2,3'.
LEMMA 3.12.8. A $\cup . f A \subseteq B \cup . g B, B \cup . f B \subseteq C \cup . g X$ has FIN, provided $X \in\{A, B\}$.

Proof: Let $f, g \in$ ELG. We claim that there exists arbitrarily large n such that $f(n, . . ., n) \neq$ f(g(n,...,n),...g(n,...,n)). Suppose this is false. I.e., let r be such that for all $n \geq r, f(n, \ldots, n)=$ $f(g(n, \ldots, n), \ldots, g(n, \ldots, n))$. We can assume that r is chosen so that f, g is strictly dominating on $[r, \infty)$.

Define $t_{0}=r, t_{i+1}=g\left(t_{i}, \ldots, t_{i}\right)$. An obvious induction shows that $r \leq t_{0}<t_{1}<\ldots$.

We now prove by induction that for all i ≥ 0,

$$
f(r, \ldots, r)=f\left(t_{i}, \ldots, t_{i}\right) .
$$

Obviously this is true for $i=0$. Suppose this is true for a given $i \geq 0$. Then

$$
\begin{gathered}
f(r, \ldots, r)=f\left(t_{i}, \ldots, t_{i}\right) . \\
t_{i} \geq r . \\
f\left(t_{i}, \ldots, t_{i}\right)=f\left(g\left(t_{i}, \ldots, t_{i}\right), \ldots, g\left(t_{i}, \ldots, t_{i}\right)\right) . \\
f(r, \ldots, r)=f\left(t_{i+1}, \ldots, t_{i+1}\right) .
\end{gathered}
$$

However some t_{i} is greater than $f(r, \ldots, r)$, since the $t^{\prime} s$ are strictly increasing. This is a contradiction. The claim is now established.

Now let n be sufficiently large with the property that $\mathrm{f}(\mathrm{n}, \ldots, \mathrm{n}) \neq \mathrm{f}(\mathrm{g}(\mathrm{n}, \ldots, \mathrm{n}), \ldots, \mathrm{g}(\mathrm{n}, \ldots, \mathrm{n}))$. Let $\mathrm{A}=$ $\{g(n, \ldots, n)\} . \operatorname{Let} B=\{n, f(g(n, \ldots, n), \ldots, g(n, \ldots, n))\}$. Let $C=(B \cup f B) \backslash g X$.

Clearly $A \cap f A=B \cap g B=B \cap f B=C \cap g X=\varnothing$. Also $A \subseteq$ $g B, f A \subseteq B, B \cup f B \subseteq C \cup g X$. In addition, $n \notin g X, n \in B$, and so $n \in C$. Hence A, B, C are nonempty finite sets. QED

The following pertains to 2,2'.
LEMMA 3.12.9. A $\cup . f A \subseteq B \cup . g B, B \cup . f B \subseteq C \cup . g C$ has FIN.

Proof: Let $f, g \in E L G$. We define n, A, B exactly as in the proof of Lemma 3.12.8. By Lemma 3.3.3, let C be unique such that $C \subseteq B \cup f B \subseteq C \cup . g C$.

Clearly $A \cap f A=B \cap g B=B \cap f B=C \cap g C=\varnothing$. Also $A \subseteq$ $g B, f A \subseteq B, B \cup f B \subseteq C \cup g C$. In addition, $n \notin g C$, and so n $\in C$. Hence A, B, C are nonempty finite sets. QED

The following pertains to 2,1', 2,2', 2,3'.
LEMMA 3.12.10. fA \subseteq B \cup. $g X, B \cap f B=\varnothing$ has $\neg A L$.
Proof: Define f,g \in ELG as follows. For all $n<m$, let $\mathrm{f}(\mathrm{n}, \mathrm{n})=2 \mathrm{n}+2, \mathrm{f}(\mathrm{m}, \mathrm{n})=\mathrm{f}(\mathrm{n}, \mathrm{m})=4 \mathrm{~m}+6, \mathrm{~g}(\mathrm{n})=2 \mathrm{n}+1$. Let fA $\subseteq B \cup . g X, B \cap f B=\varnothing$, where A, B, C have at least two elements. Let $n<m$ be from A. Then $2 m+2,4 m+6 \in f A$, $2 m+2,4 m+6 \in B, 4 m+6 \in f B$. This contradicts $B \cap f B=\varnothing$. QED
part 3. A \cup. fA $\subseteq B \cup . g C$.
$3,1^{\prime} . A \cup . f A \subseteq B \cup . g C, B \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F$. FIN. NON.
$3,2^{\prime} . A \cup . f A \subseteq B \cup . g C, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ F I N . ~ N O N$.
$3,3^{\prime} . A \cup . f A \subseteq B \cup . g C, B \cup . f B \subseteq C U . g A . \neg I N F . \neg A L$.
$\neg A L F . ~ F I N . ~ N O N$.
$3,4^{\prime} . A \cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C \cup . g B$. INF. AL. ALF. FIN. NON.
3, 5'. $A \cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C \cup . g C . I N F . A L . A L F$. FIN. NON.
$3,6^{\prime} . A \cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C \cup$. gA. INF. AL. ALF. FIN. NON.

LEMMA 3.12.11. 3,1' - 3,3' have ᄀAL.
Proof: By Lemma 3.12.10. QED
The following pertains to $3,1^{\prime}, 3,3$ '.
LEMMA 3.12.12. A $\cup . f A \subseteq B \cup . g C, B \cup . f B \subseteq C \cup . g X$ has FIN, where $X \in\{A, B\}$.

Proof: Let $f, g \in E L G$. Let n be sufficiently large. Define A $=\{g(n, \ldots, n)\}, B=\{f(g(n, \ldots, n), \ldots, g(n, \ldots, n))\}, C=(B$ $\cup f B \cup\{n\}) \backslash g X$.

Obviously $A \cap f A=B \cap f B=C \cap \operatorname{CX}=\varnothing$. Also $n \notin g X, n \in$ C. Hence $A \subseteq g C$ and $f A \subseteq B$. Therefore $A \cup f A \subseteq B \cup g C$. Obviously $\mathrm{B} \cup \mathrm{fB} \subseteq \mathrm{C} \cup \mathrm{gX}$.

It remains to verify that $B \cap \mathrm{gC}=\varnothing$. Every element of C is either n or $f(g(n, \ldots, n), \ldots, g(n, \ldots, n))$ or the value of a term of depth ≤ 3 in f, g, n with $f(g(n, \ldots, n), \ldots, g(n, \ldots, n))$ as a subterm. Hence every element of $g C$ is either $g(n, \ldots, n)$ or the value of a term in f, g, n of depth ≤ 4 with $f(g(n, \ldots, n), \ldots, g(n, \ldots, n))$ as a proper subterm. Since n is sufficiently large, $f(g(n, . . ., n), . ., g(n, \ldots, n))$ does not lie in gC. QED

The following pertains to 3,2'.
LEMMA 3.12.13. A $\cup . f A \subseteq B \cup . g C, B \cup . f B \subseteq C \cup . g C$ has FIN.

Proof: Let $f, g \in E L G$. Let n be sufficiently large. Define A $=\{g(n, \ldots, n)\}, B=\{f(g(n, \ldots, n), \ldots, g(n, \ldots, n))\}$. $B y$ Lemma 3.3.3, let C be unique such that $C \subseteq B \cup f B \cup\{n\} \subseteq C$ U. gC.

Obviously $A \cap f A=B \cap f B=C \cap g C=\varnothing$. Also $n \notin g C, n \in$ $C . A \subseteq g C$, and $f A \subseteq B$. Therefore $A \cup f A \subseteq B \cup g C$. In addition, $B \cup f B \subseteq C \cup g C$.

It remains to verify that $B \cap \operatorname{~} C=\varnothing$. Argue exactly as in the proof of Lemma 3.12.12. QED

The following pertains to 3,4', 3,5', 3,6'.
LEMMA 3.12.14. A \cup. fA $\subseteq B \cup . g C . A \cup . f B \subseteq C \cup . g X$ has INF, ALF, even for EVSD.

Proof: Let f,g \in EVSD. Let n be sufficiently large. By Lemma 3.2.5, let $A \subseteq[n, \infty)$ be infinite, where A is disjoint from $f(A \cup f A) \cup g(A \cup f(A \cup f A))$. We inductively determine membership in B, C for all elements of $[n, \infty)$. B, C will have no elements $<n$.

Suppose membership in B,C has been determined for all elements of $[\mathrm{n}, \mathrm{k}), \mathrm{k} \geq \mathrm{n}$. We now determine membership in B, C for k. If k is already in $A \cup f A$ and k is not yet in $g C$, put $k \in B$. If k is already in $A \cup f B$ and k is not yet in gX , put k in C .

Clearly $B \subseteq A \cup f A$ and $C \subseteq A \cup f B \subseteq A \cup f(A \cup f A)$. Hence A $\cap f A=A \cap f B=C \cap g X=\varnothing$. Also $A \cup f A \subseteq B \cup g C$ and $A \cup$ $f B \subseteq C \cup g X$. In addition, $A \cap g C \subseteq A \cap g(A \cup f B) \subseteq A \cap g(A$ $\cup f(A \cup f A))=\varnothing$, and so $A \cap g X=\varnothing$. Hence $A \subseteq B, A \subseteq C$. This establishes INF.

We can instead use A of any finite cardinality. We obtain finite B,C with $A \subseteq B, C$. This establishes ALF. QED
part 4. C U. fA \subseteq B U. gA.
$4,1^{\prime} . C \cup . f A \subseteq B \cup . g A, B \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$4,2^{\prime} . C \cup . f A \subseteq B \cup . g A, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . \neg N O N$.
$4,3^{\prime} . C \cup . f A \subseteq B \cup . g A, B \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$4,4 \prime . C \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$4,5^{\prime} . C \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$4,6^{\prime} . C \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.

The following pertains to 4,1', 4,2', 4,3'.
LEMMA 3.12.15. $\mathrm{C} \cup . f A \subseteq B \cup . g A . B \cup . f B \subseteq C \cup . g X$ has \neg NON.

Proof: Let f be as given by Lemma 3.2.1. Define $g \in E L G$ by $g(n)=2 n+1$. Let $C \cup . f A \subseteq B \cup . g A, B \cup . f B \subseteq C \cup . g X$, where A, B, C are nonempty.

Let $n \in f B \cap 2 N$. Then $n \in C, n \in B$. Hence $f B \cap 2 N \subseteq B$. By Lemma 3.2.1, $f B$ is cofinite. Hence B is infinite. This contradicts $B \cap f B=\varnothing$. $Q E D$

The following pertains to 4,4'.
LEMMA 3.12.16. $C \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup . g B$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $\mathrm{f}(2 \mathrm{n}, 2 \mathrm{n}, 2 \mathrm{n})=\mathrm{f}(2 \mathrm{n}+1,2 \mathrm{n}+1,2 \mathrm{n}+1)=4 \mathrm{n}, \mathrm{f}(\mathrm{n}, \mathrm{m}, \mathrm{m})=2 \mathrm{~m}$, $f(n, m, n)=4 m, f(m, n, n)=8 m, g(2 n)=g(2 n+1)=4 n+1$. For all other triples a, b, c, let $f(a, b, c)=2|a, b, c|$.

We claim that

$$
f(f(m, m, m), f(m, m, m), f(m, m, m))=f(g(m), g(m), g(m)) .
$$

To see this, let $m=2 r v m=2 r+1$. Then

$$
f(f(m, m, m), f(m, m, m), f(m, m, m))=f(4 r, 4 r, 4 r)=8 r
$$

and

$$
f(g(m), g(m), g(m))=f(4 r+1,4 r+1,4 r+1)=8 r .
$$

Now let $C \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup . g B$, where A, B, C are nonempty. Let $n \in A$. Then $n \in C \cup$. gB.
case 1. $n \in C$. Then $n \in B \cup$ gA. First suppose $n \in B$. Then $f(n, n, n) \in C \cup g B$. Hence $f(n, n, n) \in C$. This contradicts $C \cap$ $f A=\varnothing$.

Now suppose $n \in g A$. Let $n=g(m), m \in A, m<n$. Then $2 n-$ $2,4 n-4,8 n-8 \in f A$, and so $2 n-2,4 n-4,8 n-8 \in B, 8 n-8 \in f B, 8 n-$ $8 \in C$. This contradicts $C \cap f A=\varnothing$.

```
case 2. n \in gB. Let n = g(m), m \in B. Then f(m,m,m) \in fB,
f(m,m,m) \in C. Hence f(m,m,m) \in B. Therefore
f(f(m,m,m),f(m,m,m),f(m,m,m)) \in fB,
f(f(m,m,m),f(m,m,m),f(m,m,m)) \in C. Note that
f(f(m,m,m),f(m,m,m),f(m,m,m))=f(g(m),g(m),g(m))=
f(n,n,n) \in fA. This contradicts C \cap fA = \varnothing.
```

QED
The following pertains to 4,6'.
LEMMA 3.12.17. $C \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup . g A$ has \neg NON.

Proof: Define f,g as in the proof of Lemma 3.12.16. Now let $C \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup$. gA, where A, B, C are nonempty. Let $n \in A$. Then $n \in C \cup$. gA.
case 1. $n \in g A$. Let $n=g(m), m \in A, m<n$. Then $2 n-2,4 n-$ $4,8 n-8 \in f A, 2 n-2,4 n-4,8 n-8 \in B, 8 n-8 \in f B, 8 n-8 \in C$. This contradicts $C \cap f A=\varnothing$.
case 2. $n \in C$. Then $n \notin g A, n \in B, f(n, n, n) \in f B, f(n, n, n)$ $\in C$. Since $f(n, n, n) \in f A$, this contradicts $C \cap f A=\varnothing$.

QED
The following pertains to 4,5'.
LEMMA 3.12.18. $C \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup . g C$ has \neg NON.

Proof: Define f,g as in the proof of Lemma 3.12.16. Now let $C \cup . f A \subseteq B \cup . g A, A \cup . f B \subseteq C \cup$. gC, where A, B, C are nonempty. Let $n=\min (A)$. Then $n \in C U . g C$.
case 1. $n \in C$. By the choice of $n, n \notin g A, n \in B$. Hence $f(n, n, n) \in f B, f(n, n, n) \in C$. Since $f(n, n, n) \in f A$, this contradicts $C \cap f A=\varnothing$.
case 2. $n \in g C$. Let $n=g(m), m \in C, m<n$. Then $m \in B \cup$ gA. By the choice of $n, m \notin g A, m \in B$. Hence $f(m, m, m) \in f B$, $f(m, m, m) \in C, f(m, m, m) \in B \cup g A$.

We claim that $f(m, m, m) \notin g A$. To see this, note that by quantitative considerations, $f(m, m, m) \in g A$ implies that
there is an element of A that is $\leq m<n$, which contradicts the choice of n.

Hence $f(m, m, m) \in B$. Therefore

$$
\begin{aligned}
& f(f(m, m, m), f(m, m, m), f(m, m, m)) \in f B . \\
& f(f(m, m, m), f(m, m, m), f(m, m, m)) \in C .
\end{aligned}
$$

As in the proof of Lemma 3.12.16,

$$
\begin{aligned}
& f(f(m, m, m), f(m, m, m), f(m, m, m))= \\
& f(g(m), g(m), g(m))=f(n, n, n) \in f A .
\end{aligned}
$$

This contradicts $C \cap f A=\varnothing$.
QED
part 5. C $\cup . f A \subseteq B \cup$. gB.
$5,1^{\prime} . C \cup . f A \subseteq B \cup . g B, B \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L E . \neg F I N . ~ \neg N O N$.
$5,2^{\prime} . C \cup . f A \subseteq B \cup . g B, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$5,3^{\prime} . C \cup . f A \subseteq B \cup . g B, B \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$5,4^{\prime} . C \cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . ~ \neg N O N$.
$5,5^{\prime} . C \cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$5,6^{\prime} . C \cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.

LEMMA 3.12.19. 5,1', 5,2', 5,3' have \neg NON.
Proof: By Lemma 3.12.2. QED
The following pertains to 5,4'.
LEMMA 3.12.20. $\mathrm{C} \cup . \mathrm{fA} \subseteq \mathrm{B} \cup . \mathrm{gB}, \mathrm{A} \cup . \mathrm{fB} \subseteq \mathrm{C} \cup . \mathrm{gB}$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=2 m+1, g(n)=4 n+5$. Let C $\cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup$. gB, where A, B, C are nonempty.

Let $n \in A$. Then $n \in C \cup g B$.
case 1. $n \in C \backslash g B$. Then $n \in B, 2 n+2 \in f B, 2 n+2 \in C, 2 n+2 \in$ fA. This contradicts $C \cap f A=\varnothing$.
case $2 . \mathrm{n} \in \mathrm{gB}$. Let $\mathrm{n}=4 \mathrm{~m}+5, \mathrm{~m} \in \mathrm{~B}$. Then $2 \mathrm{~m}+2 \in \mathrm{fB}, 2 \mathrm{~m}+2 \in$ $C, 2 m+2 \in B$. Since $m<2 m+2$ are from B, we have $4 m+5 \in f B$. Since $4 m+5=n \in A$, this contradicts $A \cap f B=\varnothing$. $Q E D$

The following pertains to 5,6'.
LEMMA 3.12.21. $C \cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup . g A$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=2 m+1, g(n)=4 n+5$. Let C $\cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup$. gA, where A, B, C are nonempty.

Let $n=\min (A)$. Then $n \in C U$ gA. Clearly $n \notin g A, n \in C, n$ $\in B \cup g B$.
case 1. $\mathrm{n} \in \mathrm{B}$. Then $2 \mathrm{n}+2 \in \mathrm{fB}, 2 \mathrm{n}+2 \in \mathrm{C}, 2 \mathrm{n}+2 \in \mathrm{fA}$. This contradicts $C \cap f A=\varnothing$.
case 2. $n \in g B$. Let $n=4 m+5, m \in B$. Then $2 m+2 \in f B, 2 m+2 \in$ $C, 2 m+2 \in B$. Since $m<2 m+2$ are from B, we have $4 m+5 \in f B$. Since $4 \mathrm{~m}+5 \in \mathrm{~A}$, this contradicts $\mathrm{A} \cap \mathrm{fB}=\varnothing$. $Q E D$

The following pertains to 5,5'.
LEMMA 3.12.22. $C \cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup . g C$ has \neg NON.

Proof: Define f,g \in ELG as follows. For all $n<m$, let $f(n, n)=2 n+2, f(n, m)=2 m, f(m, n)=4 m, g(n)=2 n+1$. Let C $\cup . f A \subseteq B \cup . g B, A \cup . f B \subseteq C \cup$. gC, where A, B, C are nonempty.

Let $n \in A$. Then $2 n+2 \in f A, n \in C \cup g C$.
case 1. $n \in C$. Then $n \in B \cup g B$.
Suppose $n \in B$. Then $2 n+2 \in f B, 2 n+2 \in C$. Since $2 n+2 \in f A$, this contradicts $C \cap f A=\varnothing$.

Suppose $n \in g B$. Let $n=2 m+1, m \in B$. Then $2 m+2 \in f B, 2 m+2 \in$ $C, 2 m+2 \in B$. Since $m<2 m+2$ are from B, we have $4 m+4=2 n+2$
$\in f B, 2 n+2 \in C$. Since $2 n+2 \in f A$, this contradicts $C \cap f A=$ \varnothing.
case 2. $n \in g C$. Let $n=2 m+1, m \in C, m \in B \cup g B$.
Suppose $m \in B$. Then $2 m+2 \in f B, 2 m+2 \in C, 2 m+2 \in B$. Since m $<2 \mathrm{~m}+2$ are from B, we have $4 \mathrm{~m}+4=2 \mathrm{n}+2 \in \mathrm{fB}, 2 \mathrm{n}+2 \in \mathrm{C}$. Since $2 \mathrm{n}+2 \in \mathrm{fA}$, this contradicts $\mathrm{C} \cap \mathrm{fA}=\varnothing$.

Suppose $m \in g B$. Let $m=2 r+1, r \in B$. Then $2 r+2 \in f B, 2 r+2 \in$ $C, 2 r+2 \in B$. Since $r<2 r+2$ are from B, we have $8 r+8=4 m+4$ $=2 \mathrm{n}+2 \in \mathrm{fB}, 2 \mathrm{n}+2 \in \mathrm{C}$. Since $2 \mathrm{n}+2 \in \mathrm{fA}$, this contradicts C $\cap f A=\varnothing$.

QED
part 6. C U. fA \subseteq B U. gC.
$6,1^{\prime} . C \cup . f A \subseteq B \cup . g C, B \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . \neg N O N$.
$6,2^{\prime} . C \cup . f A \subseteq B \cup . g C, B \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N . \neg N O N$.
$6,3^{\prime} . C \cup . f A \subseteq B \cup . g C, B \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$6,4^{\prime} . C \cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C \cup . g B . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.
$6,5^{\prime} . C \cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C \cup . g C . \neg I N F . \neg A L$. $\neg A L F . \neg F I N$. $\neg N O N$.
$6, \sigma^{\prime} . C \cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C \cup . g A . \neg I N F . \neg A L$. $\neg A L F . ~ \neg F I N . ~ \neg N O N$.

LEMMA 3.12.23. 6,1' - 6,3' have \rightarrow NON.
Proof: By Lemma 3.12.2. QED
The following pertains to 6,5'.
LEMMA 3.12.24. $\mathrm{C} \cup . \mathrm{fA} \subseteq \mathrm{B} \cup . \mathrm{gC}, \mathrm{A} \cup . \mathrm{fB} \subseteq \mathrm{C} \cup . \mathrm{gC}$ has \neg NON.

Proof: Let f,g \in ELG be defined as follows. For all n $<$ m, let $f(n, n)=2 n+2, f(n, m)=f(m, n)=2 m+1, g(n)=4 n+5$. Let $C \cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C \cup$. gC, where A, B, C are nonempty.

Let $n \in A$. Then $n \in C \cup g C, 2 n+2 \in f A$.
case 1. $n \in C$. Then $n \in B \cup g C, n \notin g C, n \in B, 2 n+2 \in f B$, $2 \mathrm{n}+2 \in \mathrm{C}$. This contradicts $\mathrm{C} \cap \mathrm{fA}=\varnothing$.
case 2. $n \in g C$. Let $n=4 r+5, r \in C$. Then $r \in B \cup g C, r \in$ B, $2 r+2 \in f B, 2 r+2 \in C, 2 r+2 \in B \cup g C, 2 r+2 \in B$. Since $r<$ $2 r+2$ are from B, we have $4 r+5=n \in f B$. Since $n \in A$, this contradicts $A \cap f B=\varnothing$.

QED
The following pertains to 6,4'.
LEMMA 3.12.25. $\mathrm{C} \cup . \mathrm{fA} \subseteq \mathrm{B} \cup . \mathrm{gC}, \mathrm{A} \cup . \mathrm{fB} \subseteq \mathrm{C} \cup . \mathrm{gB}$ has \neg NON.

Proof: Let $f, g \in E L G$ be defined as in the proof of Lemma 3.12.16, whose definitions we repeat here. For all $n<m$, let $\mathrm{f}(2 \mathrm{n}, 2 \mathrm{n}, 2 \mathrm{n})=\mathrm{f}(2 \mathrm{n}+1,2 \mathrm{n}+1,2 \mathrm{n}+1)=4 \mathrm{n}, \mathrm{f}(\mathrm{n}, \mathrm{m}, \mathrm{m})=2 \mathrm{~m}$, $f(n, m, n)=4 m, f(m, n, n)=8 m, g(2 n)=g(2 n+1)=4 n+1$. For all other triples a, b, c, let $f(a, b, c)=2 \max (a, b, c)$. Let C $\cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C \cup$. $g B$, where A, B, C are nonempty.

Let $n=\min (A)$. Then $n \in C \cup g B$.
case 1. $n \in C$. Then $n \in B \cup g C$.
case la. $n \in C, n \in B . C l e a r l y f(n, n, n) \in f B, f(n, n, n) \in C$. Since $f(n, n, n) \in f A$, this contradicts $C \cap f A=\varnothing$.
case 1b. $n \in C, n \in g C$. Let $n^{\prime}=\min (C \cap g C)$. Let $n^{\prime}=$ $g(m), m \in C$. Then $m \in B \cup g C$. If $m \in B$ then $n^{\prime} \in g B$, which contradicts $C \cap \mathrm{gB}=\varnothing$. Hence $\mathrm{m} \in \mathrm{gC}$. So $\mathrm{m} \in \mathrm{C} \cap \mathrm{gC}$ and m $<n^{\prime}$, which is a contradiction.
case 2. $n \in g B$. Let $n=g(m), m \in B$. Then $f(m, m, m) \in f B$, $f(m, m, m) \in C, f(m, m, m) \in B$. So
$\mathrm{f}(\mathrm{f}(\mathrm{m}, \mathrm{m}, \mathrm{m}), \mathrm{f}(\mathrm{m}, \mathrm{m}, \mathrm{m}), \mathrm{f}(\mathrm{m}, \mathrm{m}, \mathrm{m})) \in \mathrm{fB}$, $f(f(m, m, m), f(m, m, m), f(m, m, m)) \in C$.

By the proof of Lemma 3.12.16,
$\mathrm{f}(\mathrm{f}(\mathrm{m}, \mathrm{m}, \mathrm{m}), \mathrm{f}(\mathrm{m}, \mathrm{m}, \mathrm{m}), \mathrm{f}(\mathrm{m}, \mathrm{m}, \mathrm{m}))=\mathrm{f}(\mathrm{g}(\mathrm{m}), \mathrm{g}(\mathrm{m}), \mathrm{g}(\mathrm{m}))=$ $f(n, n, n) \in f A$.

This contradicts $C \cap f A=\varnothing$. QED

The following pertains to 6, '. $^{\prime}$
LEMMA 3.12.26. $C \cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C \cup$. gA has \neg NON.

Proof: Let $f, g \in$ ELG be defined as follows. For all $n<m$, let $f(n, n, n)=2 n, f(n, n, m)=2 n+2, f(n, m, n)=4 m+2$, $f(n, m, m)=4 m-3, g(n)=4 n+1$. At all other triples define $f(a, b, c)=|a, b, c|+2$. Let $C \cup . f A \subseteq B \cup . g C, A \cup . f B \subseteq C$ U. gA, where A,B,C are nonempty.

Let $n=\min (A)$. We claim that $n \notin B$. To see this, let $n \in$ B. Then $2 \mathrm{n} \in \mathrm{fB}, 2 \mathrm{n} \notin \mathrm{gA}, 2 \mathrm{n} \in \mathrm{C}, 2 \mathrm{n} \in \mathrm{fA}$. This contradicts $C \cap f A=\varnothing$.

Since $n \in C \cup g A$, we have $n \in C, n \in B \cup g C, n \in g C$.
Let $n=4 m+1, m \in C$. Suppose $m \notin g C$. Then $m \in B, 2 m \in f B$, $2 \mathrm{~m} \in \mathrm{C}, 2 \mathrm{~m} \in \mathrm{~B}$. Since $\mathrm{m}, 2 \mathrm{~m} \in \mathrm{~B}$, we have $4 \mathrm{~m}+1 \in \mathrm{fB}, 4 \mathrm{~m}+1 \in$ A, contradicting $A \cap f B=\varnothing$. Hence $m \in g C$.

Let p be greatest such that the sequence $n, g^{-1}(n), \ldots, g^{-p}(n)$ is defined and remains in C. Then $p \geq 2$.

Note that $g^{-p}(n) \in C \backslash g C, g^{-p}(n) \in B \cup g C, g^{-p}(n) \in B$. We have gone down by g^{-1}. We can go back up from $g^{-p}(n) \in B$ as follows.

First we apply the function $2 n$ followed by the function $2 n+2$ (available through $f(n, n, n)$ and $f(n, n, m)$). After applying the function $2 n$, we obtain an even element of $f B$, which must lie in C, B. After applying the function $2 n+2$, we arrive at $g^{-p+1}(n)+1$, which is also even and lies in C, B. Then we apply the function $4 n+2$ successively until arriving at $g^{-1}(n)+1$, which lies in C, B. Finally apply the function $4 n-3$, which arrives at n, and lies in $f B$. Since $n \in A$, we have contradicted $A \cap f B=\varnothing$. QED

