2.7. IBRT in $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{k}}, \mathrm{fA}_{1}, \ldots, \mathrm{fA}_{\mathrm{k}}, \subseteq$.

In this section, we analyze IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k} \subseteq$ on (SD,INF), (ELG \cap SD,INF), (ELG,INF), (EVSD,INF), and (MF,INF). We show that for all $k \geq 1$, IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k}, \subseteq$ on each of (SD,INF), (ELG \cap SD,INF), (ELG,INF), (EVSD,INF) is $R_{C A}$ secure. We show that IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k} \subseteq$ on (MF,INF) is ACA' secure (see Definition 1.4.1). We also show that the only correct format for IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k}, \subseteq$ on (SD,INF), (ELG \cap SD,INF), (ELG,INF), (EVSD,INF) is \varnothing. This is not true on (MF, INF).

We begin with (MF,INF), for some fixed $k \geq 1$. We need to analyze all statements of the form
\#) $(\exists f \in M F)\left(\forall A_{1}, \ldots, A_{k} \in I N F\right)\left(A_{1} \subseteq \ldots \subseteq A_{k} \rightarrow \varphi\right)$.
where φ is an $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k} \subseteq$ format. Recall that the instances of \#) are Boolean equivalent to the assertions of IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k} \subseteq$, and the negations of the statements in IBRT in $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{k}}, \mathrm{fA}_{1}, \ldots, \mathrm{fA}_{\mathrm{k}}, \subseteq$.

Recall the list of all $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k} \subseteq$ elementary inclusions that were used in section 2.6:

1. $A_{i}=\varnothing$.
2. $£ \mathrm{~A}_{\mathrm{i}}=\varnothing$.
3. $A_{i} \cap f A_{j}=\varnothing$.
4. $A_{i}=N$.
5. $f A_{i}=N$.
6. $A_{i} \cup f A_{j}=N$.
7. $A_{i} \subseteq A_{j}, j<i$.
8. $A_{i} \subseteq f A_{j}$.
9. $A_{i} \subseteq A_{j} \cup f A_{p}, j<i$.
10. $f \mathrm{~A}_{\mathrm{i}} \subseteq \mathrm{A}_{\mathrm{j}}$.
11. $f A_{i} \subseteq f A_{j}, j<i$.
12. $f A_{i} \subseteq A_{j} \cup f A_{p}, p<i$.
13. $A_{i} \cap f A_{j} \subseteq A_{p}, p<i$.
14. $A_{i} \cap f A_{j} \subseteq f A_{p}, p<j$.
15. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, p<i$ and $q<j$.

For each of these elementary inclusions, ρ, we will provide a useful description of the witness set for ρ, in the following sense: The set of all $f \in M F$ such that

$$
\left(\forall A_{1}, \ldots, A_{k} \in I N F\right)\left(A_{1} \subseteq \ldots \subseteq A_{k} \rightarrow \rho\right)
$$

To analyze formats, we analyze the intersections of these witness sets, determining which intersections are nonempty. I.e., a format is correct if and only if the intersection of the set of witnesses of each element is nonempty (in IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k} \subseteq$ on ($\left.M F, I N F\right)$).

We also use this technique for the other four BRT settings. Thus a format is correct if and only if the intersection of the set of witnesses of each element meets V (in IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k} \subseteq \subseteq$ on ($\left.\left.V, I N F\right), V \subseteq M F\right)$).

Each numbered entry in the list represents several inclusions. In some numbered entries, all of the inclusions will have the same witness set. We call such an entry uniform. Unfortunately, some of the numbered entries are not uniform.

We shall see that entries 1-7,11 are uniform. We now determine their witnesses sets.

LEMMA 2.7.1. The inclusions in clauses $1-7$ each have no witnesses. I.e., their witness sets are \varnothing.

Proof: Let $f \in M F$. We show that f is not a witness. For $1,2,3$, let $A_{1}=\ldots=A_{k}=N$. For 4,5,6 take $A_{1}=\ldots=A_{k}=$ \varnothing. For 7, take each $A_{i}=\{i\} . Q E D$

LEMMA 2.7.2. Let $f \in M F$ and $j<i . f$ witnesses $f A_{i} \subseteq f A_{j}$ if and only if ($\forall \mathrm{B} \in \operatorname{INF}$) ($\mathrm{fB}=\mathrm{fN}$).

Proof: Let f, j, i be as given. Let f witness $f A_{i} \subseteq f A_{j}$. Let B \in INF. Set $A_{1}=\ldots=A_{j}=B, A_{j+1}=\ldots=A_{k}=N$. Then $f N=$ $f B$. For the converse, assume $(\forall B \in I N F)(f B=f N)$. Let $A_{1} \subseteq$ $\ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then $f A_{i}=f N=f A_{j} . Q E D$

We now break the remaining numbered entries into uniform parts as follows.

```
8a. A A \subseteqffA
8b. A A \subseteq \subseteqfA 
9a. A A}\subseteq\subseteq\mp@subsup{A}{j}{}\cupf\mp@subsup{A}{p}{},j,p<i
9b. A A \subseteq A A \cup fAp, j < i s p.
10a. fA 
10b. fA i}\subseteq\subseteq\mp@subsup{A}{j}{},j<i
12a. fAA }\subseteq\mp@subsup{A}{j}{}\cupf\mp@subsup{A}{p}{}, p,j<i
12b. fA A}\subseteq\mp@subsup{A}{j}{}\cupf\mp@subsup{A}{p}{},p<i\leqj
```

```
13a. A A \cap fA 
13b. Ai }\cap{f\mp@subsup{A}{j}{}\subseteq\mp@subsup{A}{p}{},j\leqp<i
14a. Ai \cap fA A \subseteqffip, p<i,j.
14b. A A \capfA
15a. A A \capfA 
15b. A A \capfA }\cap{\mp@subsup{A}{j}{}\subseteq\mp@subsup{A}{p}{}\cupf\mp@subsup{A}{q}{},p<q<i\leqj
15c. A A \capfA 
15d. A A \cap fA j \subseteq A Ap U fAq, p < q = i < j.
15e. AA \capfA 
15f. AA \capfA 
15g. A A \capfA 
15h. A A \capfA }\subseteq\mp@subsup{A}{j}{}\subseteq\mp@subsup{A}{p}{}\cupf\mp@subsup{A}{q}{},q<p=j<i
```

We need to show that this list includes all of 8-10,12-15 from the original list. This is evident by inspection for all but $15=15 a-15 \mathrm{~h}$. Here we need Lemma 2.7.4 below.

LEMMA 2.7.3. Suppose $p<i$ and $q<j$. Then at least one of the following holds.
$p \leq i \leq q \leq j$.
$p \leq q \leq i \leq j$.
$q \leq p \leq i \leq j$.
$p \leq q \leq j \leq i$.
$q \leq p \leq j \leq i$.
$q \leq j \leq p \leq i$.
Proof: Let $p<i$ and q < j. Obviously, at least one of the $4!=24$ four term inequalities with \leq separating the four variables i,j,p,q, must hold. In any such true four term inequality with \leq, p must come before i and q must come before j. Of the 4! = 24 permutations of the letters i,j,p,q, exactly $1 / 4$ of them have p before i and q before j. Since the above lists 6 such, the above list must be complete. QED

LEMMA 2.7.4. Suppose $p<i$ and $q<j$. Then at least one of the following holds.
$p<i \leq q<j$ $p<q<i \leq j$ $q \leq p<i \leq j$ $p<q=i<j$ $p<q<j \leq i$ $q \leq p<j \leq i$
$q<j \leq p<i$
$q<p=j<i$.

Proof: We use Lemma 2.7.3, which provides six cases.

Suppose $p \leq i \leq q \leq j$. Then $p<i \leq q<j$.
Suppose $p \leq q \leq i \leq j$. If $p<q$ then $p<q<i \leq j v p<q=$ $i<j$. If $p=q$ then $p=q<i \leq j$, and so $q \leq p<i \leq j$.

Suppose $q \leq p \leq i \leq j$. Then $q \leq p<i \leq j$.
Suppose $p \leq q \leq j \leq i$. If $p<q$ then $p<q<j \leq i$. If $p=q$ then $p=q<j \leq i$, and so $q \leq p<j \leq i$.

Suppose $q \leq p \leq j \leq i$. If $p<j$ then $q \leq p<j \leq i$. If $p=j$ then $q \leq p=j<i$, and hence $q<p=j<i$ (using $q<j$).

Suppose $q \leq j \leq p \leq i$. Then $q<j \leq p<i . Q E D$
We are now prepared to make the determination of witnesses for each of the entries 8a - 15h.

WITNESS SET ASSIGNMENT LIST
1-7. None. Lemma 2.7.1.
8a. $A_{i} \subseteq f A_{j}, i \leq j .(\forall B \in I N F)(B \subseteq f B)$ Lemma 2.7.5.
8b. $A_{i} \subseteq f A_{j}, j<i . N o n e . ~ L e m m a ~ 2.7 .6 . ~$
9a. $A_{i} \subseteq A_{j} \cup f A_{p}, j, p<i . N o n e . ~ L e m m a ~ 2.7 .7 . ~$
9b. $A_{i} \subseteq A_{j} \cup f A_{p}, j<i \leq p .(\forall B \in I N F)(B \subseteq f B)$.
Lemma 2.7.8.
10a. $f A_{i} \subseteq A_{j}, i \leq j .(\forall B \in I N F)(f B \subseteq B)$. Lemma 2.7.9.
10b. $f A_{i} \subseteq A_{j}, j<i$. None. Lemma 2.7.10.
11. $f A_{i} \subseteq f A_{j}, j<i .(\forall B \in \operatorname{lNF})(f B=f N)$ Lemma 2.7.2.

12a. $f A_{i} \subseteq A_{j} \cup f A_{p}, p, j<i .(\forall B \in I N F)(f B=f N)$.
Lemma 2.7.11.
12b. $f A_{i} \subseteq A_{j} \cup f A_{p}, p<i \leq j .(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C$ $\cup f B)$. Lemma 2.7.12.
13a. $A_{i} \cap f A_{j} \subseteq A_{p}, p<i, j$. None. Lemma 2.7.13.
13b. $A_{i} \cap f A_{j} \subseteq A_{p}, j \leq p<i .(\forall B \in \operatorname{lNF})(f B \subseteq B)$.
Lemma 2.7.14.
14a. $A_{i} \cap f A_{j} \subseteq f A_{p}, p<i, j .(\forall B \in I N F)(f B=f N)$.
Lemma 2.7.15.
14b. $A_{i} \cap f A_{j} \subseteq f A_{p}, i \leq p<j .(\forall B \in I N F)(B \cap f N \subseteq f B)$.
Lemma 2.7.16.
15a. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, p<i \leq q<j .(\forall B \in I N F)(B \cap f N$
$\subseteq f B)$. Lemma 2.7.17.
15b. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, p<q<i \leq j$. ($\left.\forall B \in \operatorname{INF}\right)(f B=$
fi) . Lemma 2.7.18.
15c. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, q \leq p<i \leq j .(\forall B \in I N F)(f N \subseteq B$ $\cup f B)$. Lemma 2.7.19.

15d. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, p<q=i<j .(\forall B \in \operatorname{LNF})(B \cap f N$ \subseteq fB). Lemma 2.7.20.
15e. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, p<q<j \leq i .(\forall B \in I N F)(f B=$
fN). Lemma 2.7.21.
15f. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, q \leq p<j \leq i .(\forall B \in I N F)(f N \subseteq B$ $\cup f B)$. Lemma 2.7.22.
$15 \mathrm{~g} . \mathrm{A}_{i} \cap \mathrm{fA}_{j} \subseteq \mathrm{~A}_{\mathrm{p}} \cup \mathrm{f} A_{q}, \mathrm{q}<j \leq \mathrm{p}<\mathrm{i} .(\forall \mathrm{B}, \mathrm{C} \in \operatorname{INF})(\mathrm{B} \subseteq \mathrm{C}$ $\rightarrow \mathrm{fC} \subseteq \mathrm{C} \cup \mathrm{fB})$. Lemma 2.7.23.
15h. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, q<p=j<i .(\forall B, C \in \operatorname{lNF})(B \subseteq C$ $\rightarrow f C \subseteq C \cup f B)$. Lemma 2.7.24.

LEMMA 2.7.5. Let $f \in M F$ and $i \leq j . f$ witnesses $A_{i} \subseteq f_{j}$ if and only if $(\forall B \in I N F)(B \subseteq f B)$.

Proof: Let f, i, j be as given. Assume f witnesses $A_{i} \subseteq f_{j}$. Let $B \in I N F$. Set $A_{1}=\ldots=A_{k}=B$. Then $B \subseteq f B$. For the converse, assume $(\forall B \in \operatorname{INF})(B \subseteq f B)$ and let $A_{1} \subseteq \ldots A_{k} \subseteq$ N, where A_{1} is infinite. Then $A_{i} \subseteq \mathrm{fA}_{i} \subseteq f \mathrm{~A}_{j}$. QED

LEMMA 2.7.6. $A_{i} \subseteq f A_{j}, j<i, ~ h a s ~ n o ~ w i t n e s s e s . ~$

Proof: Let f witness $A_{i} \subseteq \mathrm{fA}_{j}, j<i . \operatorname{By}$ the Thin Set
Theorem, let $f B \neq N$. Set $A_{1}=\ldots=A_{j}=B, A_{j+1}=\ldots=A_{k}=$ N. Then $A_{i} \subseteq f A_{j}$ is false. QED

LEMMA 2.7.7. $A_{i} \subseteq A_{j} \cup f A_{p}, j, p<i$, has no witnesses.
Proof: Let f witness $A_{i} \subseteq A_{j} \cup f A_{p}, j, p<i$. By the Thin Set Theorem (variant), let $B \in \operatorname{INF}$ where $B \cup f B \neq N$. Set $A_{1}=$ $\ldots=A_{i-1}=B, A_{i}=\ldots=A_{k}=N$. Then $A_{i} \subseteq A_{j} \cup f A_{p}$ is false. QED

LEMMA 2.7.8. Let $f \in M F$ and $j<i \leq p . f$ witnesses $A_{i} \subseteq A_{j} \cup$ $f A_{p}$ if and only if $(\forall B \in I N F)(B \subseteq f B)$.

Proof: Let f, i, j, p be as given. Let f witness $A_{i} \subseteq A_{j} \cup$ $f A_{p}$. Let $B \in I N F$. Suppose $B \subseteq$ fB fails, and let $r \in B \backslash f B$. Set $A_{1}=\ldots=A_{j}=B \backslash\{r\}, A_{j+1}=\ldots=A_{k}=B$. Then $B \subseteq$ $B \backslash\{r\} \cup f B$, which contradicts the choice of r. Hence $B \subseteq$ fB. For the converse, assume $(\forall B \in I N F)(B \subseteq f B)$. Let $A_{1} \subseteq$ $\ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then $A_{i} \subseteq f A_{i} \subseteq f A_{p} \subseteq A_{j}$ $\cup f A_{p}$. QED

LEMMA 2.7.9. Let $f \in M F$ and $i \leq j . f$ witnesses $f A_{i} \subseteq A_{j}$ if and only if $(\forall B \in I N F)(f B \subseteq B)$.

Proof: Let f, i, j be as given. Let f witness $f A_{i} \subseteq A_{j}$. Let B \in INF. Set $A_{1}=\ldots=A_{k}=B$. Then $f B \subseteq B$. For the converse, assume $(\forall B \in \operatorname{INF})(f B \subseteq B) . L e t A_{1} \subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then $f A_{i} \subseteq A_{i} \subseteq A_{j}$. QED

LEMMA 2.7.10. $\mathrm{fA}_{i} \subseteq \mathrm{~A}_{j}, j<i$, has no witnesses.
Proof: Let f witness $f A_{i} \subseteq A_{j}, j<i$ Let $r \in f N$. Set $A_{1}=$ $\ldots=A_{j}=N \backslash\{r\}, A_{j+1}=\ldots A_{k}=N$. Then $f A_{i} \subseteq A_{j}$ is false. QED

LEMMA 2.7.11. Let $p, j<i . f$ witnesses $f A_{i} \subseteq A_{j} \cup f A_{p}$ if and only if ($\forall \mathrm{B} \in \mathrm{INF}$) ($\mathrm{fB}=\mathrm{fN}$).

Proof: Let f, i, j, p be as given. Let f witness $f A_{i} \subseteq A_{j} \cup$ $f A_{p}$. Let $B \in I N F$. Suppose $f B \subseteq f N$ fails. Let $r \in f N \backslash f B$. Set $A_{1}=\ldots=A_{i-1}=B \backslash\{r\}, A_{i}=\ldots=A_{k}=N$. Then $£ N \subseteq B \backslash\{r\} \cup$ $f(B \backslash\{r\})$, which is a contradiction. For the converse, assume $(\forall B \in I N F)(f B=f N)$. Let $A_{1} \subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then $f A_{i}=f N \subseteq A_{j} \cup f N=A_{j} \cup f A_{p}$. QED

LEMMA 2.7.12. Let $f \in M F$ and $p<i \leq j . f$ witnesses $f A_{i} \subseteq A_{j}$ $\cup f A_{p}$ if and only if $(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$.

Proof: Let f, i, j, p be as given. Let f witness $f A_{i} \subseteq A_{j} \cup$ $f A_{p}$. Let $B \subseteq C \subseteq N$, where B is infinite. Set $A_{1}=\ldots=A_{p}$ $=B, A_{p+1}=\ldots=A_{k}=C$. Then $f C \subseteq C \cup f B$. For the converse, assume ($\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$. Let A_{1} $\subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then $f A_{i} \subseteq A_{i} \cup f A_{p} \subseteq$ $A_{j} \cup f A_{p} \cdot Q E D$

LEMMA 2.7.13. $A_{i} \cap \mathrm{fA}_{j} \subseteq \mathrm{~A}_{\mathrm{p}}, \mathrm{p}<\mathrm{i}, j$, has no witnesses.
Proof: Let $p<i, j$ Let f witness $A_{i} \cap f A_{j} \subseteq A_{p}$. Let $r \in f N$. Let $A_{1}=\ldots=A_{p}=N \backslash\{r\}, A_{p+1}=\ldots=A_{k}=N$. Then $A_{i} \cap f A_{j}$ $\subseteq A_{p}$ is false. QED

LEMMA 2.7.14. Let $f \in \operatorname{MF}$ and $j \leq p<i . f$ witnesses $A_{i} \cap f A_{j}$ $\subseteq A_{p}$ if and only if $(\forall B \in I N F)(f B \subseteq B)$.

Proof: Let f, i, j, p be as given. Let f witness $A_{i} \cap f A_{j} \subseteq A_{p}$. Let $B \in I N F$. Set $A_{1}=\ldots=A_{i-1}=B, A_{i}=\ldots=A_{k}=N$. Then $f B \subseteq B$. For the converse, assume ($\forall B \in I N F)(f B \subseteq B)$. Let A_{1} $\subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then $A_{i} \cap f A_{j} \subseteq A_{i} \cap$ $A_{j}=A_{j} \subseteq A_{p} . \quad Q E D$

LEMMA 2.7.15. Let $f \in M F$ and $p<i, j . f$ witnesses $A_{i} \cap f A_{j} \subseteq$ $f A_{p}$ if and only if $(\forall B \in I N F)(f B=f N)$.

Proof: Let f,i,j,p be as given. Let f witness $A_{i} \cap f A_{j} \subseteq$ $f A_{p}$. Let $B \in I N F$. Set $A_{1}=\ldots=A_{p}=B, A_{p+1}=\ldots=A_{k}=N$. Then $f N \subseteq f B$. For the converse, assume ($\forall B \in I N F)(f B=f N)$. Let $A_{1} \subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then $A_{i} \cap f A_{j} \subseteq$ $\mathrm{fN}=\mathrm{fA}$. . QED

LEMMA 2.7.16. Let $f \in M F$ and $i \leq p<j . f$ witnesses $A_{i} \cap f A_{j}$ $\subseteq f A_{p}$ if and only if f witnesses $A_{i} \cap f A_{j} \subseteq f A_{p}$ if and only if $(\forall B \in I N F)(B \cap f N \subseteq f B)$.

Proof: Let f,i,j,p be as given. Let f witness $A_{i} \cap f A_{j} \subseteq$ $f A_{p}$. Let $B \in I N F$. Set $A_{1}=\ldots=A_{j-1}=B, A_{j}=\ldots=A_{k}=N$. Then $B \cap f N \subseteq f B$. For the converse, assume ($\forall B \in I N F$) ($B \cap$ $f N \subseteq f B)$. Let $A_{1} \subseteq \ldots \subseteq A_{k} \subseteq \mathrm{~N}$, where A_{1} is infinite. Then $A_{i} \cap f A_{j} \subseteq A_{i} \cap f N \subseteq f A_{i} \subseteq f A_{p} . Q E D$

LEMMA 2.7.17. Let $f \in M F$ and $p<i \leq q<j . f$ witnesses A_{i} $\cap f A_{j} \subseteq A_{p} \cup f A_{q}$ if and only if ($\left.\forall B \in I N F\right)(B \cap f N \subseteq f B)$.

Proof: Let f, i, j, p, q be as given. Let f witness $A_{i} \cap f A_{j} \subseteq$ $A_{p} \cup f A_{q}$. Let $B \in$ INF. Suppose $B \cap f N \subseteq f B$ is false. Let r $\in B, f N, r \notin f B$. Set $A_{1}=\ldots=A_{i-1}=B \backslash\{r\}, A_{i}=\ldots=A_{j-1}=$ $B, A_{j}=\ldots=A_{k}=N$. Then $B \cap f N \subseteq B \backslash\{r\} \cup f B$. This is a contradiction. For the converse, assume ($\forall \mathrm{B} \in \operatorname{INF}$) ($\mathrm{B} \cap \mathrm{fN} \subseteq$ fB). Let $A_{1} \subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then $A_{i} \cap$ $f A_{j} \subseteq A_{i} \cap f N \subseteq f A_{i} \subseteq f A_{q} . Q E D$

LEMMA 2.7.18. Let $f \in M F$ and $p<q<i \leq j . f$ witnesses A_{i} $\cap f A_{j} \subseteq A_{p} \cup f A_{q}$ if and only if ($\left.\forall B \in I N F\right)(f B=f N)$.

Proof: Let f, i, j, p, q be as given. Let f witness $A_{i} \cap f A_{j} \subseteq$ $A_{p} \cup f A_{q}$. Let $B \in I N F$. Suppose $f B \neq f N$. Let $r \in f N \backslash f B$. Set $A_{1}=\ldots=A_{q-1}=B \backslash\{r\}, A_{q}=\ldots=A_{i-1}=B, A_{i}=\ldots=A_{k}=$ N. Then $f N \subseteq B \backslash\{r\} \cup f B$. This is a contradiction. Conversely, assume ($\forall B \in \operatorname{INF})(f B=f N) . \operatorname{Let} A_{1} \subseteq \ldots \subseteq A_{k} \subseteq$ N, where A_{1} is infinite. Then $A_{i} \cap f A_{j} \subseteq f N=f A_{q} \subseteq A_{p} \cup f A_{q}$. QED

LEMMA 2.7.19. Let $f \in M F$ and $q \leq p<i \leq j . f$ witnesses $A_{i} \cap$ $f A_{j} \subseteq A_{p} \cup f A_{q}$ if and only if ($\left.\forall B \in I N F\right)(f N \subseteq B \cup f B)$.

Proof: Let f, i, j, p, q be as given. Let f witness $A_{i} \cap f A_{j} \subseteq$ $A_{p} \cup f A_{q}$. Set $A_{1}=\ldots=A_{i-1}=B, A_{i}=\ldots=A_{k}=N$. Then $f N$ $\subseteq B \cup f B$. Conversely, assume ($\forall B \in \operatorname{INF})(f N \subseteq B \cup f B)$. Let
$A_{1} \subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then $A_{i} \cap f A_{j} \subseteq f N$ $\subseteq A_{q} \cup f A_{q} \subseteq A_{p} \cup f A_{q} . Q E D$

LEMMA 2.7.20. Let $f \in M F$ and $p<q=i<j . f$ witnesses A_{i} $\cap f A_{j} \subseteq A_{p} \cup f A_{q}$ if and only if $(\forall B \in I N F)(B \cap f N \subseteq f B)$.

Proof: Let f, i, j, p, q be as given. Let f witness $A_{i} \cap f A_{j} \subseteq$ $A_{p} \cup f A_{q}$. Let $B \in$ INF. Suppose $B \cap f N \subseteq f B$ is false. Let r $\in B, f N, r \notin f B$. Set $A_{1}=\ldots=A_{p}=B \backslash\{r\}, A_{p+1}=\ldots=A_{q}=$ $B, A_{q+1}=\ldots=A_{k}=N$. Then $B \cap f N \subseteq B \backslash\{r\} \cup f B$. This is a contradiction. For the converse, assume ($\forall \mathrm{B} \in \mathrm{INF}$) ($\mathrm{B} \cap \mathrm{fN}$ $\subseteq f B)$. Let $A_{1} \subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then A_{i} $\cap f A_{j} \subseteq A_{i} \cap f N \subseteq f A_{i}=f A_{q} \subseteq A_{p} \cup f A_{q} . ~ Q E D$

LEMMA 2.7.21. Let $f \in M F$ and $p<q<j \leq i . f$ witnesses A_{i} $\cap f A_{j} \subseteq A_{p} \cup f A_{q}$ if and only if $(\forall B \in I N F)(f B=f N)$.

Proof: Let f, i, j, p, q be as given. Let f witness $A_{i} \cap \mathrm{fA}_{j} \subseteq$ $A_{p} \cup f A_{q}$. Let $B \in I N F$. Suppose $f N \neq f B$. Let $r \in f N \backslash f B$. Set $A_{1}=\ldots=A_{p}=B \backslash\{r\}, A_{p+1}=\ldots=A_{q}=B, A_{q+1}=\ldots=A_{k}=$ N. Then $f N \subseteq B \backslash\{r\} \cup f B$. This is a contradiction. For the converse, assume ($\forall B \in \operatorname{INF})(f N=f B)$ Let $A_{1} \subseteq \ldots \subseteq A_{k} \subseteq$ N, where A_{1} is infinite. Then $A_{i} \cap f A_{j} \subseteq f N=f A_{q} \subseteq A_{p} \cup f A_{q}$. QED

LEMMA 2.7.22. Let $f \in M F$ and $q \leq p<j \leq i . f$ witnesses $A_{i} \cap$ $f A_{j} \subseteq A_{p} \cup f A_{q}$ if and only if ($\forall B \in \operatorname{INF}$) (fN $\left.\subseteq B \cup f B\right)$.

Proof: Let f, i, j, p, q be as given. Let f witness $A_{i} \cap \mathrm{fA}_{j} \subseteq$ $A_{p} \cup f A_{q}$. Let $B \in I N F$. Set $A_{1}=\ldots=A_{j-1}=B, A_{j}=\ldots=A_{k}$ $=N$. Then $f N \subseteq B \cup f B$. For the converse, assume $(\forall B \in$ INF) ($f \mathrm{f} \subseteq \subseteq \mathrm{B} \cup \mathrm{fB}$). Let $\mathrm{A}_{1} \subseteq \ldots \subseteq A_{k} \subseteq \mathrm{~N}$, where A_{1} is infinite. Then $A_{i} \cap f A_{j} \subseteq f N \subseteq A_{q} \cup f A_{q} \subseteq A_{p} \cup f A_{q}$. QED

LEMMA 2.7.23. Let $f \in M F$ and $q<j \leq p<i . f$ witnesses A_{i} $\cap f A_{j} \subseteq A_{p} \cup f A_{q}$ if and only if ($\forall \mathrm{B}, \mathrm{C} \in \mathrm{INF}$) $(\mathrm{B} \subseteq \mathrm{C} \rightarrow \mathrm{fC} \subseteq$ $C \cup f B)$.

Proof: Let f, i, j, p, q be as given. Let f witness $A_{i} \cap f A_{j} \subseteq$ $A_{p} \cup f A_{q}$. Let $B \subseteq C \subseteq N$, where B is infinite. Set $A_{1}=\ldots=$ $A_{q}=B, A_{q+1}=\ldots=A_{p}=C, A_{p+1}=\ldots=A_{k}=N$. Then $f C \subseteq C$ $\cup f B$. For the converse, assume ($\forall \mathrm{B}, \mathrm{C} \in \mathrm{INF}$) ($\mathrm{B} \subseteq \mathrm{C} \rightarrow \mathrm{fC} \subseteq \mathrm{C}$
$\cup f B)$. Let $A_{1} \subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then A_{i}
$\cap f A_{j} \subseteq f A_{j} \subseteq A_{j} \cup f A_{q} \subseteq A_{p} \cup f A_{q} . ~ Q E D$

LEMMA 2.7.24. Let $f \in M F$ and $q<p=j<i . f$ witnesses A_{i} $\cap f A_{j} \subseteq A_{p} \cup f A_{q}$ if and only if $(\forall B, C \in I N E)(B \subseteq C \rightarrow f C \subseteq$ $C \cup f B)$.

Proof: Let f, i, j, p, q be as given. Let f witness $A_{i} \cap f_{j} \subseteq$ $A_{p} \cup f A_{q}$. Let $B \subseteq C \subseteq N$, where B is infinite. Set $A_{1}=\ldots=$ $A_{q}=B, A_{q+1}=\ldots=A_{p}=C, A_{p+1}=\ldots=A_{k}=N$. Then $f C \subseteq C$ $\cup f B$. For the converse, assume ($\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C$ $\cup f B)$. Let $A_{1} \subseteq \ldots \subseteq A_{k} \subseteq N$, where A_{1} is infinite. Then A_{i} $\cap f A_{j} \subseteq A_{j} \cup f A_{q}=A_{p} \cup f A_{q} \cdot \operatorname{QED}$

We now remove entries with no witnesses from the Witness Set Assignment List.

PRUNED WITNESS SET ASSIGNMENT LIST
8a. $A_{i} \subseteq f A_{j}, i \leq j .(\forall B \in \operatorname{INF})(B \subseteq f B) . L e m m a$ 2.7.5.
9b. $A_{i} \subseteq A_{j} \cup f A_{p}, j<i \leq p . \quad(\forall B \in I N F)(B \subseteq f B)$.
Lemma 2.7.8.
10a. $f A_{i} \subseteq A_{j}, i \leq j .(\forall B \in I N F)(f B \subseteq B)$. Lemma 2.7.9.
11. $f A_{i} \subseteq f A_{j}, j<i . \quad(\forall B \in \operatorname{INF})(f B=f N) . L e m m a$ 2.7.2.

12a. $f A_{i} \subseteq A_{j} \cup f A_{p}, p, j<i .(\forall B \in I N F)(f B=f N)$.
Lemma 2.7.11.
12b. $f A_{i} \subseteq A_{j} \cup f A_{p}, p<i \leq j .(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C$ \cup fB). Lemma 2.7.12.
13b. $A_{i} \cap f A_{j} \subseteq A_{p}, j \leq p<i . \quad(\forall B \in I N F)(f B \subseteq B)$.
Lemma 2.7.14.
14a. $A_{i} \cap f A_{j} \subseteq f A_{p}, p<i, j .(\forall B \in I N F)(f B=f N)$.
Lemma 2.7.15.
14b. $A_{i} \cap f A_{j} \subseteq f A_{p}, i \leq p<j .(\forall B \in I N F)(B \cap f N \subseteq f B)$.
Lemma 2.7.16.
15a. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, p<i \leq q<j .(\forall B \in I N F)(B \cap f N$ \subseteq fB). Lemma 2.7.17.
15b. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, p<q<i \leq j .(\forall B \in I N F)(f B=$ fN). Lemma 2.7.18.
15c. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, q \leq p<i \leq j \cdot(\forall B \in I N F)(f N \subseteq B$ U fB) . Lemma 2.7.19.
15d. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, p<q=i<j .(\forall B \in I N F)(B \cap f N$ \subseteq fB) . Lemma 2.7.20.
15e. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, p<q<j \leq i .(\forall B \in \operatorname{lNF})(f B=$ fN). Lemma 2.7.21.
15f. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, q \leq p<j \leq i .(\forall B \in I N F)(f N \subseteq B$ $\cup f B)$. Lemma 2.7.22.
$15 \mathrm{~g} . \mathrm{A}_{i} \cap f \mathrm{~A}_{j} \subseteq \mathrm{~A}_{\mathrm{p}} \cup \mathrm{f} \mathrm{A}_{\mathrm{q}}, \mathrm{q}<j \leq \mathrm{p}<\mathrm{i} .(\forall \mathrm{B}, \mathrm{C} \in \operatorname{INF})(\mathrm{B} \subseteq \mathrm{C}$ $\rightarrow f C \subseteq C \cup f B)$. Lemma 2.7.23.
15h. $A_{i} \cap f A_{j} \subseteq A_{p} \cup f A_{q}, q<p=j<i .(\forall B, C \in \operatorname{lNF})(B \subseteq C$ $\rightarrow f C \subseteq C \cup f B)$. Lemma 2.7.24.

Exactly six sets of witnesses appear in the Witness Set Assignment List.

WITNESS SET LIST (FOR MF).
$(\forall B \in I N F)(f B=f N)$.
$(\forall B \in I N F)(f N \subseteq B \cup f B)$.
$(\forall B \in I N F)(B \subseteq f B)$.
$(\forall B \in I N F)(f B \subseteq B)$.
$(\forall B \in I N F)(B \cap f N \subseteq f B)$.
$(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$.
We have only to determine which subsets of the above list have a common witness; i.e., which subsets have nonempty intersection. For this purpose, we use the "pure" application of the Tree Methodology mentioned at the very end of section 2.1 .

WITNESS SET LIST*.
\# 3
$(\forall B \in I N F)(f B=f N)$.
$(\forall B \in I N F)(f N \subseteq B \cup f B)$.
$(\forall B \in I N F)(B \subseteq f B)$.
$(\forall B \in I N F)(f B \subseteq B)$.
$(\forall B \in I N F)(B \cap f N \subseteq f B)$.
$(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$.
LIST 1.
$(\forall B \in I N F)(f B=f N):$
$(\forall B \in I N F)(f N \subseteq B \cup f B)$.
$(\forall B \in I N F)(B \subseteq f B) . f N=N$. No. By the Thin Set Theorem,
let $f B \neq N$. Hence $f N \neq N$.
$(\forall B \in I N F)(f B \subseteq B)$. No. Let $B=N \backslash\{r\}, r \in f N$.
$(\forall B \in I N F)(B \cap f N \subseteq f B)$.
$(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$.
LIST 1.*
\# 0
$(\forall B \in I N F)(f B=f N):$
$(\forall B \in I N F)(f N \subseteq B \cup f B)$.
$(\forall B \in I N F)(B \cap f N \subseteq f B)$.
$(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$.

Nonempty intersection. Let $f(x)=0$.
LIST 2.
$(\forall B \in I N F)(f N \subseteq B \cup f B):$
$(\forall B \in I N F)(B \subseteq f B) . f N=N$. No. By the Thin Set Theorem (variant), let $B \cup f B \neq N$. Since $f N \subseteq B \cup f B$, we have $f N \neq$ N.
$(\forall B \in I N F)(f B \subseteq B) .(\forall B \in I N F)(f N \subseteq B)$. No. Let $B=N \backslash\{r\}$, $r \in f N$.
$(\forall B \in I N F)(B \cap f N \subseteq f B)$.
$(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$.
LIST 2.*
\# 0
$(\forall B \in I N F)(f N \subseteq B \cup f B):$
$(\forall B \in I N F)(B \cap f N \subseteq f B)$.
$(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$.
Nonempty intersection. Let $\mathrm{f}(\mathrm{x})=0$.
LIST 3.
$(\forall B \in I N F)(B \subseteq f B):$
$(\forall B \in I N F)(f B \subseteq B)$.
$(\forall B \in I N F)(B \cap f N \subseteq f B)$.
$(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$.
Nonempty intersection. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}$.
THEOREM 2.7.25. For all $k \geq 1$, IBRT in
$A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k} \subseteq$ on (MF,INF) is $A C A^{\prime}$ secure.

Proof: Let S be a format in this BRT fragment α. Then S is a set of elementary inclusions in α, which are compiled in the first list of this section, 1-15. Correctness of S is equivalent to the existence of $f \in M F$ satisfying ($\forall A_{1}, \ldots, A_{k}$ $\in \operatorname{INF})\left(A_{1} \subseteq \ldots \subseteq A_{k} \rightarrow S\right)$. This can be rewritten in the following form:
the intersection of the witness sets
$\left\{f \in \operatorname{MF}:\left(\forall A_{1}, \ldots, A_{k} \in \operatorname{INF}\right)\left(A_{1} \subseteq \ldots \subseteq A_{k} \rightarrow \varphi\right)\right\}$, $\varphi \in S$, is nonempty.

A complete analysis of the non emptiness of these intersection has been presented. This analysis is explicit,
except for the use of the Thin Set Theorem and Thin Set Theorem (variant). Recall from section 1.4 that the Thin Set Theorem and the Thin Set Theorem (variant) are provable in $A C A^{\prime}$. QED

We now consider IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k} \subseteq$ on (SD,INF), (ELG \cap SD,INF), (ELG,INF), and (EVSD,INF). We shall see that it suffices to consider only (EVSD,INF).

This amounts to determining which subsets of the Witness Set List have a common element from EVSD. For this purpose, we repeat the Tree Methodology on the witness list, this time with reference to EVSD only.

WITNESS SET LIST. (FOR EVSD).
$(\forall B \in I N F)(f B=f N)$. No. By Theorem 2.2.1, let $f N$ not be a subset of $B \cup f B$.
$(\forall B \in I N F)(f N \subseteq B \cup f B)$. No. Theorem 2.2.1.
$(\forall B \in I N F)(B \subseteq f B)$. No. By Theorem 2.2.1, let $B \cap f B=\varnothing$.
$(\forall B \in I N F)(f B \subseteq B)$. No. By Theorem 2.2.1.
$(\forall B \in I N F)(B \cap f N \subseteq f B)$. No. By Theorem 2.2.1, let $B \subseteq f N$, $B \cap f B=\varnothing$.
$(\forall B, C \in I N F)(B \subseteq C \rightarrow f C \subseteq C \cup f B)$. No. Lemma 2.7.26.
LEMMA 2.7.26. There is no $f \in \operatorname{EVSD}$ such that ($\forall B, C \in I N F)(B$ $\subseteq C \rightarrow f C \subseteq C \cup f B)$.

Proof: Let $f \in$ EVSD. By Theorem 2.2.1, let $C \in I N F$, where C $\cap f C=\varnothing$. We now apply Theorem 2.2.1, with $A=C$ and $D=$ $f C$. Let $B \subseteq C, B$ infinite, where $f C \subseteq f B$ fails. Then $f C \subseteq C$ $\cup f B$ also fails. QED

THEOREM 2.7.27. The following is provable in $R C A_{0}$. For all k ≥ 1, IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k}, \subseteq o n(S D, I N F)$, (ELG \cap SD,INF), (ELG,INF), (EVSD,INF), have no correct formats other than \varnothing. They are all $R^{\prime} A_{0}$ secure.

Proof: First note that EVSD contains SD, ELG \cap SD, and ELG.
The above analysis is explicit, except for the use of the Thin Set Theorem and Thin Set Theorem (variant). But we need only apply the Thin Set Theorem (variant) to functions from EVSD. By Theorem 2.2.1, there exists infinite B such that $B \cap f B=\varnothing$, and so $f B \neq N$. Now use the fact that Theorem 2.2.1 is provable in $R C A_{0}$. QED

It is clear that IBRT in $A_{1}, \ldots, A_{k}, f A_{1}, \ldots, f A_{k}, \subseteq$ on (MF,INF)
has correct formats other than \varnothing. In particular,
$(\exists f \in M F)(\forall A \in I N F)(f A=A)$
by setting $f(x)=x$.

