2.5. EBRT in $A, B, f A, f B, \subseteq$ on (ELG,INF).

In this section, we use the tree methodology described in section 2.1 to analyze $E B R T$ in $A, B, f A, f B, \subseteq$ on (ELG,INF) and (EVSD, INF). We handle both BRT settings at once, as they behave the same way for $E B R T$ in $A, B, f A, f B, \subseteq$. In particular, we show that they are $R C A_{0}$ secure (see Definition 1.1.43).

Some of this treatment is the same as for EBRT in $A, B, f A, f B, \subseteq$ on ($S D, I N F$) given in section 2.4. However, many new features appear that makes this section considerably more involved than section 2.4 .

A key difference between EBRT in $A, B, f A, f B, \subseteq$ on (SD,INF) and on (ELG,INF) is that the Compelmentation Theorem holds on (SD,INF), yet fails on (ELG,INF). E.g., it fails for $f(x)=2 x$.

Let $f: N^{k} \rightarrow N$ be partial. Define the following series of sets by induction $i \geq 1$.

$$
\begin{gathered}
S_{1}=N . \\
S_{i+1}=N \backslash f S_{i} .
\end{gathered}
$$

LEMMA 2.5.1. $S_{2} \subseteq S_{4} \subseteq S_{6} \subseteq \ldots \subseteq \ldots \subseteq S_{5} \subseteq S_{3} \subseteq S_{1}$. I.e., for all $i \geq 1, S_{2 i} \subseteq S_{2 i+2} \subseteq S_{2 i+1} \subseteq S_{2 i-1}$.

Proof: We argue by induction on $i \geq 1$. The basis case is

$$
\mathrm{S}_{2} \subseteq \mathrm{~S}_{4} \subseteq \mathrm{~S}_{3} \subseteq \mathrm{~S}_{1}
$$

To see this, clearly
$S_{3} \subseteq S_{1}$.
$\mathrm{N} \backslash \mathrm{S}_{1} \subseteq \mathrm{~N} \backslash \mathrm{~S}_{3}$.
$\mathrm{S}_{2} \subseteq \mathrm{~S}_{4}$.
$\mathrm{S}_{2} \subseteq \mathrm{~S}_{1}$.
$N \backslash S_{1} \subseteq N \backslash S_{2}$.
$S_{2} \subseteq S_{3}$.
$f S_{2} \subseteq f S_{3}$.
$\mathrm{N} \backslash \mathrm{fS}_{3} \subseteq \mathrm{~N} \backslash \mathrm{fS}_{2}$.
$S_{4} \subseteq S_{3}$.
Now assume the induction hypothesis

$$
\mathrm{S}_{2 i} \subseteq \mathrm{~S}_{2 i+2} \subseteq \mathrm{~S}_{2 i+1} \subseteq \mathrm{~S}_{2 i-1}
$$

Then

$$
\begin{gathered}
f S_{2 i} \subseteq f S_{2 i+2} \subseteq f S_{2 i+1} \subseteq f S_{2 i-1} \\
N \backslash f S_{2 i-1} \subseteq N \backslash f S_{2 i+1} \subseteq N \backslash f S_{2 i+2} \subseteq N \backslash f S_{2 i} . \\
S_{2 i} \subseteq S_{2 i+2} \subseteq S_{2 i+3} \subseteq S_{2 i+1} \\
f S_{2 i} \subseteq \mathrm{fS}_{2 i+2} \subseteq f S_{2 i+3} \subseteq \mathrm{fS}_{2 i+1} . \\
N \backslash f S_{2 i+1} \subseteq N \backslash f S_{2 i+3} \subseteq N \backslash f S_{2 i+2} \subseteq N \backslash f S_{2 i} . \\
S_{2 i+2} \subseteq S_{2 i+4} \subseteq S_{2 i+3} \subseteq S_{2 i+1} .
\end{gathered}
$$

QED
LEMMA 2.5.2. Let $f: N^{k} \rightarrow N$ be partial, where each $f^{-1}(n)$ is finite. Let $A=S_{2} \cup S_{4} \cup \ldots$, and $B=S_{1} \cap S_{3} \cap \ldots$. . Then $A \subseteq B, A=N \backslash f B, B=N \backslash f A$.

Proof: Let A, B be as given. By Lemma 2.5.1, $A \subseteq B$.
Fix i $\geq 1 . S 2 i=N \backslash f S 2 i-1, S 2 i \cap f S 2 i-1=\varnothing, S 2 i \cap f B=\varnothing$. Since $i \geq 1$ is arbitrary, $A \cap f B=\varnothing$. I.e., $A \subseteq N \backslash f B$.

Since $S_{2 i+1}=N \backslash f S_{2 i}$, we see that for all j \geq i, $S_{2 i+1} \cap \mathrm{fS}_{2 j}=$ \varnothing. Hence $S_{2 i+1} \cap f A=\varnothing$. Since $i \geq 1$ is arbitrary, $B \cap f A=$ \varnothing. I.e., $B \subseteq N \backslash f A$.

Now let $n \in N \backslash f B$. We claim that for some $j \geq 0, n \notin f S_{2 j+1}$. Suppose that for all $j \geq 0, n \in f S_{2 j+1}$. Since $f^{-1}(n)$ is finite, there exists $x \in f^{-1}(n)$ which lies in infinitely many $S_{2 j+1}$. Hence there exists $x \in f^{-1}(n)$ such that $x \in B$. Therefore $n \in f B$. This establishes the claim. Fix $j \geq 0$ such that $n \notin f S_{2 j+1}$. Then $n \in S_{2 j+2}$, and so $n \in A$. This establishes that $A=N \backslash f B$.

Finally, let $n \in N \backslash f A$. Then for all i, $n \notin f_{2 i}$. Hence for all j, $n \in S_{2 j+1}$. Therefore $n \in B$. This estabslihes that $B=$ $\mathrm{N} \backslash \mathrm{fA}$. QED

LEMMA 2.5.3. Let $\mathrm{f}:[0, \mathrm{n}]^{\mathrm{k}} \rightarrow[0, \mathrm{n}]$ be partial, $\mathrm{n} \geq 0$. There exist $A \subseteq B \subseteq[0, n]$ such that $A=[0, n] \backslash f B$ and $B=$ $[0, n] \backslash f A$.

Proof: Let n, f be as given. Obviously f:Nk $\rightarrow \mathrm{N}$ is partial, and each $f-1(n)$ is finite. By Lemma 2.5.2, let $A=S_{2} \cup S_{4} \cup$ \ldots, and $B=S_{1} \cap S_{3} \cap \ldots$. Then $A \subseteq B, A=N \backslash f B, B=$ $N \backslash f A$. Note that $A \cap[0, n] \subseteq B \cap[0, n], A \cap[0, n]=$ $[0, n] \backslash f B, B \cap[0, n] \backslash f A . Q E D$

LEMMA 2.5.4. For all $f \in \operatorname{EVSD}$ there exist infinite $A \subseteq B \subseteq$ N such that $B \cup$. $f A=A \cup f B=N$.

Proof: Let $f \in E V S D$. Let $n \geq 1$ be such that $|x| \geq n \rightarrow f(x)$ $>|x|$. Let f^{\prime} be the restriction of f to those elements of $[0, \mathrm{n}-1]^{k}$ whose value lies in $[0, \mathrm{n}-1]$. Then $\mathrm{f}^{\prime}:[0, \mathrm{n}-1]^{k} \rightarrow$ [0,n-1] is partial.

By Lemma 2.5.3, let $A^{\prime} \subseteq B^{\prime} \subseteq[0, \mathrm{n}-1]$, where $A^{\prime}=[0, \mathrm{n}-$ $1] \backslash f^{\prime} B^{\prime}$ and $B^{\prime}=[0, n-1] \backslash f^{\prime} A^{\prime}$.

We now define the required A, B by induction. Membership in A, B for $m<n$ is just membership in A^{\prime}, B^{\prime}. Thus for all $m<$ n,

$$
\begin{aligned}
& m \in B \leftrightarrow m \in B^{\prime} \leftrightarrow m \notin f^{\prime} A^{\prime} \leftrightarrow m \notin f A . \\
& m \in A \leftrightarrow m \in A^{\prime} \leftrightarrow m \notin f^{\prime} B^{\prime} \leftrightarrow m \notin f B .
\end{aligned}
$$

Now suppose membership in A, B has been defined for all $0 \leq i$ $<m$, where $m \geq n$, and we have $A \subseteq B$ thus far.
case 1. m $\notin f$ thus far. Put $m \in A, B$. case $2 . m \in f A$ thus far. Put $m \notin A, B$.

This defines membership of m in A, B. NOte that we still have $A \subseteq B$.

Now let A, B be the result of this inductive construction. Note that by the choice of n, all of the "thus far" remain true of the actual A, B, where $m \geq n$. Thus we have for all m $\geq \mathrm{n}$,
$\mathrm{A} \subseteq \mathrm{B}$.
$m \notin \mathrm{fA} \leftrightarrow \mathrm{m} \in \mathrm{A} \leftrightarrow \mathrm{m} \in \mathrm{B}$. $m \notin A \rightarrow m \in f A \rightarrow m \in f B$.

Hence for all $m \geq n, m \in B U$. fA and $m \in A \cup f B$. Since this also holds for $m<n$, this holds for all $m \in N$.

Finally, suppose A is finite. Then fA is finite, and so eventually all m are placed in A. Thus A is infinite. Hence A is infinite. QED

LEMMA 2.5.5. For all $f \in \operatorname{EVSD}$ there exist infinite $A \subseteq B \subseteq$ N such that $A \cup . f B=N$ and $B \cap f A=\varnothing$.

Proof: Let $f \in E V S D . ~ L e t ~ n, A^{\prime}, B^{\prime}$ be as in the first paragraph of the proof of Lemma 2.5.4.

We now define the required A, B by induction. Membership in A, B for $m<n$ is just membership in A^{\prime}, B^{\prime}. Thus for all $m<$ n,

$$
\begin{aligned}
& m \in B \leftrightarrow m \in B^{\prime} \leftrightarrow m \notin f^{\prime} A^{\prime} \leftrightarrow m \notin \notin f A . \\
& m \in A \leftrightarrow m \in A^{\prime} \leftrightarrow m \notin f^{\prime} B^{\prime} \leftrightarrow m \notin f B .
\end{aligned}
$$

Now suppose membership in A, B has been defined for all i < m, where $m \geq n$, and we have $A \subseteq B$ thus far.
case $1 . m \notin f B$ thus far. Put $m \in A, B$. case $2 . m \in f B$ thus far. Put $m \notin A, B$.

This defines membership of m in A, B. Note that we still have $A \subseteq B$.

Now let A, B be the result of this inductive construction. Note that by the choice of n, all of the "thus far" remain true of the actual A, B, where $m \geq n$. Thus we have for all m $\geq \mathrm{n}$,
$\mathrm{A} \subseteq \mathrm{B}$.
$m \notin \mathrm{fB} \leftrightarrow \mathrm{m} \in \mathrm{A} \leftrightarrow \mathrm{m} \in \mathrm{B}$.
$\mathrm{m} \in \mathrm{B} \rightarrow \mathrm{m} \notin \mathrm{fB} \rightarrow \mathrm{m} \notin \mathrm{fA}$.

Hence for all $m \geq n, m \in A \cup$. $f B$ and $m \notin B \cap f A$. Since this also holds for $m<n$, this holds for all $m \in N$.

Finally, suppose A is finite. Then eventually all m are placed in fB. Hence eventually all mare placed outside B. Hence B is finite. So $f B$ is finite. Then eventually all m are put in A, B. This is a contradiction. QED

LEMMA 2.5.6. There exists $f \in \operatorname{ELG}$ such that $\mathrm{f}^{-1}(0)=$ $\{(0, \ldots, 0)\}, f(N \backslash\{0\}) \subseteq 2 N+1$, and for all $A \subseteq N$ containing $0, f A \cap 2 N \subseteq A \rightarrow f A$ is cofinite.

Proof: Let $g \in E L G \cap$ SD be given by Lemma 3.2.1. We define 4 -ary $f \in$ ELG as follows. $f(0,0,0,0)=0$. $f(0, n, m, r)=$ $g(n, m, r)$ if $(n, m, r) \neq(0,0,0) . f(t, n, m, r)=2|t, n, m, r|+1$ if $t \neq 0$. Obviously $f \in \operatorname{ELG} \cap \operatorname{SD}, f(N \backslash\{0\}) \subseteq 2 N+1$, and $f^{-1}(0)=$ $\{(0,0,0,0)\}$.

Now let $A \subseteq N, 0 \in A$, where $f A \cap 2 N \subseteq A$. Since $g A \subseteq f A$, we have gA $\cap 2 \mathrm{~N} \subseteq A$, and so by Lemma 3.2.1, gA is cofinite. Hence fA is cofinite. QED

LEMMA 2.5.7. The following is false. For all $f \in E L G$ there exist infinite $A \subseteq B \subseteq N$ such that $A \cap f B=\varnothing, B \cup f B=N$, and $f B \subseteq B \cup f A$.

Proof: Let $f \in$ ELG be given by Lemma 2.5.6. Let $A \cap f B=\varnothing$, $B \cup f B=N$, and $f B \subseteq B \cup f A$, where A is infinite. Now $0 \in B$ $v 0 \in f B$. Since
$\mathrm{f}^{-1}(0)=\{(0,0,0,0)\}$, we have $0 \in B, 0 \in f B, 0 \notin A$.
Therefore $f A \subseteq 2 N+1$. Since $f B \subseteq B \cup f A$, we have $f B \cap 2 N \subseteq$ B. Therefore $f B$ is cofinite. This contradicts $A \cap f B=\varnothing$. QED

LEMMA 2.5.8. The following is false. For all $f \in E L G$ there exist infinite $A \subseteq B \subseteq N$ such that $B U$. $f A=N$ and $A \cap f B=$ \varnothing.

Proof: Let f be as given by Lemma 2.5.6. Let $A \subseteq B \subseteq N$, B \cup. $f A=N, A \cap f B=\varnothing$, where A is infnite. Since $0 \in B \cup$. fA, we have $0 \in B v 0 \in f A$. If $0 \in f A$ then $0 \in A, B$, because $\mathrm{f}^{-1}(0)=\{(0,0,0,0)\}$. Hence $0 \notin \mathrm{fA}, 0 \notin \mathrm{~A}$. Therefore fA \subseteq $2 N+1$. Since $B \cup f A=N$, we have $2 N \subseteq B$. By Lemma 3.2.1, fB is cofinite. $B y A \cap f B=\varnothing$, A is finite. But A is infinite. QED

LEMMA 2.5.9. For all $f \in \operatorname{EVSD}$ there exist infinite $\mathrm{A} \subseteq \mathrm{B} \subseteq$ N such that $B \cup . f A=N$ and $A \subseteq f B$.

Proof: Let n be such that $|x| \geq n \rightarrow f(x)>|x|$. We can use Lemma 2.4.1 with N replaced by $[n, \infty)$. Let $A, B \subseteq[n, \infty), A \subseteq$ $B, B \cup$. $f A=[n, \infty)$ and $A=B \cap f B$, where A is infinite. Then $B \cup . f A=[n, \infty), A \subseteq f B$. Replace B with $B \cup[0, n-1]$. QED

LEMMA 2.5.10. The following is false. For all $f \in E L G$ there exist infinite $A \subseteq B \subseteq N$ such that $A \cap f A=\varnothing, B \cup f B=N$, $B \cap f B \subseteq A \cup f A$.

Proof: Let f be as given by Lemma 2.5.6. Let $A \subseteq B \subseteq N$ such that $A \cap f A=\varnothing, B \cup f B=N, B \cap f B \subseteq A \cup f A$, where A, B are infinite. Then $0 \in B \cup f B$, and so $0 \in B \cap f B$. Hence 0 $\in A \cup f A$, in which case $0 \in A \cap f A$. QED

LEMMA 2.5.11. For all $f \in \operatorname{EVSD}$ there exist infinite $A \subseteq B \subseteq$ N such that $A \cup . f B=N$ and $f A \subseteq B$.

Proof: Let f^{\prime} be the restriction of f to $\{x: \mathrm{f}(\mathrm{x})>|x|\}$. Then f^{\prime} is defined at all but finitely many elements of dom(f). As remarked right after Lemma 2.4.5, Lemma 2.4.2 holds even for partial functions, and so in particular for f^{\prime}. Let $A \subseteq B \subseteq N$, where $A \cup . f^{\prime} B=N$ and $f^{\prime} A \subseteq B$ and A is infinite. Let $A^{\prime}=N \backslash f B \subseteq A$. Since $f^{\prime} B$ contains all but finitely many elements of $f B$, we see that A^{\prime} remains infinite. Then A^{\prime}, B are as required. QED

LEMMA 2.5.12. Let $f \in \operatorname{EVSD}$. There exist infinite $A \subseteq B \subseteq N$ such that $f B \subseteq B \cup$. fA and $A=B \cap f B$.

Proof: Let n be such that $|x| \geq n \rightarrow f(x)>|x|$. We can use Lemma 2.4.1 with N replaced by $[n, \infty)$. Let $A, B \subseteq[n, \infty), A \subseteq$ $B, B \cup . f A=[n, \infty)$, and $A=B \cap f B$, where A is infinite. Since $f B \subseteq[n, \infty)$, the proof is complete. QED

LEMMA 2.5.13. Let $f \in \operatorname{EVSD}$. There exist infinite $A \subseteq N$ such that $A \cap f(A \cup f A)=\varnothing$.

Proof: Let n be such that $|x| \geq n \rightarrow f(x)>|x|$. Define $n_{0}<$ $\mathrm{n}_{1}<.$. by induction as follows. Let $\mathrm{n}_{0}=\mathrm{n}$. Suppose n_{i} has been defined, $i \geq 0$. Let n_{i+1} be greater than all elements of $f(A \cup f A)$, thus far. Finally, let $A=\left\{n_{0}, n_{1}, \ldots\right\} . \operatorname{QED}$

LEMMA 2.5.14. Let $f \in \operatorname{EVSD}$ and let $X \subseteq N$, where min (X) is sufficiently large. There exists a unique A such that $A \subseteq X$ $\subseteq A \cup . f A$. If X is infinite then A is infinite.

Proof: Let f, X be as given. Then $|x| \geq \min (X) \rightarrow f(x)>|x|$. We can use Lemma 2.4.3 with N replaced by $[m i n(X), \infty)$. Let A $\subseteq X \cap[\min (X), \infty) \subseteq A \cup . f A$.

For uniqueness, suppose $A \subseteq X \subseteq A \cup . f A, A ' \subseteq X \subseteq A^{\prime} \cup$. fA', and let $n=\min \left(A \Delta A^{\prime}\right)$. Since $f \in S D, ~ c l e a r l y n \in f A$ $\leftrightarrow n \in f A^{\prime}$. This is a contradiction. QED

As in section 2.4, we start with the 9 elementary inclusions in $A, B, f A, f B, \subseteq$.
$E B R T$ in $A, B, f A, f B, \subseteq$ on (ELG,INF), (EVSD,INF).
$A \cap f A=\varnothing$.
$B \cup f B=N$.

```
B\subseteqA\cupfB.
fB\subseteqB\cupfA.
A}\subseteqfB
B \capfB\subseteqA\cupfA.
fA\subseteqB.
A \capfB\subseteqfA.
B \capfA\subseteqA.
Our classification amounts to a determination of the
subsets S of the above nine inclusions for which
(\forallf \in ELG)(\existsA\subseteqB from INF)(S)
(\forallf \in EVSD)(\existsA \subseteq B from INF)(S)
holds, where S is interpreted conjunctively.
EBRT in A,B,fA,fB,\subseteq on (ELG,INF), (EGS \cap SD,INF).*
# 5
A \capfA = \varnothing.
B U fB = N.
fA\subseteqB.
A}\subseteqfB
B}\subseteqA\cupfB
fB\subseteqB\cupfA.
A \capfB\subseteqfA.
B \cap fA \subseteqA.
B \capfB\subseteqA\cupfA.
LIST 1.
A \capfA = \varnothing:
B U fB = N.
fA\subseteqB.
A\subseteqfB.
B\subseteqA \cupfB.
fB\subseteqB U fA.
A \capfB\subseteqfA. A \cap fB = \varnothing.
B\capfA\subseteqA. B \cap fA = \varnothing.
B \capfB\subseteqA\cupfA.
LIST 1*.
# 6
A \capfA = \varnothing:
B \cap fA = \varnothing.
A \capfB}=\varnothing
```

$\mathrm{fA} \subseteq \mathrm{B}$.
$A \subseteq f B$.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A$.

LIST 1.1.
$\mathrm{A} \cap \mathrm{fA}=\varnothing$: Redundant.
$B \cap f A=\varnothing$:
$A \cap f B=\varnothing$.
$f A \subseteq B$. No.
$A \subseteq f B$.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A . B \cap f B \subseteq A$.
LIST 1.1.*
\# 4
$B \cap f A=\varnothing$:
$A \cap f B=\varnothing$.
$A \subseteq f B$.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A$.

LIST 1.1.1.
$B \cap f A=\varnothing$:
$A \cap f B=\varnothing$:
$A \subseteq f B$. No.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A . B \cap f B=\varnothing$.

LIST 1.1.1.*
\# 2
$B \cap f A=\varnothing$:
$A \cap f B=\varnothing:$
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$\mathrm{fB} \subseteq \mathrm{B} \cup \mathrm{fA}$.
$B \cap f B=\varnothing$.

LIST 1.1.1.1.
$B \cap f A=\varnothing:$
$A \cap f B=\varnothing:$
$B \cup f B=N:$
$B \subseteq A \cup f B . A \cup f B=N$.
$f B \subseteq B \cup f A . B \cup f A=N$. No. Lemma 2.5.8.
$B \cap f B=\varnothing$. No. Lemma 2.5.10.

LIST 1.1.1.1.*
\# 0
$B \cap f A=\varnothing:$
$A \cap f B=\varnothing:$
$B \cup f B=N:$
$A \cup f B=N$.

Entirely RCA_{0} correct. Lemma 2.5.5.

LIST 1.1.1.2.
$B \cap f A=\varnothing:$
$A \cap f B=\varnothing:$
$B \subseteq A \cup f B:$
$\mathrm{fB} \subseteq \mathrm{B} \cup \mathrm{fA}$.
$B \cap f B=\varnothing$.

Entirely $R C A_{0}$ correct. Set $A \cap f A=\varnothing, B=A$.
LIST 1.1.2.
$B \cap f A=\varnothing:$
$A \subseteq f B:$
$B \cup f B=N$.
$B \subseteq A \cup f B . B \subseteq f B . N o$.
$\mathrm{fB} \subseteq \mathrm{B} \cup f \mathrm{f}$.
$B \cap f B \subseteq A$.

LIST 1.1.2.*
\# 2
$B \cap \mathrm{fA}=\varnothing:$
$A \subseteq f B:$
$B \cup f B=N$.
$\mathrm{fB} \subseteq \mathrm{B} \cup \mathrm{fA}$.
$B \cap f B \subseteq A$.

LIST 1.1.2.1.
$B \cap f A=\varnothing:$
$A \subseteq f B:$
$B \cup f B=N:$
$f B \subseteq B \cup f A . B \cup f A=N$.
$B \cap f B \subseteq A$. No. Lemma 2.5.10.

LIST 1.1.2.1.*
\# 0
$B \cap f A=\varnothing:$
$A \subseteq f B:$
$B \cup f B=N:$
$B \cup f A=N$.

Entirely RCA_{0} correct. Lemma 2.5.9.

LIST 1.1.2.2.
$B \cap f A=\varnothing:$
$A \subseteq f B:$
$f B \subseteq B \cup f A:$
$B \cap f B \subseteq A$.

Entirely RCA_{0} correct. Lemma 2.5.12.

LIST 1.1.3.
$B \cap f A=\varnothing:$
$B \cup f B=N:$
$B \subseteq A \cup f B . A \cup f B=N$.
$f B \subseteq B \cup f A . B \cup f A=N$.
$B \cap f B \subseteq A$. No. Lemma 2.5.10.

LIST 1.1.3.*
\# 0
$B \cap f A=\varnothing:$
$B \cup f B=N:$
$A \cup f B=N$.
$B \cup f A=N$.

Entirely RCA_{0} correct. Lemma 2.5.4.

```
LIST 1.1.4.
B \cap fA = \varnothing:
B}\subseteqA\cupfB
fB\subseteqB\cupfA.
B \capfB}\subseteqA
Entirely RCA correct. Set A \cap fA = \varnothing, B = A.
LIST 1.2.
A \cap fA = \varnothing: Redundant.
A \cap fB = \varnothing:
fA\subseteqB.
A\subseteqfB. No.
B UfB=N.
B\subseteqA\cupfB.
fB\subseteqB\cupfA.
B \capfB\subseteqA\cupfA. B \cap fB\subseteqfA.
LIST 1.2.*
# 3
A \cap fB = \varnothing:
fA\subseteqB.
B U fB = N.
B\subseteqA\cupfB.
fB\subseteqB\cupfA.
B \capfB\subseteqfA.
LIST 1.2.1.
A \cap fB = \varnothing:
fA\subseteqB:
B U fB = N.
B\subseteqA\cupfB.
fB\subseteqB \cup fA. fB \subseteq B. No. Lemma 2.4.4.
B \capfB\subseteqfA.
LIST 1.2.1.*
# 2
A \capfB}=\varnothing\mathrm{ :
fA\subseteqB:
B U fB = N.
B}\subseteqA\cupfB
```

$B \cap f B \subseteq f A$.

LIST 1.2.1.1.
$A \cap f B=\varnothing:$
$\mathrm{fA} \subseteq \mathrm{B}:$
$B \cup f B=N:$
$B \subseteq A \cup f B$.
$B \cap f B \subseteq f A$. No. Lemma 2.5.10.

LIST 1.2.1.1.*
\# 0
$A \cap f B=\varnothing:$
$\mathrm{fA} \subseteq \mathrm{B}:$
$B \cup f B=N:$
$B \subseteq A \cup f B$.

Entirely RCA_{0} correct. See Lemma 2.5.11.

LIST 1.2.1.2.
\# 0
$A \cap f B=\varnothing:$
$\mathrm{fA} \subseteq \mathrm{B}:$
$B \subseteq A \cup f B:$
$B \cap f B \subseteq f A$.

Entirely $R^{\prime} A_{0}$ correct. Le A be given by Lemma 2.5.13. Set B $=A \cup f A$.

LIST 1.2.2.
$A \cap \mathrm{fB}=\varnothing:$
$B \cup f B=N:$
$B \subseteq A \cup f B . A \cup f B=N$.
$f B \subseteq B \cup$ fA. No. Lemma 2.5.7.
$B \cap f B \subseteq$ fA. No. Lemma 2.5.10.

LIST 1.2.2.*
\# 0
$A \cap f B=\varnothing:$
$B \cup f B=N:$
$A \cup f B=N$.

Entirely RCA_{0} correct. Lemma 2.5.5.

```
LIST 1.2.3.
A \cap fB = \varnothing:
B}\subseteqA\cupfB
fB\subseteqB\cupfA.
B \capfB\subseteqfA.
Entirely RCA correct. Set A \cap fA = \varnothing, B = A.
LIST 1.3.
A \capfA = \varnothing:
fA\subseteqB:
A\subseteqfB.
B \cupfB=N.
B}\subseteqA\cupfB
fB\subseteqB\cupfA.
B \capfB\subseteqA\cupfA.
LIST 1.3.*
# 3
A \cap fA = \varnothing:
fA\subseteqB:
A}\subseteqfB
B U fB = N.
B}\subseteqA\cupfB
fB}\subseteqB
B \capfB\subseteqA\cupfA.
LIST 1.3.1.
A \cap fA = \varnothing:
fA\subseteqB:
A}\subseteqfB
B U fB = N.
B\subseteqA\cupfB. B\subseteqfB. No. Lemma 2.4.5.
fB}\subseteqB
B \capfB\subseteqA\cupfA.
LIST 1.3.1.*
# 2
A \capfA = \varnothing:
fA\subseteqB:
A\subseteqfB:
```

$B \cup f B=N$.
$\mathrm{fB} \subseteq \mathrm{B}$.
$B \cap f B \subseteq A \cup f A$.
LIST 1.3.1.1.
$A \cap f A=\varnothing:$
$f A \subseteq B:$
$A \subseteq f B:$
$B \cup f B=N:$
$f B \subseteq B$.
$B \cap f B \subseteq A \cup f A$. No. Lemma 2.5.10.
LIST 1.3.1.1.*
\# 0
$\mathrm{A} \cap \mathrm{fA}=\varnothing:$
$f A \subseteq B:$
$A \subseteq f B:$
$B \cup f B=N:$
$f B \subseteq B$.
Entirely $R_{C A}$ correct. Let A be given by Lemma 2.4.3 with A $\subseteq f N \subseteq A \cup$. fA. Set $B=N$.

LIST 1.3.1.2.
$A \cap f A=\varnothing:$
$f A \subseteq B:$
$A \subseteq f B:$
$f B \subseteq B:$
$B \cap f B \subseteq A \cup f A$.
Entirely $R_{C A}$ correct. Let $B=[n, \infty)$, n sufficiently large. By Lemma 2.5.14, let $A \subseteq f B \subseteq A \cup$. fA.

LIST 1.3.2.
$A \cap f A=\varnothing:$
$f A \subseteq B:$
$B \cup f B=N:$
$B \subseteq A \cup f B . A \cup f B=N$.
$f B \subseteq B . B=N$.
$B \cap f B \subseteq A \cup f A$. No. Lemma 2.5.10.
LIST 1.3.2.*
\# 0
$A \cap f A=\varnothing:$
$\mathrm{fA} \subseteq \mathrm{B}:$
$B \cup f B=N:$
$A \cup f B=N$.
$B=N$.

Entirely $R_{C A}$ correct. Set $A=N \backslash f N, B=N$.

LIST 1.3.3.
$A \cap f A=\varnothing:$
$f A \subseteq B:$
$B \subseteq A \cup f B:$
$\mathrm{fB} \subseteq \mathrm{B}$.
$B \cap f B \subseteq A \cup f A$.

Entirely $R_{C A}$ correct. Let $B=[n, \infty)$ for n sufficiently large. Let $A \subseteq B \subseteq A \cup . f A, b y$ Lemma 2.5.14.

LIST 1.4.
$A \cap f A=\varnothing:$
$A \subseteq f B:$
$B \cup f B=N$.
$B \subseteq A \cup f B . B \subseteq f B$. No. Lemma 2.4.5.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A$.

LIST 1.4.*
\# 2
$A \cap f A=\varnothing:$
$A \subseteq f B:$
$B \cup f B=N$.
$\mathrm{fB} \subseteq \mathrm{B} \cup \mathrm{f} A$.
$B \cap f B \subseteq A \cup f A$.

LIST 1.4.1.
$A \cap f A=\varnothing:$
$A \subseteq f B:$
$B \cup f B=N:$
$\mathrm{fB} \subseteq \mathrm{B} \cup \mathrm{fA}$.
$B \cap f B \subseteq A \cup f A$. No. Lemma 2.5.10.

LIST 1.4.1.*
\# 0
$A \cap \mathrm{fA}=\varnothing:$
$A \subseteq f B:$
$B \cup f B=N:$
$\mathrm{fB} \subseteq \mathrm{B} \cup f \mathrm{~A}$.
Entirely $R_{C A}$ correct. Let $A \subseteq f N \subseteq A \cup$. fA be given by Lemma 2.4.3. Set $B=N$.

LIST 1.4.2.
$A \cap \mathrm{fA}=\varnothing:$
$A \subseteq f B:$
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A$.
Entirely RCA_{0} correct. Lemma 2.5.12.
LIST 1.5.
$A \cap f A=\varnothing:$
$B \cup f B=N:$
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A . N o . L e m m a$ 2.5.10.
LIST 1.5.*
\# 0
$A \cap f A=\varnothing:$
$B \cup f B=N:$
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
Entirely RCA_{0} correct. Lemma 2.5.4.
LIST 1.6.
$A \cap f A=\varnothing$:
$B \subseteq A \cup f B:$
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A$.
Entirely $R_{C A}$ correct. Let $A \cap f A=\varnothing, B=A$.
LIST 2.

```
B U fB = N:
fA\subseteqB.
A \subseteqfB.
B\subseteqA\cupfB. A \cupfB = N.
fB\subseteqB\cupfA. B U fA = N.
A \capfB\subseteqfA.
B\capfA\subseteqA.
B\capfB\subseteqA\cupfA.
LIST 2.*
# 3
B U fB=N:
fA\subseteqB.
A\subseteqfB.
A UfB = N.
B U fA = N.
A \capfB\subseteqfA.
B\capfA\subseteqA.
B\capfB\subseteqA\cupfA.
LIST 2.1.
B U fB=N:
fA\subseteqB:
A\subseteqfB.
A UfB=N.
BUfA=N. B = N.
A \capfB \subseteqfA.
B\capfA\subseteqA. fA \subseteqA.
B\capfB\subseteqA\cupfA.
LIST 2.1.*
# 2
B U fB=N:
fA\subseteqB:
A\subseteqfB.
A U fB = N.
B = N
A \capfB\subseteqfA.
fA\subseteqA.
B\capfB\subseteqA\cupfA.
LIST 2.1.1.
```

$B \cup f B=N:$
$f A \subseteq B:$
$A \subseteq f B:$
$A \cup f B=N . f B=N$. No. Lemma 2.4.5.
$B=N$.
$A \cap f B \subseteq f A . A \subseteq f A$. No. Lemma 2.4.5.
$f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
LIST 2.1.1.*
\# 0
$B \cup f B=N:$
$f A \subseteq B:$
$A \subseteq f B:$
$B=N$.
$\mathrm{fA} \subseteq \mathrm{A}$.
$B \cap f B \subseteq A \cup f A$.
Entirely $R^{\prime} A_{0}$ correct. Set $A=f N, B=N$.
LIST 2.1.2.
$B \cup f B=N:$
$f A \subseteq B:$
$A \cup f B=N$.
$\mathrm{B}=\mathrm{N}$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
Entirely $R C A_{0}$ correct. Set $A=B=N$.
LIST 2.2.
$B \cup f B=N:$
$A \subseteq f B:$
$A \cup f B=N$. Yes.
$B \cup f A=N$.
$A \cap f B \subseteq f A . A \subseteq f A$. No. Lemma 2.4.5.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
LIST 2.2.*
\# 0
$B \cup f B=N:$
$A \subseteq f B:$
$f B \subseteq B \cup f A . B \cup f A=N$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
Entirely $R_{C A}$ correct. Set $A=f N, B=N$.
LIST 2.3.
$B \cup f B=N:$
$A \cup f B=N$.
$B \cup f A=N$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
Entirely RCA A_{0} correct. Set $A=B=N$.
LIST 3.
$f A \subseteq B:$
$A \subseteq f B$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
LIST 3*.
\# 2
$f A \subseteq B:$
$A \subseteq f B$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
LIST 3.1.
$f A \subseteq B:$
$A \subseteq f B:$
$B \subseteq A \cup f B . B \subseteq f B$. No. Lemma 2.4.5. $f B \subseteq B \cup f A$.
$A \cap f B \subseteq f A . A \subseteq f A$. No. Lemma 2.4.5.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
LIST 3.1.*
\# 0
$\mathrm{fA} \subseteq \mathrm{B}:$
$A \subseteq f B:$
$f B \subseteq B \cup f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
Entirely $R_{C A}$ correct. Set $A=f N, B=N$.
LIST 3.2.
$f A \subseteq B:$
$B \subseteq A \cup f B:$
$f B \subseteq B \cup f A$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
Entirely RCA_{0} correct. Set $A=B=f N$.
LIST 4.
$A \subseteq f B:$
$B \subseteq A \cup f B . B \subseteq f B$. No. Lemma 2.4.5. $f B \subseteq B \cup f A$.
$A \cap f B \subseteq f A . A \subseteq f A$. No. Lemma 2.4.5.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
LIST 4.*
\# 0
$A \subseteq f B:$
$f B \subseteq B \cup f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
Entirely $R^{\prime} A_{0}$ correct. Set $A=f N, B=N$.
LIST 5.
$B \subseteq A \cup f B:$ $f B \subseteq B \cup f A$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.

Entirely $R_{C A}$ correct. Set $A=B=N$.

THEOREM 2.5.15. EBRT in $A, B, f A, f B, \subseteq$ on (ELG, INF), (EVSD,INF) have the same correct formats. EBRT in $A, B, f A, f B, \subseteq$ on (ELG, INF) and (EVSD,INF) are $R C A_{0}$ secure.

Proof: We have presented an $R_{C A}$ classification of EBRT in $A, B, f A, f B, \subseteq$ on (ELG, INF), (EVSD,INF) in the sense of the tree methodology of section 2.1. All of the documentation works equally well on (ELG,INF) and (EVSD,INF). We have stayed within RCA_{0}. QED

THEOREM 2.5.16. There are at most 26 maximal α correct α formats, where α is EBRT in $A, B, f A, f B, \subseteq$ on (ELG,INF), (EVSD, INF).

Proof: Here is the list of numerical labels of terminal vertices in the $R_{C A}$ classification of EBRT in $A, B, f A, f B, \subseteq$ on (ELG,INF), (EVSD,INF) given above:
1.1.1.1.*
1.1.1.2.
1.1.2.1.*
1.1.2.2.
1.1.3.*
1.1.3.
1.2.1.1.*
1.2.1.2.
1.2.2.*
1.2.3.
1.3.1.1.*
1.3.1.2.
1.3.2.*
1.3.3.
1.4.1.*
1.4.2.
1.5.*
1.6.
2.1.1.*
2.1.2.
2.2.*
2.3.
3.1.*
3.2.
4.*
5.

The count is 26. Apply Theorem 2.1.5. QED

