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2.5. EBRT in A,B,fA,fB,⊆ on (ELG,INF). 
 
In this section, we use the tree methodology described in 
section 2.1 to analyze EBRT in A,B,fA,fB,⊆ on (ELG,INF) and 
(EVSD,INF). We handle both BRT settings at once, as they 
behave the same way for EBRT in A,B,fA,fB,⊆. In particular, 
we show that they are RCA0 secure (see Definition 1.1.43). 
 
Some of this treatment is the same as for EBRT in 
A,B,fA,fB,⊆ on (SD,INF) given in section 2.4. However, many 
new features appear that makes this section considerably 
more involved than section 2.4.  
 
A key difference between EBRT in A,B,fA,fB,⊆ on (SD,INF) 
and on (ELG,INF) is that the Compelmentation Theorem holds 
on (SD,INF), yet fails on (ELG,INF). E.g., it fails for 
f(x) = 2x. 
 
Let f:Nk → N be partial. Define the following series of 
sets by induction i ≥ 1. 
 

S1 = N. 
Si+1 = N\fSi. 

 
LEMMA 2.5.1. S2 ⊆ S4 ⊆ S6 ⊆ ... ⊆ ... ⊆ S5 ⊆ S3 ⊆ S1. I.e., 
for all i ≥ 1, S2i ⊆ S2i+2 ⊆ S2i+1 ⊆ S2i-1. 
 
Proof: We argue by induction on i ≥ 1. The basis case is  
 

S2 ⊆ S4 ⊆ S3 ⊆ S1. 
 
To see this, clearly 
 
S3 ⊆ S1. 
N\S1 ⊆ N\S3. 
S2 ⊆ S4. 
S2 ⊆ S1. 
N\S1 ⊆ N\S2. 
S2 ⊆ S3. 
fS2 ⊆ fS3. 
N\fS3 ⊆ N\fS2. 
S4 ⊆ S3.  
 
Now assume the induction hypothesis  
 

S2i ⊆ S2i+2 ⊆ S2i+1 ⊆ S2i-1. 
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Then  
 

fS2i ⊆ fS2i+2 ⊆ fS2i+1 ⊆ fS2i-1. 
N\fS2i-1 ⊆ N\fS2i+1 ⊆ N\fS2i+2 ⊆ N\fS2i. 

S2i ⊆ S2i+2 ⊆ S2i+3 ⊆ S2i+1. 
fS2i ⊆ fS2i+2 ⊆ fS2i+3 ⊆ fS2i+1. 

N\fS2i+1 ⊆ N\fS2i+3 ⊆ N\fS2i+2 ⊆ N\fS2i. 
S2i+2 ⊆ S2i+4 ⊆ S2i+3 ⊆ S2i+1. 

 
QED 
 
LEMMA 2.5.2. Let f:Nk → N be partial, where each f-1(n) is 
finite. Let A = S2 ∪ S4 ∪ ..., and B = S1 ∩ S3 ∩ ... . Then 
A ⊆ B, A = N\fB, B = N\fA. 
 
Proof: Let A,B be as given. By Lemma 2.5.1, A ⊆ B.  
 
Fix i ≥ 1. S2i = N\fS2i-1, S2i ∩ fS2i-1 = ∅, S2i ∩ fB = ∅. 
Since i ≥ 1 is arbitrary, A ∩ fB = ∅. I.e., A ⊆ N\fB.  
 
Since S2i+1 = N\fS2i, we see that for all j ≥ i, S2i+1 ∩ fS2j = 
∅. Hence S2i+1 ∩ fA = ∅. Since i ≥ 1 is arbitrary, B ∩ fA = 
∅. I.e., B ⊆ N\fA. 
 
Now let n ∈ N\fB. We claim that for some j ≥ 0, n ∉ fS2j+1. 
Suppose that for all j ≥ 0, n ∈ fS2j+1. Since f-1(n) is 
finite, there exists x ∈ f-1(n) which lies in infinitely 
many S2j+1. Hence there exists x ∈ f-1(n) such that x ∈ B. 
Therefore n ∈ fB. This establishes the claim. Fix j ≥ 0 
such that n ∉ fS2j+1. Then n ∈ S2j+2, and so n ∈ A. This 
establishes that A = N\fB. 
 
Finally, let n ∈ N\fA. Then for all i, n ∉ fS2i. Hence for 
all j, n ∈ S2j+1. Therefore n ∈ B. This estabslihes that B = 
N\fA. QED 
 
LEMMA 2.5.3. Let f:[0,n]k → [0,n] be partial, n ≥ 0. There 
exist A ⊆ B ⊆ [0,n] such that A = [0,n]\fB and B = 
[0,n]\fA.  
 
Proof: Let n,f be as given. Obviously f:Nk → N is partial, 
and each f-1(n) is finite. By Lemma 2.5.2, let A = S2 ∪ S4 ∪ 
..., and B = S1 ∩ S3 ∩ ... . Then A ⊆ B, A = N\fB, B = 
N\fA. Note that A ∩ [0,n] ⊆ B ∩ [0,n], A ∩ [0,n] = 
[0,n]\fB, B ∩ [0,n]\fA. QED 
 



 3 

LEMMA 2.5.4. For all f ∈ EVSD there exist infinite A ⊆ B ⊆ 
N such that B ∪. fA = A ∪ fB = N. 
 
Proof: Let f ∈ EVSD. Let n ≥ 1 be such that |x| ≥ n → f(x) 
> |x|. Let f’ be the restriction of f to those elements of 
[0,n-1]k whose value lies in [0,n-1]. Then f’:[0,n-1]k → 
[0,n-1] is partial.  
 
By Lemma 2.5.3, let A’ ⊆ B’ ⊆ [0,n-1], where A’ = [0,n-
1]\f’B’ and B’ = [0,n-1]\f’A’.  
 
We now define the required A,B by induction. Membership in 
A,B for m < n is just membership in A’,B’. Thus for all m < 
n, 
 

m ∈ B ↔ m ∈ B’ ↔ m ∉ f’A’ ↔ m ∉ fA. 
m ∈ A ↔ m ∈ A’ ↔ m ∉ f’B’ ↔ m ∉ fB. 

 
Now suppose membership in A,B has been defined for all 0 ≤ i 
< m, where m ≥ n, and we have A ⊆ B thus far.  
 
case 1. m ∉ fA thus far. Put m ∈ A,B.  
case 2. m ∈ fA thus far. Put m ∉ A,B. 
 
This defines membership of m in A,B. NOte that we still 
have A ⊆ B.  
 
Now let A,B be the result of this inductive construction. 
Note that by the choice of n, all of the “thus far” remain 
true of the actual A,B, where m ≥ n. Thus we have for all m 
≥ n,  
 

A ⊆ B. 
m ∉ fA ↔ m ∈ A ↔ m ∈ B. 
m ∉ A → m ∈ fA → m ∈ fB. 

 
Hence for all m ≥ n, m ∈ B ∪. fA and m ∈ A ∪ fB. Since this 
also holds for m < n, this holds for all m ∈ N.  
 
Finally, suppose A is finite. Then fA is finite, and so 
eventually all m are placed in A. Thus A is infinite. Hence 
A is infinite. QED 
 
LEMMA 2.5.5. For all f ∈ EVSD there exist infinite A ⊆ B ⊆ 
N such that A ∪. fB = N and B ∩ fA = ∅.  
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Proof: Let f ∈ EVSD. Let n,A’,B’ be as in the first 
paragraph of the proof of Lemma 2.5.4.  
 
We now define the required A,B by induction. Membership in 
A,B for m < n is just membership in A’,B’. Thus for all m < 
n,  
 

m ∈ B ↔ m ∈ B’ ↔ m ∉ f’A’ ↔ m ∉ fA. 
m ∈ A ↔ m ∈ A’ ↔ m ∉ f’B’ ↔ m ∉ fB. 

 
Now suppose membership in A,B has been defined for all i < 
m, where m ≥ n, and we have A ⊆ B thus far.  
 
case 1. m ∉ fB thus far. Put m ∈ A,B.  
case 2. m ∈ fB thus far. Put m ∉ A,B. 
 
This defines membership of m in A,B. Note that we still 
have A ⊆ B.  
 
Now let A,B be the result of this inductive construction. 
Note that by the choice of n, all of the “thus far” remain 
true of the actual A,B, where m ≥ n. Thus we have for all m 
≥ n,  
 

A ⊆ B. 
m ∉ fB ↔ m ∈ A ↔ m ∈ B. 
m ∈ B → m ∉ fB → m ∉ fA. 

 
Hence for all m ≥ n, m ∈ A ∪. fB and m ∉ B ∩ fA. Since this 
also holds for m < n, this holds for all m ∈ N.  
 
Finally, suppose A is finite. Then eventually all m are 
placed in fB. Hence eventually all m are placed outside B. 
Hence B is finite. So fB is finite. Then eventually all m 
are put in A,B. This is a contradiction. QED  
 
LEMMA 2.5.6. There exists f ∈ ELG such that f-1(0) = 
{(0,...,0)}, f(N\{0}) ⊆ 2N+1, and for all A ⊆ N containing 
0, fA ∩ 2N ⊆ A → fA is cofinite. 
 
Proof: Let g ∈ ELG ∩ SD be given by Lemma 3.2.1. We define 
4-ary f ∈ ELG as follows. f(0,0,0,0) = 0. f(0,n,m,r) = 
g(n,m,r) if (n,m,r) ≠ (0,0,0). f(t,n,m,r) = 2|t,n,m,r|+1 if 
t ≠ 0. Obviously f ∈ ELG ∩ SD, f(N\{0}) ⊆ 2N+1, and f-1(0) = 
{(0,0,0,0)}.  
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Now let A ⊆ N, 0 ∈ A, where fA ∩ 2N ⊆ A. Since gA ⊆ fA, we 
have gA ∩ 2N ⊆ A, and so by Lemma 3.2.1, gA is cofinite. 
Hence fA is cofinite. QED     
 
LEMMA 2.5.7. The following is false. For all f ∈ ELG there 
exist infinite A ⊆ B ⊆ N such that A ∩ fB = ∅, B ∪ fB = N, 
and fB ⊆ B ∪ fA.  
 
Proof: Let f ∈ ELG be given by Lemma 2.5.6. Let A ∩ fB = ∅, 
B ∪ fB = N, and fB ⊆ B ∪ fA, where A is infinite. Now 0 ∈ B 
∨ 0 ∈ fB. Since  
f-1(0) = {(0,0,0,0)}, we have 0 ∈ B, 0 ∈ fB, 0 ∉ A. 
Therefore fA ⊆ 2N+1. Since fB ⊆ B ∪ fA, we have fB ∩ 2N ⊆ 
B. Therefore fB is cofinite. This contradicts A ∩ fB = ∅. 
QED  
 
LEMMA 2.5.8. The following is false. For all f ∈ ELG there 
exist infinite A ⊆ B ⊆ N such that B ∪. fA = N and A ∩ fB = 
∅. 
 
Proof: Let f be as given by Lemma 2.5.6. Let A ⊆ B ⊆ N, B 
∪. fA = N, A ∩ fB = ∅, where A is infnite. Since 0 ∈ B ∪. 
fA, we have 0 ∈ B ∨ 0 ∈ fA. If 0 ∈ fA then 0 ∈ A,B, because 
f-1(0) = {(0,0,0,0)}. Hence 0 ∉ fA, 0 ∉ A. Therefore fA ⊆ 
2N+1. Since B ∪ fA = N, we have 2N ⊆ B.  By Lemma 3.2.1, fB 
is cofinite. By A ∩ fB = ∅, A is finite. But A is infinite. 
QED 
 
LEMMA 2.5.9. For all f ∈ EVSD there exist infinite A ⊆ B ⊆ 
N such that B ∪. fA = N and A ⊆ fB.  
 
Proof: Let n be such that |x| ≥ n → f(x) > |x|. We can use 
Lemma 2.4.1 with N replaced by [n,∞). Let A,B ⊆ [n,∞), A ⊆ 
B, B ∪. fA = [n,∞) and A = B ∩ fB, where A is infinite. 
Then B ∪. fA = [n,∞), A ⊆ fB. Replace B with B ∪ [0,n-1]. 
QED 
 
LEMMA 2.5.10. The following is false. For all f ∈ ELG there 
exist infinite A ⊆ B ⊆ N such that A ∩ fA = ∅, B ∪ fB = N, 
B ∩ fB ⊆ A ∪ fA. 
 
Proof: Let f be as given by Lemma 2.5.6. Let A ⊆ B ⊆ N such 
that A ∩ fA = ∅, B ∪ fB = N, B ∩ fB ⊆ A ∪ fA, where A,B 
are infinite. Then 0 ∈ B ∪ fB, and so 0 ∈ B ∩ fB. Hence 0 
∈ A ∪ fA, in which case 0 ∈ A ∩ fA. QED 
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LEMMA 2.5.11. For all f ∈ EVSD there exist infinite A ⊆ B ⊆ 
N such that A ∪. fB = N and fA ⊆ B.  
 
Proof: Let f’ be the restriction of f to {x: f(x) > |x|}. 
Then f’ is defined at all but finitely many elements of 
dom(f). As remarked right after Lemma 2.4.5, Lemma 2.4.2 
holds even for partial functions, and so in particular for 
f’. Let A ⊆ B ⊆ N, where A ∪. f’B = N and f’A ⊆ B and A is 
infinite. Let A’ = N\fB ⊆ A. Since f’B contains all but 
finitely many elements of fB, we see that A’ remains 
infinite. Then A’,B are as required. QED  
 
LEMMA 2.5.12. Let f ∈ EVSD. There exist infinite A ⊆ B ⊆ N 
such that fB ⊆ B ∪. fA and A = B ∩ fB.  
 
Proof: Let n be such that |x| ≥ n → f(x) > |x|. We can use 
Lemma 2.4.1 with N replaced by [n,∞). Let A,B ⊆ [n,∞), A ⊆ 
B, B ∪. fA = [n,∞), and A = B ∩ fB, where A is infinite. 
Since fB ⊆ [n,∞), the proof is complete. QED    
 
LEMMA 2.5.13. Let f ∈ EVSD. There exist infinite A ⊆ N such 
that A ∩ f(A ∪ fA) = ∅.   
 
Proof: Let n be such that |x| ≥ n → f(x) > |x|. Define n0 < 
n1 < ... by induction as follows. Let n0 = n. Suppose ni has 
been defined, i ≥ 0. Let ni+1 be greater than all elements of 
f(A ∪ fA), thus far. Finally, let A = {n0,n1,...}. QED 
 
LEMMA 2.5.14. Let f ∈ EVSD and let X ⊆ N, where min(X) is 
sufficiently large. There exists a unique A such that A ⊆ X 
⊆ A ∪. fA. If X is infinite then A is infinite.  
 
Proof: Let f,X be as given. Then |x| ≥ min(X) → f(x) > |x|. 
We can use Lemma 2.4.3 with N replaced by [min(X),∞). Let A 
⊆ X ∩ [min(X),∞) ⊆ A ∪. fA.  
 
For uniqueness, suppose A ⊆ X ⊆ A ∪. fA, A' ⊆ X ⊆ A' ∪. 
fA', and let n = min(A Δ A'). Since f ∈ SD, clearly n ∈ fA 
↔ n ∈ fA'. This is a contradiction. QED  
 
As in section 2.4, we start with the 9 elementary 
inclusions in A,B,fA,fB,⊆. 
 
EBRT in A,B,fA,fB,⊆ on (ELG,INF), (EVSD,INF). 
 
A ∩ fA = ∅. 
B ∪ fB = N. 
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B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ⊆ fB. 
B ∩ fB ⊆ A ∪ fA. 
fA ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
 
Our classification amounts to a determination of the 
subsets S of the above nine inclusions for which  
 
(∀f ∈ ELG)(∃A ⊆ B from INF)(S) 
(∀f ∈ EVSD)(∃A ⊆ B from INF)(S) 
 
holds, where S is interpreted conjunctively. 
  
EBRT in A,B,fA,fB,⊆ on (ELG,INF), (EGS ∩ SD,INF).* 
# 5 
 
A ∩ fA = ∅.  
B ∪ fB = N. 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.  
 
A ∩ fA = ∅: 
B ∪ fB = N. 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
A ∩ fB ⊆ fA. A ∩ fB = ∅.  
B ∩ fA ⊆ A. B ∩ fA = ∅.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1*. 
# 6 
 
A ∩ fA = ∅: 
B ∩ fA = ∅.  
A ∩ fB = ∅.  
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fA ⊆ B. 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.1. 
 
A ∩ fA = ∅: Redundant.  
B ∩ fA = ∅:  
A ∩ fB = ∅.  
fA ⊆ B. No. 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ A. 
 
LIST 1.1.* 
# 4 
 
B ∩ fA = ∅:  
A ∩ fB = ∅.  
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A. 
 
LIST 1.1.1. 
 
B ∩ fA = ∅:  
A ∩ fB = ∅:  
A ⊆ fB. No. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A. B ∩ fB = ∅. 
 
LIST 1.1.1.* 
# 2 
 
B ∩ fA = ∅:  
A ∩ fB = ∅: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
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fB ⊆ B ∪ fA.  
B ∩ fB = ∅. 
 
LIST 1.1.1.1. 
 
B ∩ fA = ∅:  
A ∩ fB = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB. A ∪ fB = N. 
fB ⊆ B ∪ fA. B ∪ fA = N. No. Lemma 2.5.8.  
B ∩ fB = ∅. No. Lemma 2.5.10. 
 
LIST 1.1.1.1.* 
# 0 
 
B ∩ fA = ∅:  
A ∩ fB = ∅: 
B ∪ fB = N: 
A ∪ fB = N. 
 
Entirely RCA0 correct. Lemma 2.5.5. 
 
LIST 1.1.1.2. 
 
B ∩ fA = ∅:  
A ∩ fB = ∅: 
B ⊆ A ∪ fB:  
fB ⊆ B ∪ fA.  
B ∩ fB = ∅.  
 
Entirely RCA0 correct. Set A ∩ fA = ∅, B = A.  
 
LIST 1.1.2. 
 
B ∩ fA = ∅:  
A ⊆ fB:  
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A.  
 
LIST 1.1.2.* 
# 2 
 
B ∩ fA = ∅:  
A ⊆ fB:  
B ∪ fB = N. 
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fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A.  
 
LIST 1.1.2.1. 
 
B ∩ fA = ∅:  
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B ∪ fA. B ∪ fA = N.  
B ∩ fB ⊆ A. No. Lemma 2.5.10. 
 
LIST 1.1.2.1.* 
# 0 
 
B ∩ fA = ∅:  
A ⊆ fB:  
B ∪ fB = N: 
B ∪ fA = N.  
 
Entirely RCA0 correct. Lemma 2.5.9. 
 
LIST 1.1.2.2. 
 
B ∩ fA = ∅:  
A ⊆ fB:  
fB ⊆ B ∪ fA:  
B ∩ fB ⊆ A.  
 
Entirely RCA0 correct. Lemma 2.5.12. 
 
LIST 1.1.3.  
 
B ∩ fA = ∅:  
B ∪ fB = N: 
B ⊆ A ∪ fB. A ∪ fB = N.  
fB ⊆ B ∪ fA. B ∪ fA = N.   
B ∩ fB ⊆ A. No. Lemma 2.5.10. 
 
LIST 1.1.3.* 
# 0 
 
B ∩ fA = ∅:  
B ∪ fB = N: 
A ∪ fB = N.  
B ∪ fA = N.   
 
Entirely RCA0 correct. Lemma 2.5.4. 
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LIST 1.1.4. 
 
B ∩ fA = ∅: 
B ⊆ A ∪ fB: 
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A.  
 
Entirely RCA0 correct. Set A ∩ fA = ∅, B = A.  
 
LIST 1.2.  
 
A ∩ fA = ∅: Redundant.  
A ∩ fB = ∅: 
fA ⊆ B. 
A ⊆ fB. No. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ fA. 
 
LIST 1.2.* 
# 3 
 
A ∩ fB = ∅: 
fA ⊆ B. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ fA. 
 
LIST 1.2.1. 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA. fB ⊆ B. No. Lemma 2.4.4.  
B ∩ fB ⊆ fA. 
 
LIST 1.2.1.* 
# 2 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
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B ∩ fB ⊆ fA. 
 
LIST 1.2.1.1. 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
B ⊆ A ∪ fB.  
B ∩ fB ⊆ fA. No. Lemma 2.5.10. 
 
LIST 1.2.1.1.* 
# 0 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
B ⊆ A ∪ fB.  
 
Entirely RCA0 correct. See Lemma 2.5.11.  
 
LIST 1.2.1.2. 
# 0 
 
A ∩ fB = ∅: 
fA ⊆ B: 
B ⊆ A ∪ fB: 
B ∩ fB ⊆ fA.  
 
Entirely RCA0 correct. Le A be given by Lemma 2.5.13. Set B 
= A ∪ fA.  
 
LIST 1.2.2. 
 
A ∩ fB = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB. A ∪ fB = N.  
fB ⊆ B ∪ fA. No. Lemma 2.5.7.  
B ∩ fB ⊆ fA. No. Lemma 2.5.10. 
 
LIST 1.2.2.* 
# 0 
 
A ∩ fB = ∅: 
B ∪ fB = N: 
A ∪ fB = N. 
 
Entirely RCA0 correct. Lemma 2.5.5.  
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LIST 1.2.3. 
 
A ∩ fB = ∅: 
B ⊆ A ∪ fB: 
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ fA. 
 
Entirely RCA0 correct. Set A ∩ fA = ∅, B = A.  
 
LIST 1.3.  
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB.  
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.* 
# 3 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB.  
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.1. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5. 
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA.  
 
LIST 1.3.1.* 
# 2 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
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B ∪ fB = N. 
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA.  
 
LIST 1.3.1.1. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA. No. Lemma 2.5.10. 
 
LIST 1.3.1.1.* 
# 0 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B.  
 
Entirely RCA0 correct. Let A be given by Lemma 2.4.3 with A 
⊆ fN ⊆ A ∪. fA. Set B = N.  
 
LIST 1.3.1.2. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB:  
fB ⊆ B:  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Let B = [n,∞), n sufficiently large. 
By Lemma 2.5.14, let A ⊆ fB ⊆ A ∪. fA. 
 
LIST 1.3.2. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
B ⊆ A ∪ fB. A ∪ fB = N.  
fB ⊆ B. B = N.   
B ∩ fB ⊆ A ∪ fA. No. Lemma 2.5.10. 
 
LIST 1.3.2.* 
# 0 
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A ∩ fA = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
A ∪ fB = N.  
B = N.   
 
Entirely RCA0 correct. Set A = N\fN, B = N.  
 
LIST 1.3.3. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
B ⊆ A ∪ fB:  
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA.  
 
Entirely RCA0 correct. Let B = [n,∞) for n sufficiently 
large. Let A ⊆ B ⊆ A ∪. fA, by Lemma 2.5.14.  
 
LIST 1.4.  
 
A ∩ fA = ∅: 
A ⊆ fB:  
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.4.* 
# 2 
 
A ∩ fA = ∅: 
A ⊆ fB:  
B ∪ fB = N. 
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.4.1.  
 
A ∩ fA = ∅: 
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. No. Lemma 2.5.10. 
 
LIST 1.4.1.* 
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# 0  
 
A ∩ fA = ∅: 
A ⊆ fB:  
B ∪ fB = N: 
fB ⊆ B ∪ fA.  
 
Entirely RCA0 correct. Let A ⊆ fN ⊆ A ∪. fA be given by 
Lemma 2.4.3. Set B = N.  
 
LIST 1.4.2. 
 
A ∩ fA = ∅: 
A ⊆ fB:  
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Lemma 2.5.12.  
 
LIST 1.5.  
 
A ∩ fA = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB.   
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. No. Lemma 2.5.10. 
 
LIST 1.5.* 
# 0 
 
A ∩ fA = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
 
Entirely RCA0 correct. Lemma 2.5.4.  
 
LIST 1.6.  
 
A ∩ fA = ∅: 
B ⊆ A ∪ fB:   
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA.  
 
Entirely RCA0 correct. Let A ∩ fA = ∅, B = A.  
 
LIST 2.  
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B ∪ fB = N: 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB. A ∪ fB = N.  
fB ⊆ B ∪ fA. B ∪ fA = N.  
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.*  
# 3 
 
B ∪ fB = N: 
fA ⊆ B. 
A ⊆ fB. 
A ∪ fB = N.  
B ∪ fA = N.  
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1. 
 
B ∪ fB = N: 
fA ⊆ B: 
A ⊆ fB. 
A ∪ fB = N.  
B ∪ fA = N. B = N.   
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A. fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.* 
# 2 
 
B ∪ fB = N: 
fA ⊆ B: 
A ⊆ fB. 
A ∪ fB = N.  
B = N.   
A ∩ fB ⊆ fA.  
fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.1. 
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B ∪ fB = N: 
fA ⊆ B: 
A ⊆ fB: 
A ∪ fB = N. fB = N. No. Lemma 2.4.5. 
B = N.   
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.  
fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.1.* 
# 0 
 
B ∪ fB = N: 
fA ⊆ B: 
A ⊆ fB: 
B = N.   
fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N.  
 
LIST 2.1.2. 
 
B ∪ fB = N: 
fA ⊆ B: 
A ∪ fB = N. 
B = N. 
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = N. 
 
LIST 2.2. 
 
B ∪ fB = N: 
A ⊆ fB: 
A ∪ fB = N. Yes. 
B ∪ fA = N. 
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.  
B ∩ fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.2.* 
# 0 
 
B ∪ fB = N: 
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A ⊆ fB: 
fB ⊆ B ∪ fA. B ∪ fA = N. 
B ∩ fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N. 
 
LIST 2.3. 
 
B ∪ fB = N: 
A ∪ fB = N. 
B ∪ fA = N. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = N. 
 
LIST 3.  
 
fA ⊆ B: 
A ⊆ fB. 
B ⊆ A ∪ fB.   
fB ⊆ B ∪ fA.   
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 3*. 
# 2 
 
fA ⊆ B: 
A ⊆ fB. 
B ⊆ A ∪ fB.   
fB ⊆ B ∪ fA.   
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 3.1. 
 
fA ⊆ B: 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA.    
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.  
B ∩ fA ⊆ A.  
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B ∩ fB ⊆ A ∪ fA. 
 
LIST 3.1.* 
# 0 
 
fA ⊆ B: 
A ⊆ fB: 
fB ⊆ B ∪ fA.    
B ∩ fA ⊆ A.    
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N.  
 
LIST 3.2. 
 
fA ⊆ B: 
B ⊆ A ∪ fB:   
fB ⊆ B ∪ fA.     
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = fN. 
 
LIST 4. 
 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA.   
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 4.* 
# 0 
 
A ⊆ fB: 
fB ⊆ B ∪ fA.   
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N. 
 
LIST 5. 
 
B ⊆ A ∪ fB:  
fB ⊆ B ∪ fA.   
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A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = N. 
 
THEOREM 2.5.15. EBRT in A,B,fA,fB,⊆ on (ELG,INF), 
(EVSD,INF) have the same correct formats. EBRT in 
A,B,fA,fB,⊆ on (ELG,INF) and (EVSD,INF) are RCA0 secure. 
 
Proof: We have presented an RCA0 classification of EBRT in 
A,B,fA,fB,⊆ on (ELG,INF), (EVSD,INF) in the sense of the 
tree methodology of section 2.1. All of the documentation 
works equally well on (ELG,INF) and (EVSD,INF). We have 
stayed within RCA0. QED 
 
THEOREM 2.5.16. There are at most 26 maximal α correct α 
formats, where α is EBRT in A,B,fA,fB,⊆ on (ELG,INF), 
(EVSD,INF).  
 
Proof: Here is the list of numerical labels of terminal 
vertices in the RCA0 classification of EBRT in A,B,fA,fB,⊆ 
on (ELG,INF), (EVSD,INF) given above: 
1.1.1.1.* 
1.1.1.2. 
1.1.2.1.* 
1.1.2.2. 
1.1.3.* 
1.1.3. 
1.2.1.1.* 
1.2.1.2. 
1.2.2.* 
1.2.3. 
1.3.1.1.* 
1.3.1.2. 
1.3.2.* 
1.3.3. 
1.4.1.* 
1.4.2. 
1.5.* 
1.6. 
2.1.1.* 
2.1.2. 
2.2.* 
2.3. 
3.1.* 
3.2. 
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4.* 
5. 
The count is 26. Apply Theorem 2.1.5. QED 
 
 


