3.11. ABBA.

Recall the reduced AB table from section 3.5.

REDUCED AB

1. A U. $fA \subseteq B$ U. gA. INF. AL. ALF. FIN. NON. 2. A U. $fA \subseteq B$ U. gB. INF. AL. ALF. FIN. NON. 3. A U. $fA \subseteq B$ U. gC. INF. AL. ALF. FIN. NON. 4. C U. $fA \subseteq B$ U. gA. INF. AL. ALF. FIN. NON. 5. C U. $fA \subseteq B$ U. gB. INF. AL. ALF. FIN. NON. 6. C U. $fA \subseteq B$ U. gC. INF. AL. ALF. FIN. NON.

Recall the reduced BA table from section 3.6.

REDUCED BA

1'. B U. $fB \subseteq A$ U. gB. INF. AL. ALF. FIN. NON. 2'. B U. $fB \subseteq A$ U. gA. INF. AL. ALF. FIN. NON. 3'. B U. $fB \subseteq A$ U. gC. INF. AL. ALF. FIN. NON. 4'. C U. $fB \subseteq A$ U. gB. INF. AL. ALF. FIN. NON. 5'. C U. $fB \subseteq A$ U. gA. INF. AL. ALF. FIN. NON. 6'. C U. $fB \subseteq A$ U. gC. INF. AL. ALF. FIN. NON.

This results in 36 ordered pairs.

We can take advantage of symmetry through interchanging A with B as follows. Clearly (i,j') and (j,i') are equivalent, since interchanging A and B takes us from p to p' and back. So we can require that $i \leq j$. Thus we have the following 21 ordered pairs to consider.

We need to determine the status of all attributes INF, Al, ALF, FIN, NON, for each pair.

1,1'. A U. $fA \subseteq B$ U. gA, B U. $fB \subseteq A$ U. gB. $\neg INF$. $\neg AL$. $\neg ALF$. $\neg FIN$. $\neg NON$. 1,2'. A U. $fA \subseteq B$ U. gA, B U. $fB \subseteq A$ U. gA. $\neg INF$. $\neg AL$. $\neg ALF$. $\neg FIN$. $\neg NON$. 1,3'. A U. $fA \subseteq B$ U. gA, B U. $fB \subseteq A$ U. gC. $\neg INF$. $\neg AL$. $\neg ALF$. $\neg FIN$. $\neg NON$. 1,4'. A U. $fA \subseteq B$ U. gA, C U. $fB \subseteq A$ U. gB. $\neg INF$. $\neg AL$. $\neg ALF$. $\neg FIN$. $\neg NON$. 1,5'. A U. $fA \subseteq B$ U. gA, C U. $fB \subseteq A$ U. gA. $\neg INF$. $\neg AL$. $\neg ALF$. $\neg FIN$. $\neg NON$. 1,6'. A U. $fA \subseteq B$ U. gA, C U. $fB \subseteq A$ U. gC. $\neg INF$. $\neg AL$. $\neg ALF$. $\neg FIN$. $\neg NON$.

2,2'. A U. $fA \subseteq B$ U. gB, B U. $fB \subseteq A$ U. gA. $\neg INF$. $\neg AL$. ¬ALF. ¬FIN. ¬NON. 2,3'. A U. $fA \subseteq B$ U. gB, B U. $fB \subseteq A$ U. gC. $\neg INF$. $\neg AL$. ¬ALF. ¬FIN. ¬NON. 2,4'. A U. fA \subseteq B U. gB, C U. fB \subseteq A U. gB. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 2,5'. A U. $fA \subseteq B$ U. gB, C U. $fB \subseteq A$ U. gA. $\neg INF$. $\neg AL$. ¬ALF. ¬FIN. ¬NON. 2,6'. A U. fA \subseteq B U. gB, C U. fB \subseteq A U. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON. 3,3'. A U. $fA \subseteq B$ U. gC, B U. $fB \subseteq A$ U. gC. \neg INF. \neg AL. ¬ALF. ¬FIN. ¬NON. 3,4'. A U. $fA \subseteq B$ U. qC, C U. $fB \subseteq A$ U. qB. $\neg INF$. $\neg AL$. ¬ALF. ¬FIN. ¬NON. 3,5'. A U. $fA \subseteq B$ U. gC, C U. $fB \subseteq A$ U. gA. $\neg INF$. $\neg AL$. ¬ALF. ¬FIN. ¬NON. 3,6'. A U. $fA \subseteq B$ U. gC, C U. $fB \subseteq A$ U. gC. $\neg INF$. $\neg AL$. ¬ALF. ¬FIN. ¬NON. 4,4'. C U. fA \subseteq B U. gA, C U. fB \subseteq A U. gB. ¬INF. AL. ¬ALF. ¬FIN. NON. 4,5'. C U. fA \subseteq B U. gA, C U. fB \subseteq A U. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 4,6'. C U. fA \subseteq B U. gA, C U. fB \subseteq A U. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 5,5'. C U. fA \subseteq B U. gB, C U. fB \subseteq A U. gA. ¬INF. AL. ¬ALF. ¬FIN. NON. 5,6'. C U. fA \subseteq B U. gB, C U. fB \subseteq A U. gC. ¬INF. AL. ¬ALF. ¬FIN. NON. 6,6'. C U. fA \subseteq B U. gC, C U. fB \subseteq A U. gC. \neg INF. AL. ¬ALF. ¬FIN. NON. LEMMA 3.11.1. 1,1' - 6,6' have ¬INF, ¬FIN. Proof: Let f be as given by Lemma 3.2.4. Let $g \in ELG$ be defined by g(n) = 2n+1. Let

> X U. $fA \subseteq B$ U. gYS U. $fB \subseteq A$ U. gT

where X,A,B,Y,S,T are nonempty subsets of N. Then $fA \cap 2N \subseteq B$ and $fB \cap 2N \subseteq A$. Hence $f(fA \cap 2N) \cap 2N \subseteq fB \cap 2N \subseteq A$. By Lemma 3.2.4, fA is cofinite. Thus A is infinite. This establishes \neg FIN. Also X is finite, since X \cap $fA = \emptyset$. This establishes \neg INF. QED

Lemma 3.11.1 establishes that we have ¬INF, ¬ALF, ¬FIN for all of the pairs of clauses considered in this section. It remains to determine the status of AL and NON. LEMMA 3.11.2. $fA \subseteq B \cup gY$, $fB \subseteq A \cup gZ$, $A \cap fA = \emptyset$ has ¬NON. Proof: Define f, $q \in ELG$ as follows. For all n < m, let f(n,n) = 2n+2, f(n,m) = 2m, f(m,n) = 4m, q(n) = 2n+1. Let $fA \subseteq B \cup gY$, $fB \subseteq A \cup gZ$, $A \cap fA = \emptyset$, where A, B, Y, Z are nonempty subsets of N. Let $n \in B$. Then $2n+2 \in fB$, $2n+2 \in A$, $4n+6 \in fA$, $4n+6 \in B$. Since n < 4n+6 are from B, we have $8n+12 \in fB$, $8n+12 \in A$. Since 2n+2 < 8n+12 are from A, we have $16n+24 \in fA$. Also since n < 4n+6 are from B, we have $16n+24 \in fB$, $16n+24 \in A$. This contradicts A \cap fA = \emptyset . QED LEMMA 3.11.3. 1,1' - 3,6' have ¬NON. Proof: By Lemma 3.11.2. QED LEMMA 3.11.4. C U. $fA \subseteq B$ U. gX, C U. $fB \subseteq A$ U. gY has AL. Proof: Let f, $q \in ELG$ and $p \ge 0$. Let C = [n, n+p], where n is sufficiently large. Throw all elements of [n,n+p] into A,B. A, B will have no elements < n. We determine membership of all k > n+p in A,B by induction as follows. Suppose membership in A, B has been determined for all integers < k, where k > n+p is fixed. If k is not already in gX then put k in B. If k is not already in gY then put k in A. Note that $C \subseteq A, B \subseteq [n, \infty)$, $C \cap fA = C \cap fB = B \cap qX = A \cap$ $gY = \emptyset$. Also we have $fA \subseteq [n, \infty) \subseteq B \cup gX$, $fB \subseteq [n, \infty) \subseteq A$ U qY. QED LEMMA 3.11.5. 4,4' - 6,6' have AL. Proof: By Lemma 3.11.4. QED

3