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2.7. IBRT in A1,...,Ak,fA1,...,fAk,⊆. 
 
In this section, we analyze IBRT in A1,...,Ak,fA1,...,fAk,⊆ 
on (SD,INF), (ELG ∩ SD,INF), (ELG,INF), (EVSD,INF), and 
(MF,INF). We show that for all k ≥ 1, IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on each of (SD,INF), (ELG ∩ SD,INF), 
(ELG,INF), (EVSD,INF) is RCA0 secure. We show that IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) is ACA' secure (see 
Definition 1.4.1). We also show that the only correct 
format for IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), (ELG 
∩ SD,INF), (ELG,INF), (EVSD,INF) is ∅. This is not true on 
(MF,INF).  
 
We begin with (MF,INF), for some fixed k ≥ 1. We need to 
analyze all statements of the form 
 

#) (∃f ∈ MF)(∀A1,...,Ak ∈ INF)(A1 ⊆ ... ⊆ Ak → ϕ). 
 
where ϕ is an A1,...,Ak,fA1,...,fAk,⊆ format. Recall that the 
instances of #) are Boolean equivalent to the assertions of 
IBRT in A1,...,Ak,fA1,...,fAk,⊆, and the negations of the 
statements in IBRT in A1,...,Ak,fA1,...,fAk,⊆.  
 
Recall the list of all A1,...,Ak,fA1,...,fAk,⊆ elementary 
inclusions that were used in section 2.6: 
 
1. Ai = ∅.  
2. fAi = ∅. 
3. Ai ∩ fAj = ∅.  
4. Ai = N.  
5. fAi = N.   
6. Ai ∪ fAj = N. 
7. Ai ⊆ Aj, j < i.  
8. Ai ⊆ fAj.  
9. Ai ⊆ Aj ∪ fAp, j < i.  
10. fAi ⊆ Aj.  
11. fAi ⊆ fAj, j < i.  
12. fAi ⊆ Aj ∪ fAp, p < i.  
13. Ai ∩ fAj ⊆ Ap, p < i.  
14. Ai ∩ fAj ⊆ fAp, p < j. 
15. Ai ∩ fAj ⊆ Ap ∪ fAq, p < i and q < j.  
 
For each of these elementary inclusions, ρ, we will provide 
a useful description of the witness set for ρ, in the 
following sense: The set of all f ∈ MF such that  
 

(∀A1,...,Ak ∈ INF)(A1 ⊆ ... ⊆ Ak → ρ). 
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To analyze formats, we analyze the intersections of these 
witness sets, determining which intersections are nonempty. 
I.e., a format is correct if and only if the intersection 
of the set of witnesses of each element is nonempty (in 
IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF)).  
 
We also use this technique for the other four BRT settings. 
Thus a format is correct if and only if the intersection of 
the set of witnesses of each element meets V (in IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on (V,INF), V ⊆ MF)). 
 
Each numbered entry in the list represents several 
inclusions. In some numbered entries, all of the inclusions 
will have the same witness set. We call such an entry 
uniform. Unfortunately, some of the numbered entries are 
not uniform. 
 
We shall see that entries 1-7,11 are uniform. We now 
determine their witnesses sets. 
 
LEMMA 2.7.1. The inclusions in clauses 1-7 each have no 
witnesses. I.e., their witness sets are ∅.  
 
Proof: Let f ∈ MF. We show that f is not a witness. For 
1,2,3, let A1 = ... = Ak = N. For 4,5,6 take A1 = ... = Ak = 
∅. For 7, take each Ai = {i}. QED 
 
LEMMA 2.7.2. Let f ∈ MF and j < i. f witnesses fAi ⊆ fAj if 
and only if (∀B ∈ INF)(fB = fN). 
 
Proof: Let f,j,i be as given. Let f witness fAi ⊆ fAj. Let B 
∈ INF. Set A1 = ... = Aj = B, Aj+1 = ...= Ak = N. Then fN = 
fB. For the converse, assume (∀B ∈ INF)(fB = fN). Let A1 ⊆ 
... ⊆ Ak ⊆ N, where A1 is infinite. Then fAi = fN = fAj. QED 
 
We now break the remaining numbered entries into uniform 
parts as follows.  
 
8a. Ai ⊆ fAj, i ≤ j. 
8b. Ai ⊆ fAj, j < i.  
9a. Ai ⊆ Aj ∪ fAp, j,p < i.  
9b. Ai ⊆ Aj ∪ fAp, j < i ≤ p. 
10a. fAi ⊆ Aj, i ≤ j. 
10b. fAi ⊆ Aj, j < i. 
12a. fAi ⊆ Aj ∪ fAp, p,j < i.  
12b. fAi ⊆ Aj ∪ fAp, p < i ≤ j. 
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13a. Ai ∩ fAj ⊆ Ap, p < i,j. 
13b. Ai ∩ fAj ⊆ Ap, j ≤ p < i. 
14a. Ai ∩ fAj ⊆ fAp, p < i,j. 
14b. Ai ∩ fAj ⊆ fAp, i ≤ p < j. 
15a. Ai ∩ fAj ⊆ Ap ∪ fAq, p < i ≤ q < j. 
15b. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < i ≤ j. 
15c. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < i ≤ j. 
15d. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q = i < j. 
15e. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < j ≤ i. 
15f. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < j ≤ i. 
15g. Ai ∩ fAj ⊆ Ap ∪ fAq, q < j ≤ p < i. 
15h. Ai ∩ fAj ⊆ Ap ∪ fAq, q < p = j < i.   
 
We need to show that this list includes all of 8-10,12-15 
from the original list. This is evident by inspection for 
all but 15 = 15a-15h. Here we need Lemma 2.7.4 below. 
 
LEMMA 2.7.3. Suppose p < i and q < j. Then at least one of 
the following holds. 
p ≤ i ≤ q ≤ j. 
p ≤ q ≤ i ≤ j.  
q ≤ p ≤ i ≤ j. 
p ≤ q ≤ j ≤ i. 
q ≤ p ≤ j ≤ i. 
q ≤ j ≤ p ≤ i. 
 
Proof: Let p < i and q < j. Obviously, at least one of the 
4! = 24 four term inequalities with ≤ separating the four 
variables i,j,p,q, must hold. In any such true four term 
inequality with ≤, p must come before i and q must come 
before j. Of the 4! = 24 permutations of the letters 
i,j,p,q, exactly 1/4 of them have p before i and q before 
j. Since the above lists 6 such, the above list must be 
complete. QED 
 
LEMMA 2.7.4. Suppose p < i and q < j. Then at least one of 
the following holds. 
p < i ≤ q < j 
p < q < i ≤ j 
q ≤ p < i ≤ j 
p < q = i < j 
p < q < j ≤ i 
q ≤ p < j ≤ i 
q < j ≤ p < i 
q < p = j < i. 
 
Proof: We use Lemma 2.7.3, which provides six cases.  
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Suppose p ≤ i ≤ q ≤ j. Then p < i ≤ q < j.  
 
Suppose p ≤ q ≤ i ≤ j. If p < q then p < q < i ≤ j ∨ p < q = 
i < j. If p = q then p = q < i ≤ j, and so q ≤ p < i ≤ j. 
 
Suppose q ≤ p ≤ i ≤ j. Then q ≤ p < i ≤ j.  
 
Suppose p ≤ q ≤ j ≤ i. If p < q then p < q < j ≤ i. If p = q 
then p = q < j ≤ i, and so q ≤ p < j ≤ i.  
 
Suppose q ≤ p ≤ j ≤ i. If p < j then q ≤ p < j ≤ i. If p = j 
then q ≤ p = j < i, and hence q < p = j < i (using q < j).  
 
Suppose q ≤ j ≤ p ≤ i. Then q < j ≤ p < i. QED   
 
We are now prepared to make the determination of witnesses 
for each of the entries 8a – 15h.  
 
WITNESS SET ASSIGNMENT LIST 
 
1-7. None. Lemma 2.7.1. 
8a. Ai ⊆ fAj, i ≤ j. (∀B ∈ INF)(B ⊆ fB). Lemma 2.7.5. 
8b. Ai ⊆ fAj, j < i. None. Lemma 2.7.6. 
9a. Ai ⊆ Aj ∪ fAp, j,p < i. None. Lemma 2.7.7.   
9b. Ai ⊆ Aj ∪ fAp, j < i ≤ p. (∀B ∈ INF)(B ⊆ fB).  
Lemma 2.7.8. 
10a. fAi ⊆ Aj, i ≤ j. (∀B ∈ INF)(fB ⊆ B). Lemma 2.7.9.  
10b. fAi ⊆ Aj, j < i. None. Lemma 2.7.10. 
11. fAi ⊆ fAj, j < i. (∀B ∈ INF)(fB = fN). Lemma 2.7.2. 
12a. fAi ⊆ Aj ∪ fAp, p,j < i. (∀B ∈ INF)(fB = fN).  
Lemma 2.7.11. 
12b. fAi ⊆ Aj ∪ fAp, p < i ≤ j. (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C 
∪ fB). Lemma 2.7.12. 
13a. Ai ∩ fAj ⊆ Ap, p < i,j. None. Lemma 2.7.13. 
13b. Ai ∩ fAj ⊆ Ap, j ≤ p < i. (∀B ∈ INF)(fB ⊆ B).  
Lemma 2.7.14. 
14a. Ai ∩ fAj ⊆ fAp, p < i,j. (∀B ∈ INF)(fB = fN).  
Lemma 2.7.15. 
14b. Ai ∩ fAj ⊆ fAp, i ≤ p < j. (∀B ∈ INF)(B ∩ fN ⊆ fB). 
Lemma 2.7.16. 
15a. Ai ∩ fAj ⊆ Ap ∪ fAq, p < i ≤ q < j. (∀B ∈ INF)(B ∩ fN 
⊆ fB). Lemma 2.7.17. 
15b. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < i ≤ j. (∀B ∈ INF)(fB = 
fN). Lemma 2.7.18.  
15c. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < i ≤ j. (∀B ∈ INF)(fN ⊆ B 
∪ fB). Lemma 2.7.19.  
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15d. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q = i < j. (∀B ∈ INF)(B ∩ fN 
⊆ fB). Lemma 2.7.20. 
15e. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < j ≤ i. (∀B ∈ INF)(fB = 
fN). Lemma 2.7.21.  
15f. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < j ≤ i. (∀B ∈ INF)(fN ⊆ B 
∪ fB). Lemma 2.7.22. 
15g. Ai ∩ fAj ⊆ Ap ∪ fAq, q < j ≤ p < i. (∀B,C ∈ INF)(B ⊆ C 
→ fC ⊆ C ∪ fB). Lemma 2.7.23. 
15h. Ai ∩ fAj ⊆ Ap ∪ fAq, q < p = j < i. (∀B,C ∈ INF)(B ⊆ C 
→ fC ⊆ C ∪ fB). Lemma 2.7.24. 
   
LEMMA 2.7.5. Let f ∈ MF and i ≤ j. f witnesses Ai ⊆ fAj if 
and only if (∀B ∈ INF)(B ⊆ fB). 
 
Proof: Let f,i,j be as given. Assume f witnesses Ai ⊆ fAj. 
Let B ∈ INF. Set A1 = ... = Ak = B. Then B ⊆ fB. For the 
converse, assume (∀B ∈ INF)(B ⊆ fB) and let A1 ⊆ ... Ak ⊆ 
N, where A1 is infinite. Then Ai ⊆ fAi ⊆ fAj. QED 
 
LEMMA 2.7.6. Ai ⊆ fAj, j < i, has no witnesses.  
 
Proof: Let f witness Ai ⊆ fAj, j < i. By the Thin Set 
Theorem, let fB ≠ N. Set A1 = ... = Aj = B, Aj+1 = ... = Ak = 
N. Then Ai ⊆ fAj is false. QED 
 
LEMMA 2.7.7. Ai ⊆ Aj ∪ fAp, j,p < i, has no witnesses. 
 
Proof: Let f witness Ai ⊆ Aj ∪ fAp, j,p < i. By the Thin Set 
Theorem (variant), let B ∈ INF where B ∪ fB ≠ N. Set A1 = 
... = Ai-1 = B, Ai = ... = Ak = N. Then Ai ⊆ Aj ∪ fAp is 
false. QED 
 
LEMMA 2.7.8. Let f ∈ MF and j < i ≤ p. f witnesses Ai ⊆ Aj ∪ 
fAp if and only if (∀B ∈ INF)(B ⊆ fB). 
 
Proof:  Let f,i,j,p be as given. Let f witness Ai ⊆ Aj ∪ 
fAp. Let B ∈ INF. Suppose B ⊆ fB fails, and let r ∈ B\fB. 
Set A1 = ... = Aj = B\{r}, Aj+1 = ... = Ak = B. Then B ⊆ 
B\{r} ∪ fB, which contradicts the choice of r. Hence B ⊆ 
fB. For the converse, assume (∀B ∈ INF)(B ⊆ fB). Let A1 ⊆ 
... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ⊆ fAi ⊆ fAp ⊆ Aj 
∪ fAp. QED 
 
LEMMA 2.7.9. Let f ∈ MF and i ≤ j. f witnesses fAi ⊆ Aj if 
and only if (∀B ∈ INF)(fB ⊆ B). 
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Proof: Let f,i,j be as given. Let f witness fAi ⊆ Aj. Let B 
∈ INF. Set A1 = ... = Ak = B. Then fB ⊆ B. For the converse, 
assume (∀B ∈ INF)(fB ⊆ B). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 
is infinite. Then fAi ⊆ Ai ⊆ Aj. QED 
 
LEMMA 2.7.10. fAi ⊆ Aj, j < i, has no witnesses.  
 
Proof: Let f witness fAi ⊆ Aj, j < i. Let r ∈ fN. Set A1 = 
... = Aj = N\{r}, Aj+1 = ... Ak = N. Then fAi ⊆ Aj is false. 
QED 
 
LEMMA 2.7.11. Let p,j < i. f witnesses fAi ⊆ Aj ∪ fAp if and 
only if (∀B ∈ INF)(fB = fN). 
 
Proof: Let f,i,j,p be as given. Let f witness fAi ⊆ Aj ∪ 
fAp. Let B ∈ INF. Suppose fB ⊆ fN fails. Let r ∈ fN\fB. Set 
A1 = ... = Ai-1 = B\{r}, Ai = ... = Ak = N. Then fN ⊆ B\{r} ∪ 
f(B\{r}), which is a contradiction. For the converse, 
assume (∀B ∈ INF)(fB = fN). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 
is infinite. Then fAi = fN ⊆ Aj ∪ fN = Aj ∪ fAp. QED 
 
LEMMA 2.7.12. Let f ∈ MF and p < i ≤ j. f witnesses fAi ⊆ Aj 
∪ fAp if and only if (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB).  
 
Proof: Let f,i,j,p be as given. Let f witness fAi ⊆ Aj ∪ 
fAp. Let B ⊆ C ⊆ N, where B is infinite. Set A1 = ...  = Ap 
= B, Ap+1 = ... = Ak = C. Then fC ⊆ C ∪ fB. For the 
converse, assume (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). Let A1 
⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then fAi ⊆ Ai ∪ fAp ⊆ 
Aj ∪ fAp. QED 
 
LEMMA 2.7.13. Ai ∩ fAj ⊆ Ap, p < i,j, has no witnesses. 
 
Proof: Let p < i,j. Let f witness Ai ∩ fAj ⊆ Ap. Let r ∈ fN. 
Let A1 = ... = Ap = N\{r}, Ap+1 = ... = Ak = N. Then Ai ∩ fAj 
⊆ Ap is false. QED 
 
LEMMA 2.7.14. Let f ∈ MF and j ≤ p < i. f witnesses Ai ∩ fAj 
⊆ Ap if and only if (∀B ∈ INF)(fB ⊆ B). 
 
Proof: Let f,i,j,p be as given. Let f witness Ai ∩ fAj ⊆ Ap. 
Let B ∈ INF. Set A1 = ... = Ai-1 = B, Ai = ... = Ak = N. Then 
fB ⊆ B. For the converse, assume (∀B ∈ INF)(fB ⊆ B). Let A1 
⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ∩ fAj ⊆ Ai ∩ 
Aj = Aj ⊆ Ap.  QED 
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LEMMA 2.7.15. Let f ∈ MF and p < i,j. f witnesses Ai ∩ fAj ⊆ 
fAp if and only if (∀B ∈ INF)(fB = fN). 
 
Proof: Let f,i,j,p be as given. Let f witness Ai ∩ fAj ⊆ 
fAp. Let B ∈ INF. Set A1 = ... = Ap = B, Ap+1 = ... = Ak = N. 
Then fN ⊆ fB. For the converse, assume (∀B ∈ INF)(fB = fN). 
Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ∩ fAj ⊆ 
fN = fAp.  QED 
 
LEMMA 2.7.16. Let f ∈ MF and i ≤ p < j. f witnesses Ai ∩ fAj 
⊆ fAp if and only if f witnesses Ai ∩ fAj ⊆ fAp if and only 
if (∀B ∈ INF)(B ∩ fN ⊆ fB). 
 
Proof: Let f,i,j,p be as given. Let f witness Ai ∩ fAj ⊆ 
fAp. Let B ∈ INF. Set A1 = ... = Aj-1 = B, Aj = ... = Ak = N. 
Then B ∩ fN ⊆ fB. For the converse, assume (∀B ∈ INF)(B ∩ 
fN ⊆ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then 
Ai ∩ fAj ⊆ Ai ∩ fN ⊆ fAi ⊆ fAp. QED 
 
LEMMA 2.7.17. Let f ∈ MF and p < i ≤ q < j. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(B ∩ fN ⊆ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Suppose B ∩ fN ⊆ fB is false. Let r 
∈ B,fN, r ∉ fB. Set A1 = ... = Ai-1 = B\{r}, Ai = ... = Aj-1 = 
B, Aj = ... = Ak = N. Then B ∩ fN ⊆ B\{r} ∪ fB. This is a 
contradiction. For the converse, assume (∀B ∈ INF)(B ∩ fN ⊆ 
fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ∩ 
fAj ⊆ Ai ∩ fN ⊆ fAi ⊆ fAq. QED 
 
LEMMA 2.7.18. Let f ∈ MF and p < q < i ≤ j. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(fB = fN).  
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Suppose fB ≠ fN. Let r ∈ fN\fB. Set 
A1 = ... = Aq-1 = B\{r}, Aq = ... = Ai-1 = B, Ai = ... = Ak = 
N. Then fN ⊆ B\{r} ∪ fB. This is a contradiction. 
Conversely, assume (∀B ∈ INF)(fB = fN). Let A1 ⊆ ... ⊆ Ak ⊆ 
N, where A1 is infinite. Then Ai ∩ fAj ⊆ fN = fAq ⊆ Ap ∪ fAq. 
QED 
 
LEMMA 2.7.19. Let f ∈ MF and q ≤ p < i ≤ j. f witnesses Ai ∩ 
fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(fN ⊆ B ∪ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Set A1 = ... = Ai-1 = B, Ai = ... = Ak = N. Then fN 
⊆ B ∪ fB. Conversely, assume (∀B ∈ INF)(fN ⊆ B ∪ fB). Let 
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A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai ∩ fAj ⊆ fN 
⊆ Aq ∪ fAq ⊆ Ap ∪ fAq. QED  
 
LEMMA 2.7.20. Let f ∈ MF and p < q = i < j. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(B ∩ fN ⊆ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Suppose B ∩ fN ⊆ fB is false. Let r 
∈ B,fN, r ∉ fB. Set A1 = ... = Ap = B\{r}, Ap+1 = ... = Aq = 
B, Aq+1 = ... = Ak = N. Then B ∩ fN ⊆ B\{r} ∪ fB. This is a 
contradiction.  For the converse, assume (∀B ∈ INF)(B ∩ fN 
⊆ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai 
∩ fAj ⊆ Ai ∩ fN ⊆ fAi = fAq ⊆ Ap ∪ fAq. QED 
 
LEMMA 2.7.21. Let f ∈ MF and p < q < j ≤ i. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(fB = fN). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Suppose fN ≠ fB. Let r ∈ fN\fB. Set 
A1 = ... = Ap = B\{r}, Ap+1 = ... = Aq = B, Aq+1 = ... = Ak = 
N. Then fN ⊆ B\{r} ∪ fB. This is a contradiction. For the 
converse, assume (∀B ∈ INF)(fN = fB). Let A1 ⊆ ... ⊆ Ak ⊆ 
N, where A1 is infinite. Then Ai ∩ fAj ⊆ fN = fAq ⊆ Ap ∪ fAq. 
QED 
 
LEMMA 2.7.22. Let f ∈ MF and q ≤ p < j ≤ i. f witnesses Ai ∩ 
fAj ⊆ Ap ∪ fAq if and only if (∀B ∈ INF)(fN ⊆ B ∪ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ∈ INF. Set A1 = ... = Aj-1 = B, Aj = ... = Ak 
= N. Then fN ⊆ B ∪ fB. For the converse, assume (∀B ∈ 
INF)(fN ⊆ B ∪ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is 
infinite. Then Ai ∩ fAj ⊆ fN ⊆ Aq ∪ fAq ⊆ Ap ∪ fAq. QED 
 
LEMMA 2.7.23. Let f ∈ MF and q < j ≤ p < i. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B,C ∈ INF)(B ⊆ C → fC ⊆ 
C ∪ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ⊆ C ⊆ N, where B is infinite. Set A1 = ... = 
Aq = B, Aq+1 = ... = Ap = C, Ap+1 = ... = Ak = N. Then fC ⊆ C 
∪ fB. For the converse, assume (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C 
∪ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai 
∩ fAj ⊆ fAj ⊆ Aj ∪ fAq ⊆ Ap ∪ fAq. QED 
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LEMMA 2.7.24. Let f ∈ MF and q < p = j < i. f witnesses Ai 
∩ fAj ⊆ Ap ∪ fAq if and only if (∀B,C ∈ INF)(B ⊆ C → fC ⊆ 
C ∪ fB). 
 
Proof: Let f,i,j,p,q be as given. Let f witness Ai ∩ fAj ⊆ 
Ap ∪ fAq. Let B ⊆ C ⊆ N, where B is infinite. Set A1 = ... = 
Aq = B, Aq+1 = ... = Ap = C, Ap+1 = ... = Ak = N. Then fC ⊆ C 
∪ fB. For the converse, assume (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C 
∪ fB). Let A1 ⊆ ... ⊆ Ak ⊆ N, where A1 is infinite. Then Ai 
∩ fAj ⊆ Aj ∪ fAq = Ap ∪ fAq. QED 
 
We now remove entries with no witnesses from the Witness 
Set Assignment List. 
 
PRUNED WITNESS SET ASSIGNMENT LIST 
 
8a. Ai ⊆ fAj, i ≤ j. (∀B ∈ INF)(B ⊆ fB). Lemma 2.7.5. 
9b. Ai ⊆ Aj ∪ fAp, j < i ≤ p. (∀B ∈ INF)(B ⊆ fB).  
Lemma 2.7.8. 
10a. fAi ⊆ Aj, i ≤ j. (∀B ∈ INF)(fB ⊆ B). Lemma 2.7.9.  
11. fAi ⊆ fAj, j < i. (∀B ∈ INF)(fB = fN). Lemma 2.7.2. 
12a. fAi ⊆ Aj ∪ fAp, p,j < i. (∀B ∈ INF)(fB = fN).  
Lemma 2.7.11. 
12b. fAi ⊆ Aj ∪ fAp, p < i ≤ j. (∀B,C ∈ INF)(B ⊆ C → fC ⊆ C 
∪ fB). Lemma 2.7.12. 
13b. Ai ∩ fAj ⊆ Ap, j ≤ p < i. (∀B ∈ INF)(fB ⊆ B).  
Lemma 2.7.14. 
14a. Ai ∩ fAj ⊆ fAp, p < i,j. (∀B ∈ INF)(fB = fN).  
Lemma 2.7.15. 
14b. Ai ∩ fAj ⊆ fAp, i ≤ p < j. (∀B ∈ INF)(B ∩ fN ⊆ fB). 
Lemma 2.7.16. 
15a. Ai ∩ fAj ⊆ Ap ∪ fAq, p < i ≤ q < j. (∀B ∈ INF)(B ∩ fN 
⊆ fB). Lemma 2.7.17. 
15b. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < i ≤ j. (∀B ∈ INF)(fB = 
fN). Lemma 2.7.18.  
15c. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < i ≤ j. (∀B ∈ INF)(fN ⊆ B 
∪ fB). Lemma 2.7.19.  
15d. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q = i < j. (∀B ∈ INF)(B ∩ fN 
⊆ fB). Lemma 2.7.20. 
15e. Ai ∩ fAj ⊆ Ap ∪ fAq, p < q < j ≤ i. (∀B ∈ INF)(fB = 
fN). Lemma 2.7.21.  
15f. Ai ∩ fAj ⊆ Ap ∪ fAq, q ≤ p < j ≤ i. (∀B ∈ INF)(fN ⊆ B 
∪ fB). Lemma 2.7.22. 
15g. Ai ∩ fAj ⊆ Ap ∪ fAq, q < j ≤ p < i. (∀B,C ∈ INF)(B ⊆ C 
→ fC ⊆ C ∪ fB). Lemma 2.7.23. 
15h. Ai ∩ fAj ⊆ Ap ∪ fAq, q < p = j < i. (∀B,C ∈ INF)(B ⊆ C 
→ fC ⊆ C ∪ fB). Lemma 2.7.24. 
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Exactly six sets of witnesses appear in the Witness Set 
Assignment List. 
 
WITNESS SET LIST (FOR MF). 
 
(∀B ∈ INF)(fB = fN).  
(∀B ∈ INF)(fN ⊆ B ∪ fB).  
(∀B ∈ INF)(B ⊆ fB).  
(∀B ∈ INF)(fB ⊆ B).  
(∀B ∈ INF)(B ∩ fN ⊆ fB). 
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
We have only to determine which subsets of the above list 
have a common witness; i.e., which subsets have nonempty 
intersection. For this purpose, we use the “pure” 
application of the Tree Methodology mentioned at the very 
end of section 2.1. 
 
WITNESS SET LIST*. 
# 3 
 
(∀B ∈ INF)(fB = fN).  
(∀B ∈ INF)(fN ⊆ B ∪ fB).  
(∀B ∈ INF)(B ⊆ fB).  
(∀B ∈ INF)(fB ⊆ B).  
(∀B ∈ INF)(B ∩ fN ⊆ fB). 
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
LIST 1. 
 
(∀B ∈ INF)(fB = fN):  
(∀B ∈ INF)(fN ⊆ B ∪ fB).  
(∀B ∈ INF)(B ⊆ fB). fN = N. No. By the Thin Set Theorem, 
let fB ≠ N. Hence fN ≠ N. 
(∀B ∈ INF)(fB ⊆ B). No. Let B = N\{r}, r ∈ fN.   
(∀B ∈ INF)(B ∩ fN ⊆ fB).  
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB).  
 
LIST 1.*  
# 0 
 
(∀B ∈ INF)(fB = fN):  
(∀B ∈ INF)(fN ⊆ B ∪ fB).  
(∀B ∈ INF)(B ∩ fN ⊆ fB).  
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB).  
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Nonempty intersection. Let f(x) = 0. 
 
LIST 2.  
 
(∀B ∈ INF)(fN ⊆ B ∪ fB):  
(∀B ∈ INF)(B ⊆ fB). fN = N. No. By the Thin Set Theorem 
(variant), let B ∪ fB ≠ N. Since fN ⊆ B ∪ fB, we have fN ≠ 
N. 
(∀B ∈ INF)(fB ⊆ B). (∀B ∈ INF)(fN ⊆ B). No. Let B = N\{r}, 
r ∈ fN.   
(∀B ∈ INF)(B ∩ fN ⊆ fB).   
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
LIST 2.*  
# 0 
 
(∀B ∈ INF)(fN ⊆ B ∪ fB):  
(∀B ∈ INF)(B ∩ fN ⊆ fB).   
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
Nonempty intersection. Let f(x) = 0. 
 
LIST 3.  
 
(∀B ∈ INF)(B ⊆ fB):  
(∀B ∈ INF)(fB ⊆ B).  
(∀B ∈ INF)(B ∩ fN ⊆ fB).   
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). 
 
Nonempty intersection. Let f(x) = x. 
 
THEOREM 2.7.25. For all k ≥ 1, IBRT in 
A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) is ACA’ secure.  
 
Proof: Let S be a format in this BRT fragment α. Then S is 
a set of elementary inclusions in α, which are compiled in 
the first list of this section, 1-15. Correctness of S is 
equivalent to the existence of f ∈ MF satisfying (∀A1,...,Ak 
∈ INF)(A1 ⊆ ... ⊆ Ak → S). This can be rewritten in the 
following form:  
 

the intersection of the witness sets 
{f ∈ MF: (∀A1,...,Ak ∈ INF)(A1 ⊆ ... ⊆ Ak → ϕ)}, 

ϕ ∈ S, is nonempty. 
 
A complete analysis of the non emptiness of these 
intersection has been presented. This analysis is explicit, 
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except for the use of the Thin Set Theorem and Thin Set 
Theorem (variant). Recall from section 1.4 that the Thin 
Set Theorem and the Thin Set Theorem (variant) are provable 
in ACA’. QED 
 
We now consider IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), 
(ELG ∩ SD,INF), (ELG,INF), and (EVSD,INF). We shall see 
that it suffices to consider only (EVSD,INF). 
 
This amounts to determining which subsets of the Witness 
Set List have a common element from EVSD. For this purpose, 
we repeat the Tree Methodology on the witness list, this 
time with reference to EVSD only. 
 
WITNESS SET LIST. (FOR EVSD).  
 
(∀B ∈ INF)(fB = fN). No. By Theorem 2.2.1, let fN not be a 
subset of B ∪ fB. 
(∀B ∈ INF)(fN ⊆ B ∪ fB). No. Theorem 2.2.1.  
(∀B ∈ INF)(B ⊆ fB). No. By Theorem 2.2.1, let B ∩ fB = ∅.  
(∀B ∈ INF)(fB ⊆ B). No. By Theorem 2.2.1.  
(∀B ∈ INF)(B ∩ fN ⊆ fB). No. By Theorem 2.2.1, let B ⊆ fN, 
B ∩ fB = ∅.  
(∀B,C ∈ INF)(B ⊆ C → fC ⊆ C ∪ fB). No. Lemma 2.7.26. 
 
LEMMA 2.7.26. There is no f ∈ EVSD such that (∀B,C ∈ INF)(B 
⊆ C → fC ⊆ C ∪ fB). 
 
Proof: Let f ∈ EVSD. By Theorem 2.2.1, let C ∈ INF, where C 
∩ fC = ∅. We now apply Theorem 2.2.1, with A = C and D = 
fC. Let B ⊆ C, B infinite, where fC ⊆ fB fails. Then fC ⊆ C 
∪ fB also fails. QED 
 
THEOREM 2.7.27. The following is provable in RCA0. For all k 
≥ 1, IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (SD,INF), (ELG ∩ 
SD,INF), (ELG,INF), (EVSD,INF), have no correct formats 
other than ∅. They are all RCA0 secure. 
 
Proof: First note that EVSD contains SD, ELG ∩ SD, and ELG.  
 
The above analysis is explicit, except for the use of the 
Thin Set Theorem and Thin Set Theorem (variant). But we 
need only apply the Thin Set Theorem (variant) to functions 
from EVSD. By Theorem 2.2.1, there exists infinite B such 
that B ∩ fB = ∅, and so fB ≠ N. Now use the fact that 
Theorem 2.2.1 is provable in RCA0. QED 
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It is clear that IBRT in A1,...,Ak,fA1,...,fAk,⊆ on (MF,INF) 
has correct formats other than ∅. In particular,  
 

(∃f ∈ MF)(∀A ∈ INF)(fA = A) 
 
by setting f(x) = x.  


