3.10. ABAC.

Recall the reduced AB table from section 3.5.

REDUCED AB

- 1. A U. fA \subseteq B U. gA. INF. AL. ALF. FIN. NON.
- 2. A U. fA \subseteq B U. gB. INF. AL. ALF. FIN. NON.
- 3. A U. fA \subseteq B U. gC. INF. AL. ALF. FIN. NON.
- 4. C U. fA \subseteq B U. gA. INF. AL. ALF. FIN. NON.
- 5. C U. fA \subseteq B U. gB. INF. AL. ALF. FIN. NON.
- 6. C U. fA \subseteq B U. gC. INF. AL. ALF. FIN. NON.

The reduced AC table is obtained from the reduced AB table by interchanging B and C. We use 1'-6' to avoid confusion.

REDUCED AC

- 1'. A U. fA \subseteq C U. gA. INF. AL. ALF. FIN. NON.
- 2'. A U. fA \subseteq C U. qC. INF. AL. ALF. FIN. NON.
- 3'. A U. fA \subseteq C U. gB. INF. AL. ALF. FIN. NON.
- 4'. B U. fA \subseteq C U. gA. INF. AL. ALF. FIN. NON.
- 5'. B U. fA \subseteq C U. gC. INF. AL. ALF. FIN. NON.
- 6'. B U. fA \subseteq C U. gB. INF. AL. ALF. FIN. NON.

We will use the reduced AB table and the reduced AC table.

Note that each i,j' is equivalent to j,i', because each i,j' is sent to i',j by interchanging B and C.

Hence we need only consider i, j' where $i \le j'$.

We need to determine the status of INF, AL, ALF, FIN, NON for each pair.

- 1,1'. A U. fA \subseteq B U. gA, A U. fA \subseteq C U. gA. INF. AL. ALF. FIN. NON.
- 1,2'. A U. fA \subseteq B U. gA, A U. fA \subseteq C U. gC. INF. AL. ALF. FIN, NON.
- 1,3'. A U. fA \subseteq B U. gA, A U. fA \subseteq C U. gB. INF. AL. ALF. FIN. NON.
- 1,4'. A U. fA \subseteq B U. gA, B U. fA \subseteq C U. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 1,5'. A U. fA \subseteq B U. gA, B U. fA \subseteq C U. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 1,6'. A U. fA \subseteq B U. gA, B U. fA \subseteq C U. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.

- 2,2'. A U. fA \subseteq B U. gB. A U. fA \subseteq C U. gC. INF. AL. ALF. FIN. NON.
- 2,3'. A U. fA \subseteq B U. gB. A U. fA \subseteq C U. gB. INF. AL. ALF. FIN. NON.
- 2,4'. A U. fA \subseteq B U. gB. B U. fA \subseteq C U. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 2,5'. A U. fA \subseteq B U. gB. B U. fA \subseteq C U. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 2,6'. A U. fA \subseteq B U. gB. B U. fA \subseteq C U. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 3,3'. A U. fA \subseteq B U. gC. A U. fA \subseteq C U. gB. INF. AL. ALF. FIN. NON.
- 3,4'. A U. fA \subseteq B U. gC. B U. fA \subseteq C U. gA. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 3,5'. A U. fA \subseteq B U. gC. B U. fA \subseteq C U. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 3,6'. A U. fA \subseteq B U. gC. B U. fA \subseteq C U. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 4,4'. C U. fa \subseteq B U. ga, B U. fa \subseteq C U. ga. ¬inf. ¬al. ¬ALF. ¬FIN. ¬NON.
- 4,5'. C U. fA \subseteq B U. gA, B U. fA \subseteq C U. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 4,6'. C U. fA \subseteq B U. gA, B U. fA \subseteq C U. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 5,5'. C U. fA \subseteq B U. gB. B U. fA \subseteq C U. gC. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.
- 5,6'. C U. fA \subseteq B U. gB. B U. fA \subseteq C U. gB. ¬INF. ¬AL. ¬ALF. ¬FiN. ¬NON.
- 6,6'. C U. fA \subseteq B U. gC. B U. fA \subseteq C U. gB. ¬INF. ¬AL. ¬ALF. ¬FIN. ¬NON.

LEMMA 3.10.1. fA \subseteq B \cup . gY, B \cap fA = \emptyset has \neg NON.

Proof: Define f,g \in ELG as follows. f(n) = 2n+2, g(n) = 2n+1. Let X U. fA \subseteq B U. gY, B U. fA \subseteq Z U. gW, where A,B,C are nonempty.

Clearly fA \subseteq B. This contradicts B \cap fA = \emptyset . QED

LEMMA 3.10.2. 1,4'-1,6', 2,4'-2,6', 3,4'-6,6' have $\neg NON$.

Proof: By Lemma 3.10.1. QED

LEMMA 3.10.3. A U. fA \subseteq B U. gA, A U. fA \subseteq C U. gX has INF, ALF, provided X \in {A,B}, even for EVSD.

Proof: Let f,g \in EVSD. By Lemma 3.2.5, let A \subseteq N be infinite, where A is disjoint from fA U g(A U fA), and min(A) is sufficiently large.

Let $B = (A \cup fA) \backslash gA$. Let $C = (A \cup fA) \backslash gX$.

Clearly A \cap fA = B \cap gA = A \cap gA = A \cap gB = C \cap gX = \emptyset . Hence A \subseteq B, A \subseteq C. Also A U fA \subseteq B U gA, A U fA \subseteq C U gX. This establishes INF.

We can repeat the argument using A of any given finite cardinality. This establishes ALF. QED

LEMMA 3.10.4. 1,1' and 1,3' have INF, ALF, even for EVSD.

Proof: Immediate from Lemma 3.10.3. QED

The following pertains to 1,2'.

LEMMA 3.10.5. A U. fA \subseteq B U. gA, A U. fA \subseteq C U. gC has INF, ALF, even for EVSD.

Proof: Let f,g \in EVSD. By Lemma 3.2.5, let A \subseteq N be infinite, where A is disjoint from fA U g(A U fA), and min(A) is sufficiently large.

Let $B = (A \cup fA) \backslash gA$. By Lemma 3.3.3, let C be unique such that $C \subseteq A \cup fA \subseteq C \cup gC$. Then C is infinite.

Clearly A \cap fA = B \cap gA = C \cap gC = A \cap gA = \emptyset . Also A \cap gC \subseteq A \cap g(A U fA) = \emptyset . Hence A \subseteq B, A \subseteq C. Also A U fA \subseteq B U gA, A U fA \subseteq C U gC. This establishes INF.

We can repeat the argument using A of any given finite cardinality. This establishes ALF. QED

The following pertains to 2,3'.

LEMMA 3.10.6. A U. fA \subseteq B U. gB, A U. fA \subseteq C U. gB has INF, ALF, even for EVSD.

Proof: Let f,g \in EVSD. By Lemma 3.2.5, let A \subseteq N be infinite, where A is disjoint from fA U g(A U fA), and min(A) is sufficiently large.

By Lemma 3.3.3, let B be unique such that $B \subseteq A \cup fA \subseteq B \cup gB$. Define $C = (A \cup fA) \setminus gB$.

Clearly A \cap fA = B \cap gB = C \cap gB = \emptyset . Also A \cap gB \subseteq A \cap g (A U fA) = \emptyset . Hence A \subseteq B, A \subseteq C. Also A U fA \subseteq B U gB, A U fA \subseteq C U gB. This establishes INF.

We can repeat the argument using A of any given finite cardinality. This establishes ALF. QED

The following pertains to 2,2'.

LEMMA 3.10.7. A U. fA \subseteq B U. gB, A U. fA \subseteq C U. gC has INF, ALF, even for EVSD.

Proof: From the AB table, A U. fA \subseteq B U. gB has INF, ALF. Replace C by B in the cited pair. QED

The following pertains to 3,3'.

LEMMA 3.10.8. A U. fA \subseteq B U. gC. A U. fA \subseteq C U. gB has INF, ALF, even for EVSD.

Proof: A U. fA \subseteq B U. gB has INF, ALF, by the AB table. Replace C by B in the cited pair. QED