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2.4. EBRT in A,B,fA,fB,⊆ on (SD,INF). 
 
In this section, we use the tree methodology described in 
section 2.1 to classify EBRT in A,B,fA,fB,⊆ on (SD,INF) and 
(ELG ∩ SD,INF). We handle both BRT settings at once, as 
they behave the same way for EBRT in A,B,fA,fB,⊆. In 
particular, we show that they are RCA0 secure (see 
Definition 1.1.43). 
 
We begin with a list of five Lemmas that we will need for 
documenting the classification.  
 
LEMMA 2.4.1. Let f ∈ SD. There exist infinite A ⊆ B ⊆ N 
such that B ∪. fA = N and A = B ∩ fB.  
 
Proof: By the BRT Fixed Point Theorem, section 1.3, let A 
be the unique A ⊆ N such that A = N\fA ∩ f(N\fA). Let B = 
N\fA. Clearly A ⊆ B and B ∪. fA = N. Also B ∩ fB = N\fA ∩ 
f(N\fA) = A.   
 
Suppose A is finite. Then N\fA is cofinite and f(N\fA) is 
infinite. Hence their intersection is infinite, and so A is 
infinite. So we conclude that A is infinite. QED 
 
LEMMA 2.4.2. Let f ∈ SD. There exist infinite A ⊆ B ⊆ N 
such that A ∪. fB = N, fA ⊆ B, and B ∩ fB ⊆ fA. 
 
Proof: By the BRT Fixed Point Theorem, section 1.3, let B 
be the unique B ⊆ N such that B = N\fB ∪ f(N\fB). Let A = 
N\fB. Then A ⊆ B, fA ⊆ B. Now B ∩ fB = (N\fB ∪ f(N\fB)) ∩ 
fB = f(N\fB) ∩ fB ⊆ fA. Suppose A is finite. Then B = A ∪ 
fA is finite. Hence N\fB = A is infinite, which is a 
contradiction. Hence A is infinite. Therefore fA,B are 
infinite. QED 
 
The following is a sharpening of the Complementation 
Theorem. 
 
LEMMA 2.4.3. Let f ∈ SD and X ⊆ N. There exists a unique A 
such that A ⊆ X ⊆ A ∪. fA.  
 
Proof: We will give a direct argument from scratch. Let f,X 
be as given. Define membership in A inductively as follows. 
Suppose membership in A for 0,...,n-1 has been defined. 
Define n ∈ A if and only if n ∈ X and n ∉ fA thus far. The 
construction is unique. QED 
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LEMMA 2.4.4. The following is false. For all f ∈ ELG ∩ SD 
there exist infinite A ⊆ B ⊆ N such that A ∩ fB = ∅ and fB 
⊆ B. 
 
Proof: Let f be given by Lemma 3.2.1, and let A ⊆ B ⊆ N, A 
∩ fB = ∅, and fB ⊆ B, where A is infinite. Just using fB ⊆ 
B, B ≠ ∅, we see that fB is cofinite, and hence A is 
finite. This is the desired contradiction. QED  
 
LEMMA 2.4.5. Let f ∈ SD. There is no nonempty A ⊆ N such 
that A ⊆ fA.  
 
Proof: Let n be the least element of A. Then n ∉ fA. QED 
 
Note that in the proofs of Lemmas 2.4.1, 2.4.2, 2.4.3, 
2.4.5, we never used the fact that f is everywhere defined. 
Hence these Lemmas hold even for partially defined f. We 
will use Lemma 2.4.2 for partial f in section 2.5.  
 
The 16 A,B,fA,fB pre elementary inclusions are as follows 
(see Definition 1.1.35). 
  
A ∩ B ∩ fA ∩ fB = ∅. 
A ∪ B ∪ fA ∪ fB = N. 
A ⊆ B ∪ fA ∪ fB. 
B ⊆ A ∪ fA ∪ fB. 
fA ⊆ A ∪ B ∪ fB. 
fB ⊆ A ∪ B ∪ fA. 
A ∩ B ⊆ fA ∪ fB. 
A ∩ fA ⊆ B ∪ fB. 
A ∩ fB ⊆ B ∪ fA. 
B ∩ fA ⊆ A ∪ fB. 
B ∩ fB ⊆ A ∪ fA. 
fA ∩ fB ⊆ A ∪ B. 
A ∩ B ∩ fA ⊆ fB. 
A ∩ B ∩ fB ⊆ fA. 
A ∩ fA ∩ fB ⊆ B. 
B ∩ fA ∩ fB ⊆ A. 
 
The 9 A,B,fA,fB,⊆ elementary inclusions are as follows (see 
Definition 1.1.37). 
 
A ∩ fA = ∅. 
B ∪ fB = N. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ⊆ fB. 
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B ∩ fB ⊆ A ∪ fA. 
fA ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
 
Our classification provides a determination of the subsets 
S of the above nine inclusions for which  
 
(∀f ∈ SD)(∃A ⊆ B from INF)(S) 
(∀f ∈ ELG ∩ SD)(∃A ⊆ B from INF)(S) 
 
holds, where S is interpreted conjunctively. 
 
We now build an RCA0 classification for α (see Definition 
2.1.9), where α is the BRT fragment: EBRT in A,B,fA,fB,⊆ on 
(SD,INF).  
 
Recall that RCA0 classifications for α are trees whose 
vertices are labeled with worklists. Our presentation of 
such trees in text, presents each vertex with a numerical 
label and the worklist label. (There are two special 
exceptions to this - see two paragraphs down).  
 
The numerical label consists of finite sequences of small 
positive integers, in lexicographic order, reflecting the 
tree structure. The worklist label is presented as a list 
of elementary inclusions, where the items in the first part 
of the worklist end with colons, and the items in the 
second part of the worklist end with periods.  
 
We begin with the presentation of the root of the 
classification tree, which does not have a numerical label, 
but instead has a label stating the BRT fragment(s) we are 
classifying. Its worklist label is a list of the elementary 
inclusions. It is immediately followed by the unique son of 
the root, with the same non numerical label appending with 
*, and its worklist label is a permutation of the list of 
the elementary inclusions. Note that these elementary 
inclusions end with periods because the first part of the 
worklist is empty. 
 
If a presented vertex is terminal, then it must be 
documented that it is entirely α,T correct, in the sense 
that the format obtained by ignoring the colons of the 
worklist is α,T correct.  
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If a worklist has numerical label n1.n2. ... nk., then 
either this worklist is terminal (no sons), or it has a 
unique son labeled n1.n2. ... nk.*. In the latter case, 
there is a documented α,RCA0 reduction from the former's 
worklist to the latter's worklist (see Definition 2.1.5).  
 
If a worklist is labeled n1.n2. ... nk.*, then it is either 
terminal, or has one or more sons, none of which end with 
*. The worklist of the last son is terminal.  
 
The symbols # k that appear right under the label of a 
vertex with a starred label indicates the number of sons. 
These # k are placed under the numerical label. 
 
We begin with the root worklist. It consists of the 9 
A,B,fA,fB,⊆ elementary inclusions above.  
 
The root worklist is followed by an α,RCA0 reduction, which 
permutes the entries in a perhaps strategic way. This 
starred worklist has five sons, as indicated by # 5.   
 
EBRT in A,B,fA,fB,⊆ on (SD,INF), (ELG ∩ SD,INF). 
 
A ∩ fA = ∅. 
B ∪ fB = N. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ⊆ fB. 
B ∩ fB ⊆ A ∪ fA. 
fA ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A. 
 
EBRT in A,B,fA,fB,⊆ on (SD,INF), (ELG ∩ SD,INF).* 
# 5 
 
A ∩ fA = ∅.  
B ∪ fB = N. 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.  
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A ∩ fA = ∅: 
B ∪ fB = N. 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
A ∩ fB ⊆ fA. A ∩ fB = ∅.  
B ∩ fA ⊆ A. B ∩ fA = ∅.  
B ∩ fB ⊆ A ∪ fA.   
 
LIST 1*. 
# 5 
 
A ∩ fA = ∅: 
B ∩ fA = ∅.  
A ∩ fB = ∅.  
fA ⊆ B. 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA.   
 
LIST 1.1. 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ∩ fB = ∅.  
fA ⊆ B. B ∩ fA = fA = ∅. No. 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ A. 
 
LIST 1.1.* 
# 3 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ∩ fB = ∅.  
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A. 
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LIST 1.1.1. 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ∩ fB = ∅:  
A ⊆ fB. No. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A. B ∩ fB = ∅. 
 
LIST 1.1.1.* 
# 0 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ∩ fB = ∅:  
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB = ∅. 
 
Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = A.  
 
LIST 1.1.2. 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ⊆ fB: 
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA.   
B ∩ fB ⊆ A.  
 
LIST 1.1.2.* 
# 0 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
A ⊆ fB: 
B ∪ fB = N. 
fB ⊆ B ∪ fA.   
B ∩ fB ⊆ A.  
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Entirely RCA0 correct. By Lemma 2.4.1, let A ⊆ B ⊆ N, B ∪. 
fA = N, A = B ∩ fB. 
 
LIST 1.1.3. 
 
A ∩ fA = ∅: 
B ∩ fA = ∅:  
B ∪ fB = N: 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.   
B ∩ fB ⊆ A. 
 
Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = A. 
 
LIST 1.2. 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
fA ⊆ B. 
A ⊆ fB. No. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ fA.  
 
LIST 1.2.* 
# 2 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
fA ⊆ B. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ fA.  
 
LIST 1.2.1. 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
fA ⊆ B: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA. fB ⊆ B. No. Lemma 2.4.4.  
B ∩ fB ⊆ fA.  
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LIST 1.2.1.* 
# 0 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
fA ⊆ B: 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
B ∩ fB ⊆ fA.  
 
Entirely RCA0 correct. By Lemma 2.4.2, let A ⊆ B ⊆ N, A ∪. 
fB = N, fA ⊆ B, B ∩ fB ⊆ fA.  
 
LIST 1.2.2. 
 
A ∩ fA = ∅: 
A ∩ fB = ∅:  
B ∪ fB = N: 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ fA. 
 
Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = A. 
 
LIST 1.3. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA. fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.* 
# 2 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB. 
B ∪ fB = N. 
B ⊆ A ∪ fB.  
fB ⊆ B. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.1. 
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A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB: 
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5. 
fB ⊆ B. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 1.3.1.* 
# 0 
 
A ∩ fA = ∅: 
fA ⊆ B: 
A ⊆ fB: 
B ∪ fB = N. 
fB ⊆ B. 
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. By Lemma 2.4.3, let A ⊆ fN ⊆ A ∪. 
fA. Set B = N.   
 
LIST 1.3.2. 
 
A ∩ fA = ∅: 
fA ⊆ B: 
B ∪ fB = N: 
B ⊆ A ∪ fB. 
fB ⊆ B.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = N.  
 
LIST 1.4. 
 
A ∩ fA = ∅: 
A ⊆ fB: 
B ∪ fB = N. 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA.   
 
LIST 1.4.* 
# 0 
 
A ∩ fA = ∅: 
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A ⊆ fB: 
B ∪ fB = N. 
fB ⊆ B ∪ fA.  
B ∩ fB ⊆ A ∪ fA.   
 
Entirely RCA0 correct. By Lemma 2.4.3, let A ⊆ fN ⊆ A ∪. 
fA. Set B = N. 
 
LIST 1.5. 
 
A ∩ fA = ∅: 
B ∪ fB = N: 
B ⊆ A ∪ fB.  
fB ⊆ B ∪ fA. 
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. By the Complementation Theorem, let A 
∪. fA = N. Set B = A.   
 
LIST 2. 
 
B ∪ fB = N: 
fA ⊆ B. 
A ⊆ fB. 
B ⊆ A ∪ fB. A ∪ fB = N. 
fB ⊆ B ∪ fA. B ∪ fA = N. 
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.* 
# 2 
 
B ∪ fB = N: 
A ⊆ fB. 
fA ⊆ B. 
A ∪ fB = N. 
B ∪ fA = N. 
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1. 
 
B ∪ fB = N: 
A ⊆ fB: 
fA ⊆ B. 
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A ∪ fB = N. fB = N. No. Lemma 2.4.5. 
B ∪ fA = N.  
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5.   
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.* 
# 2 
 
B ∪ fB = N: 
A ⊆ fB: 
fA ⊆ B. 
B ∪ fA = N.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.1. 
 
B ∪ fB = N: 
A ⊆ fB: 
fA ⊆ B: 
B ∪ fA = N. B = N.   
B ∩ fA ⊆ A. fA ⊆ A.   
B ∩ fB ⊆ A ∪ fA. 
 
LIST 2.1.1.* 
# 0 
 
B ∪ fB = N: 
A ⊆ fB: 
fA ⊆ B: 
B = N.   
fA ⊆ A. 
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N. 
 
LIST 2.1.2. 
 
B ∪ fB = N: 
A ⊆ fB: 
B ∪ fA = N:  
B ∩ fA ⊆ A. 
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Let B = N, A = fN.  
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LIST 2.2. 
 
B ∪ fB = N: 
fA ⊆ B: 
A ∪ fB = N. 
B ∪ fA = N. 
A ∩ fB ⊆ fA.  
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = B = N.  
 
LIST 3. 
 
fA ⊆ B: 
A ⊆ fB. 
B ⊆ A ∪ fB. 
fB ⊆ B ∪ fA. fB ⊆ B.  
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A. fA ⊆ A. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 3*. 
# 3 
 
fA ⊆ B: 
fA ⊆ A. 
A ⊆ fB. 
B ⊆ A ∪ fB. 
fB ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A ∪ fA. 
 
LIST 3.1. 
 
fA ⊆ B: 
fA ⊆ A: 
A ⊆ fB. 
B ⊆ A ∪ fB.  
fB ⊆ B.  
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A ∪ fA. B ∩ fB ⊆ A.  
 
LIST 3.1.* 
# 2 
 
fA ⊆ B: 
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fA ⊆ A: 
A ⊆ fB. 
B ⊆ A ∪ fB.  
fB ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A.  
 
LIST 3.1.1. 
 
fA ⊆ B: 
fA ⊆ A: 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5.  
fB ⊆ B. 
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5. 
B ∩ fB ⊆ A.  
 
LIST 3.1.1.* 
# 0 
 
fA ⊆ B: 
fA ⊆ A: 
A ⊆ fB: 
fB ⊆ B. 
B ∩ fB ⊆ A.  
 
Entirely RCA0 correct. Set A = fN, B = N.  
 
LIST 3.1.2. 
 
fA ⊆ B: 
fA ⊆ A: 
B ⊆ A ∪ fB:  
fB ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A. 
 
Entirely RCA0 correct. Set A = B = N. 
 
LIST 3.2. 
 
fA ⊆ B: 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5. 
fB ⊆ B. 
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5. 
B ∩ fB ⊆ A ∪ fA.  



 14 

 
LIST 3.2.* 
# 0 
 
fA ⊆ B: 
A ⊆ fB: 
fB ⊆ B. 
B ∩ fB ⊆ A ∪ fA.  
 
Entirely RCA0 correct. Set A = fN, B = N.   
 
LIST 3.3. 
 
fA ⊆ B: 
B ⊆ A ∪ fB:  
fB ⊆ B. 
A ∩ fB ⊆ fA. 
B ∩ fB ⊆ A ∪ fA.  
 
Entirely RCA0 correct. Set A = B = N.  
 
LIST 4. 
 
A ⊆ fB: 
B ⊆ A ∪ fB. B ⊆ fB. No. Lemma 2.4.5. 
fB ⊆ B ∪ fA. 
A ∩ fB ⊆ fA. A ⊆ fA. No. Lemma 2.4.5. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
LIST 4.* 
# 0 
 
A ⊆ fB: 
fB ⊆ B ∪ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
 
Entirely RCA0 correct. Set A = fN, B = N.  
 
LIST 5. 
 
B ⊆ A ∪ fB: 
fB ⊆ B ∪ fA. 
A ∩ fB ⊆ fA. 
B ∩ fA ⊆ A.  
B ∩ fB ⊆ A ∪ fA. 
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Entirely RCA0 correct. Set A = B = N. 
 
THEOREM 2.4.6. EBRT in A,B,fA,fB,⊆ on (SD,INF) and (ELG ∩ 
SD,INF) have the same correct formats. EBRT in A,B,fA,fB,⊆ 
on (SD,INF) and (ELG ∩ SD,INF) are RCA0 secure. 
 
Proof: We have presented an RCA0 classification of EBRT in 
A,B,fA,fB,⊆ on (SD,INF), (ELG ∩ SD,INF) in the sense of the 
tree methodology of section 2.1. All of the documentation 
works equally well on (SD,INF) and (ELG ∩ SD,INF), and we 
have remained within RCA0. QED 
 
THEOREM 2.4.7. There are at most 18 maximally α correct α 
formats, where α is EBRT in A,B,fA,fB,⊆ on (SD,INF), (ELG ∩ 
SD,INF).  
 
Proof: Here is the list of numerical labels of terminal 
vertices in the RCA0 classification of EBRT in A,B,fA,fB,⊆ 
on (SD,INF), (ELG ∩ SD,INF) given above: 
1.1.1.* 
1.1.2.* 
1.1.3. 
1.2.1.* 
1.2.2. 
1.3.1.* 
1.3.2. 
1.4.* 
1.5. 
2.1.1.* 
2.1.2. 
2.2. 
3.1.1.* 
3.1.2. 
3.2.* 
3.3. 
4.* 
5. 
The count is 18. Apply Theorem 2.1.5. QED 
 
 


