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3.10. ABAC. 
 
Recall the reduced AB table from section 3.5. 
 
REDUCED AB  
 
1. A ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
2. A ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
3. A ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
4. C ∪. fA ⊆ B ∪. gA.  INF. AL. ALF. FIN. NON. 
5. C ∪. fA ⊆ B ∪. gB.  INF. AL. ALF. FIN. NON. 
6. C ∪. fA ⊆ B ∪. gC.  INF. AL. ALF. FIN. NON. 
 
The reduced AC table is obtained from the reduced AB table 
by interchanging B and C. We use 1'-6' to avoid confusion.  
 
REDUCED AC 
 
1’. A ∪. fA ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
2’. A ∪. fA ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
3’. A ∪. fA ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
4’. B ∪. fA ⊆ C ∪. gA.  INF. AL. ALF. FIN. NON. 
5’. B ∪. fA ⊆ C ∪. gC.  INF. AL. ALF. FIN. NON. 
6’. B ∪. fA ⊆ C ∪. gB.  INF. AL. ALF. FIN. NON. 
 
We will use the reduced AB table and the reduced AC table.  
 
Note that each i,j’ is equivalent to j,i’, because each 
i,j’ is sent to i’,j by interchanging B and C.  
 
Hence we need only consider i,j’ where i ≤ j’.  
 
We need to determine the status of INF, AL, ALF, FIN, NON 
for each pair.  
 
1,1’. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gA. INF. AL. ALF. 
FIN. NON.  
1,2’. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gC. INF. AL. ALF. 
FIN, NON.  
1,3’. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON.  
1,4’. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,5’. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
1,6’. A ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
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2,2’. A ∪. fA ⊆ B ∪. gB. A ∪. fA ⊆ C ∪. gC. INF. AL. ALF. 
FIN. NON. 
2,3’. A ∪. fA ⊆ B ∪. gB. A ∪. fA ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
2,4’. A ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,5’. A ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
2,6’. A ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,3’. A ∪. fA ⊆ B ∪. gC. A ∪. fA ⊆ C ∪. gB. INF. AL. ALF. 
FIN. NON. 
3,4’. A ∪. fA ⊆ B ∪. gC. B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,5’. A ∪. fA ⊆ B ∪. gC. B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
3,6’. A ∪. fA ⊆ B ∪. gC. B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,4’. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gA. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,5’. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
4,6’. C ∪. fA ⊆ B ∪. gA, B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,5’. C ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gC. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
5,6’. C ∪. fA ⊆ B ∪. gB. B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FiN. ¬NON. 
6,6’. C ∪. fA ⊆ B ∪. gC. B ∪. fA ⊆ C ∪. gB. ¬INF. ¬AL. 
¬ALF. ¬FIN. ¬NON. 
 
LEMMA 3.10.1. fA ⊆ B ∪. gY, B ∩ fA = ∅ has ¬NON. 
 
Proof: Define f,g ∈ ELG as follows. f(n) = 2n+2, g(n) = 
2n+1. Let X ∪. fA ⊆ B ∪. gY, B ∪. fA ⊆ Z ∪. gW, where 
A,B,C are nonempty.  
 
Clearly fA ⊆ B. This contradicts B ∩ fA = ∅. QED  
 
LEMMA 3.10.2. 1,4’ - 1,6’, 2,4’ - 2,6’, 3,4’ - 6,6’ have 
¬NON. 
 
Proof: By Lemma 3.10.1. QED 
 
LEMMA 3.10.3. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gX has 
INF, ALF, provided X ∈ {A,B}, even for EVSD. 
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Proof: Let f,g ∈ EVSD. By Lemma 3.2.5, let A ⊆ N be 
infinite, where A is disjoint from fA ∪ g(A ∪ fA), and 
min(A) is sufficiently large.  
 
Let B = (A ∪ fA)\gA. Let C = (A ∪ fA)\gX.  
 
Clearly A ∩ fA = B ∩ gA = A ∩ gA = A ∩ gB = C ∩ gX = ∅. 
Hence A ⊆ B, A ⊆ C. Also A ∪ fA ⊆ B ∪ gA, A ∪ fA ⊆ C ∪ gX. 
This establishes INF. 
 
We can repeat the argument using A of any given finite 
cardinality. This establishes ALF. QED 
 
LEMMA 3.10.4. 1,1’ and 1,3’ have INF, ALF, even for EVSD. 
 
Proof: Immediate from Lemma 3.10.3. QED 
 
The following pertains to 1,2’. 
 
LEMMA 3.10.5. A ∪. fA ⊆ B ∪. gA, A ∪. fA ⊆ C ∪. gC has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. By Lemma 3.2.5, let A ⊆ N be 
infinite, where A is disjoint from fA ∪ g(A ∪ fA), and 
min(A) is sufficiently large.  
 
Let B = (A ∪ fA)\gA. By Lemma 3.3.3, let C be unique such 
that C ⊆ A ∪ fA ⊆ C ∪. gC. Then C is infinite.  
 
Clearly A ∩ fA = B ∩ gA = C ∩ gC = A ∩ gA = ∅. Also A ∩ gC 
⊆ A ∩ g(A ∪ fA) = ∅. Hence A ⊆ B, A ⊆ C. Also A ∪ fA ⊆ B 
∪ gA, A ∪ fA ⊆ C ∪ gC. This establishes INF.  
 
We can repeat the argument using A of any given finite 
cardinality. This establishes ALF. QED 
 
The following pertains to 2,3’. 
 
LEMMA 3.10.6. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gB has 
INF, ALF, even for EVSD. 
 
Proof: Let f,g ∈ EVSD. By Lemma 3.2.5, let A ⊆ N be 
infinite, where A is disjoint from fA ∪ g(A ∪ fA), and 
min(A) is sufficiently large.  
 
By Lemma 3.3.3, let B be unique such that B ⊆ A ∪ fA ⊆ B ∪. 
gB. Define C = (A ∪ fA)\gB.  
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Clearly A ∩ fA = B ∩ gB = C ∩ gB = ∅. Also A ∩ gB ⊆ A ∩ 
g(A ∪ fA) = ∅. Hence A ⊆ B, A ⊆ C. Also A ∪ fA ⊆ B ∪ gB, A 
∪ fA ⊆ C ∪ gB. This establishes INF. 
 
We can repeat the argument using A of any given finite 
cardinality. This establishes ALF. QED 
 
The following pertains to 2,2’. 
 
LEMMA 3.10.7. A ∪. fA ⊆ B ∪. gB, A ∪. fA ⊆ C ∪. gC has 
INF, ALF, even for EVSD. 
 
Proof: From the AB table, A ∪. fA ⊆ B ∪. gB has INF, ALF. 
Replace C by B in the cited pair. QED  
 
The following pertains to 3,3’. 
 
LEMMA 3.10.8. A ∪. fA ⊆ B ∪. gC. A ∪. fA ⊆ C ∪. gB has 
INF, ALF, even for EVSD. 
 
Proof: A ∪. fA ⊆ B ∪. gB has INF, ALF, by the AB table. 
Replace C by B in the cited pair. QED 


