2.4. EBRT in $A, B, f A, f B, \subseteq$ on (SD,INF).

In this section, we use the tree methodology described in section 2.1 to classify $E B R T$ in $A, B, f A, f B, \subseteq$ on ($S D, I N F$) and (ELG \cap SD,INF). We handle both BRT settings at once, as they behave the same way for $E B R T$ in $A, B, f A, f B, \subseteq$. In particular, we show that they are $R C A_{0}$ secure (see Definition 1.1.43).

We begin with a list of five Lemmas that we will need for documenting the classification.

LEMMA 2.4.1. Let $f \in S D$. There exist infinite $A \subseteq B \subseteq N$ such that $B \cup . f A=N$ and $A=B \cap f B$.

Proof: By the BRT Fixed Point Theorem, section 1.3, let A be the unique $A \subseteq N$ such that $A=N \backslash f A \cap f(N \backslash f A)$. Let $B=$ $N \backslash f A$. Clearly $A \subseteq B$ and $B U$. $f A=N$. Also $B \cap f B=N \backslash f A \cap$ $\mathrm{f}(\mathrm{N} \backslash f \mathrm{~A})=\mathrm{A}$.

Suppose A is finite. Then $N \backslash f A$ is cofinite and $f(N \backslash f A)$ is infinite. Hence their intersection is infinite, and so A is infinite. So we conclude that A is infinite. QED

LEMMA 2.4.2. Let $f \in S D$. There exist infinite $A \subseteq B \subseteq N$ such that $A \cup f B=N, f A \subseteq B$, and $B \cap f B \subseteq f A$.

Proof: By the BRT Fixed Point Theorem, section 1.3, let B be the unique $B \subseteq N$ such that $B=N \backslash f B \cup f(N \backslash f B)$. Let $A=$ $N \backslash f B$. Then $A \subseteq B, f A \subseteq B$. Now $B \cap f B=(N \backslash f B \cup f(N \backslash f B)) \cap$ $f B=f(N \backslash f B) \cap f B \subseteq f A$. Suppose A is finite. Then $B=A \cup$ $f A$ is finite. Hence $N \backslash f B=A$ is infinite, which is a contradiction. Hence A is infinite. Therefore fA, B are infinite. QED

The following is a sharpening of the Complementation Theorem.

LEMMA 2.4.3. Let $f \in S D$ and $X \subseteq N$. There exists a unique A such that $A \subseteq X \subseteq A \cup$. fA.

Proof: We will give a direct argument from scratch. Let f,X be as given. Define membership in A inductively as follows. Suppose membership in A for $0, . ., \mathrm{n}-1$ has been defined. Define $n \in A$ if and only if $n \in X$ and $n \notin f A$ thus far. The construction is unique. QED

LEMMA 2.4.4. The following is false. For all f $\in E L G \cap S D$ there exist infinite $A \subseteq B \subseteq N$ such that $A \cap f B=\varnothing$ and $f B$ \subseteq B.

Proof: Let f be given by Lemma 3.2.1, and let $A \subseteq B \subseteq N, A$ $\cap f B=\varnothing$, and $f B \subseteq B$, where A is infinite. Just using $f B \subseteq$ $B, B \neq \varnothing$, we see that $f B$ is cofinite, and hence A is finite. This is the desired contradiction. QED

LEMMA 2.4.5. Let $f \in S D$. There is no nonempty $A \subseteq N$ such that $A \subseteq f A$.

Proof: Let n be the least element of A. Then $n \notin f A$. QED

Note that in the proofs of Lemmas 2.4.1, 2.4.2, 2.4.3, 2.4.5, we never used the fact that f is everywhere defined. Hence these Lemmas hold even for partially defined f. We will use Lemma 2.4.2 for partial f in section 2.5 .

The 16 A, B,fA,fB pre elementary inclusions are as follows (see Definition 1.1.35).
$A \cap B \cap f A \cap f B=\varnothing$.
$A \cup B \cup f A \cup f B=N$.
$A \subseteq B \cup f A \cup f B$.
$B \subseteq A \cup f A \cup f B$.
$\mathrm{fA} \subseteq A \cup B \cup f B$.
$\mathrm{fB} \subseteq A \cup B \cup \mathrm{fA}$.
$A \cap B \subseteq f A \cup f B$.
$A \cap f A \subseteq B \cup f B$.
$A \cap f B \subseteq B \cup f A$.
$B \cap f A \subseteq A \cup f B$.
$B \cap f B \subseteq A \cup f A$. $f A \cap f B \subseteq A \cup B$.
$A \cap B \cap f A \subseteq f B$.
$A \cap B \cap f B \subseteq f A$.
$A \cap f A \cap f B \subseteq B$.
$B \cap f A \cap f B \subseteq A$.

The 9 A, B,fA,fB, \subseteq elementary inclusions are as follows (see Definition 1.1.37).
$A \cap f A=\varnothing$.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$A \subseteq f B$.
$B \cap f B \subseteq A \cup f A$.
$f A \subseteq B$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
Our classification provides a determination of the subsets S of the above nine inclusions for which
$(\forall f \in S D)(\exists A \subseteq B$ from INF) (S)
$(\forall f \in E L G \cap S D)(\exists A \subseteq B$ from INF) (S)
holds, where S is interpreted conjunctively.
We now build an $R^{\prime} A_{0}$ classification for α (see Definition 2.1.9), where α is the BRT fragment: EBRT in $A, B, f A, f B, \subseteq$ on (SD,INF).

Recall that RCA_{0} classifications for α are trees whose vertices are labeled with worklists. Our presentation of such trees in text, presents each vertex with a numerical label and the worklist label. (There are two special exceptions to this - see two paragraphs down).

The numerical label consists of finite sequences of small positive integers, in lexicographic order, reflecting the tree structure. The worklist label is presented as a list of elementary inclusions, where the items in the first part of the worklist end with colons, and the items in the second part of the worklist end with periods.

We begin with the presentation of the root of the classification tree, which does not have a numerical label, but instead has a label stating the BRT fragment(s) we are classifying. Its worklist label is a list of the elementary inclusions. It is immediately followed by the unique son of the root, with the same non numerical label appending with *, and its worklist label is a permutation of the list of the elementary inclusions. Note that these elementary inclusions end with periods because the first part of the worklist is empty.

If a presented vertex is terminal, then it must be documented that it is entirely α, T correct, in the sense that the format obtained by ignoring the colons of the worklist is α, T correct.

If a worklist has numerical label $n_{1} . n_{2}$. ... n_{k}. , then either this worklist is terminal (no sons), or it has a unique son labeled $n_{1} . n_{2} n_{k} . *$. In the latter case, there is a documented $\alpha, R^{\prime} A_{0}$ reduction from the former's worklist to the latter's worklist (see Definition 2.1.5).

If a worklist is labeled $n_{1} . \mathrm{n}_{2}$. ... $\mathrm{n}_{\mathrm{k}} .{ }^{*}$, then it is either terminal, or has one or more sons, none of which end with *. The worklist of the last son is terminal.

The symbols \# k that appear right under the label of a vertex with a starred label indicates the number of sons. These \# k are placed under the numerical label.

We begin with the root worklist. It consists of the 9 $A, B, f A, f B, \subseteq$ elementary inclusions above.

The root worklist is followed by an α, RCA_{0} reduction, which permutes the entries in a perhaps strategic way. This starred worklist has five sons, as indicated by \# 5.
$E B R T$ in $A, B, f A, f B, \subseteq$ on (SD,INF), (ELG $\cap S D, I N F)$.
$A \cap f A=\varnothing$.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$A \subseteq f B$.
$B \cap f B \subseteq A \cup f A$.
$f A \subseteq B$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$E B R T$ in $A, B, f A, f B, \subseteq$ on ($S D, I N F)$, (ELG $\cap S D, I N F) . *$
\# 5
$A \cap f A=\varnothing$.
$B \cup f B=N$.
$\mathrm{fA} \subseteq \mathrm{B}$.
$A \subseteq f B$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.

LIST 1.
$A \cap f A=\varnothing:$
$B \cup f B=N$.
$\mathrm{fA} \subseteq \mathrm{B}$.
$A \subseteq f B$.
$B \subseteq A \cup f B$.
$\mathrm{fB} \subseteq \mathrm{B} \cup \mathrm{fA}$.
$A \cap f B \subseteq f A . A \cap f B=\varnothing$.
$B \cap f A \subseteq A . B \cap f A=\varnothing$.
$B \cap f B \subseteq A \cup f A$.

LIST 1*.
\# 5
$A \cap f A=\varnothing:$
$B \cap f A=\varnothing$.
$A \cap f B=\varnothing$.
$\mathrm{fA} \subseteq \mathrm{B}$.
$A \subseteq f B$.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A$.

LIST 1.1.
$A \cap f A=\varnothing:$
$B \cap f A=\varnothing:$
$A \cap f B=\varnothing$.
$f A \subseteq B . B \cap f A=f A=\varnothing$. No.
$A \subseteq f B$.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$\mathrm{fB} \subseteq \mathrm{B} \cup \mathrm{fA}$.
$B \cap f B \subseteq A \cup f A . B \cap f B \subseteq A$.

LIST 1.1.*
\# 3
$A \cap \mathrm{fA}=\varnothing:$
$B \cap f A=\varnothing:$
$A \cap f B=\varnothing$.
$A \subseteq f B$.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$\mathrm{fB} \subseteq \mathrm{B} \cup \mathrm{fA}$.
$B \cap f B \subseteq A$.

```
LIST 1.1.1.
A\capfA=\varnothing:
B\capfA=\varnothing:
A \cap fB = \varnothing:
A\subseteqfB. No.
B U fB = N.
B \subseteqA U fB.
fB\subseteqB\cupfA.
B\capfB\subseteqA. B\capfB}=\varnothing\mathrm{ . 
LIST 1.1.1.*
# 0
A \cap fA = \varnothing:
B\capfA}=\varnothing\mathrm{ :
A \cap fB = \varnothing:
B U fB = N.
B\subseteqA \cupfB.
fB\subseteqBUfA.
B\capfB=\varnothing.
Entirely RCA0 correct. By the Complementation Theorem, let A
U. fA = N. Set B = A.
LIST 1.1.2.
A\capfA=\varnothing:
B\capfA=\varnothing:
A\subseteqfB:
BUfB=N.
B\subseteqA\cupfB. B\subseteqfB. No. Lemma 2.4.5.
fB\subseteqBUfA.
B\capfB\subseteqA.
LIST 1.1.2.*
# 0
A \cap fA = \varnothing:
B\capfA=\varnothing:
A\subseteqfB:
B U fB = N.
fB\subseteqB}\cup{\mp@code{fA.
B\capfB\subseteqA.
```

Entirely $R_{C A}$ correct. By Lemma 2.4.1, let $A \subseteq B \subseteq N, B \cup$. $f A=N, A=B \cap f B$.

LIST 1.1.3.
$\mathrm{A} \cap \mathrm{fA}=\varnothing:$
$B \cap f A=\varnothing$:
$B \cup f B=N:$
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A$.
Entirely $R^{\prime} A_{0}$ correct. By the Complementation Theorem, let A U. fA $=N$. Set $B=A$.

LIST 1.2.
$A \cap f A=\varnothing:$
$A \cap f B=\varnothing$:
$f A \subseteq B$.
$A \subseteq f B$. No.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A . B \cap f B \subseteq f A$.
LIST 1.2.*
\# 2
$\mathrm{A} \cap \mathrm{fA}=\varnothing$:
$A \cap f B=\varnothing$:
$f A \subseteq B$.
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$. $B \cap f B \subseteq f A$.

LIST 1.2.1.
$A \cap f A=\varnothing:$
$A \cap f B=\varnothing:$
$f A \subseteq B:$
$B \cup f B=N$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A . f B \subseteq$ B. No. Lemma 2.4.4.
$B \cap f B \subseteq f A$.

```
LIST 1.2.1.*
# 0
A \cap fA = \varnothing:
A \capfB}=\varnothing\mathrm{ :
fA\subseteqB:
B U fB = N.
B\subseteqA\cupfB.
B \capfB\subseteqfA.
Entirely RCA0 correct. By Lemma 2.4.2, let A \subseteq B \subseteqN, A U.
fB=N,fA\subseteqB,B\capfB\subseteqfA.
LIST 1.2.2.
A \cap fA = \varnothing:
A \cap fB = \varnothing:
B UfB=N:
B\subseteqA\cupfB.
fB\subseteqB\cupfA.
B \capfB\subseteqfA.
Entirely RCA correct. By the Complementation Theorem, let A
U. fA = N. Set B = A.
LIST 1.3.
A \capfA = }\varnothing
fA\subseteqB:
A\subseteqfB.
B U fB = N.
B\subseteqA\cupfB.
fB}\subseteqB\cupfA.fB\subseteqB
B \capfB\subseteqA\cupfA.
LIST 1.3.*
# 2
A \cap fA = \varnothing:
fA\subseteqB:
A\subseteqfB.
B U fB = N.
B\subseteqA\cupfB.
fB}\subseteqB
B \capfB\subseteqA\cupfA.
LIST 1.3.1.
```

```
A\capfA=\varnothing:
fA\subseteqB:
A\subseteqfB:
B\cupfB=N
B\subseteqA\cupfB. B\subseteqfB. No. Lemma 2.4.5.
fB}\subseteqB
B\capfB\subseteqA\cupfA.
LIST 1.3.1.*
# 0
A \cap fA = \varnothing:
fA\subseteqB:
A\subseteqfB:
BUfB=N
fB\subseteqB.
B\capfB\subseteqA\cupfA.
Entirely RCA0 correct. By Lemma 2.4.3, let A \subseteq fN \subseteq A U.
fA. Set B = N.
LIST 1.3.2.
A\capfA=\varnothing:
fA\subseteqB:
B\cupfB=N:
B\subseteqA}\cupfB
fB}\subseteqB
B\capfB\subseteqA}\cup{A
Entirely RCA correct. By the Complementation Theorem, let A
U. fA = N. Set B = N.
LIST 1.4.
A\capfA=\varnothing:
A\subseteqfB:
BUfB}=N
B\subseteqA\cupfB. B\subseteqfB. No. Lemma 2.4.5.
fB\subseteqB \ fA.
B\capfB\subseteqA\cupfA.
LIST 1.4.*
# 0
A\capfA=\varnothing:
```

$A \subseteq f B:$
$B \cup f B=N$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A$.
Entirely $R_{C A}$ correct. By Lemma 2.4.3, let $A \subseteq f N \subseteq A \cup$. fA. Set $B=N$.

LIST 1.5.
$A \cap f A=\varnothing:$
$B \cup f B=N:$
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A$.
$B \cap f B \subseteq A \cup f A$.
Entirely $R_{C A}$ correct. By the Complementation Theorem, let A U. $f A=N$. Set $B=A$.

LIST 2.
$B \cup f B=N:$ $\mathrm{fA} \subseteq \mathrm{B}$.
$A \subseteq f B$.
$B \subseteq A \cup f B . A \cup f B=N$.
$f B \subseteq B \cup f A . B \cup f A=N$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
LIST 2.*
\# 2
$B \cup f B=N:$
$A \subseteq f B$.
$f A \subseteq B$.
$A \cup f B=N$.
$B \cup f A=N$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
LIST 2.1.
$B \cup f B=N:$
$A \subseteq f B:$
$f A \subseteq B$.

```
A U fB = N. fB = N. No. Lemma 2.4.5.
B U fA = N.
A \capfB\subseteqfA. A\subseteqfA. No. Lemma 2.4.5.
B \capfA\subseteqA.
B \capfB\subseteqA\cupfA.
LIST 2.1.*
# 2
B U fB = N:
A\subseteqfB:
fA\subseteqB.
B U fA = N.
B \cap fA\subseteqA.
B \capfB\subseteqA\cupfA.
LIST 2.1.1.
B U fB = N:
A\subseteqfB:
fA\subseteqB:
B UfA = N. B = N.
B \capfA\subseteqA. fA \subseteqA.
B \capfB\subseteqA U fA.
LIST 2.1.1.*
# 0
B U fB = N:
A\subseteqfB:
fA\subseteqB:
B = N.
fA\subseteqA.
B \capfB\subseteqA\cupfA.
Entirely RCA correct. Set A = fN, B = N.
LIST 2.1.2.
B U fB = N:
A\subseteqfB:
B U fA = N:
B \cap fA \subseteqA.
B \capfB\subseteqA\cupfA.
```

Entirely RCA_{0} correct. Let $\mathrm{B}=\mathrm{N}, \mathrm{A}=\mathrm{fN}$.

```
LIST 2.2.
```

$B \cup f B=N:$
$\mathrm{f} A \subseteq B:$
$A \cup f B=N$.
$B \cup f A=N$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
Entirely $R_{C A}$ correct. Set $A=B=N$.
LIST 3.
$f A \subseteq B:$
$A \subseteq f B$.
$B \subseteq A \cup f B$.
$f B \subseteq B \cup f A . f B \subseteq B$.
$A \cap f B \subseteq f A$.
$B \cap f A \subseteq A . f A \subseteq A$.
$B \cap f B \subseteq A \cup f A$.
LIST 3*.
\# 3
$f A \subseteq B:$
$f A \subseteq A$.
$A \subseteq f B$.
$B \subseteq A \cup f B$.
$f B \subseteq B$.
$A \cap f B \subseteq f A$.
$B \cap f B \subseteq A \cup f A$.
LIST 3.1.
$f A \subseteq B:$
$f A \subseteq A:$
$A \subseteq f B$.
$B \subseteq A \cup f B$.
$f B \subseteq B$.
$A \cap f B \subseteq f A$.
$B \cap f B \subseteq A \cup f A . B \cap f B \subseteq A$.
LIST 3.1.*
\# 2
$f A \subseteq B:$

```
fA\subseteqA:
A\subseteqfB.
B\subseteqA\cupfB.
fB}\subseteqB
A \capfB\subseteqfA.
B \cap fB \subseteqA.
LIST 3.1.1.
fA\subseteqB:
fA\subseteqA:
A\subseteqfB:
B\subseteqA U fB. B \subseteq fB. No. Lemma 2.4.5.
fB}\subseteqB
A \capfB\subseteqfA. A\subseteqfA. No. Lemma 2.4.5.
B \capfB}\subseteqA
LIST 3.1.1.*
# 0
fA\subseteqB:
fA\subseteqA:
A\subseteqfB:
fB}\subseteqB
B \capfB\subseteqA.
Entirely RCA correct. Set A = fN, B = N.
LIST 3.1.2.
fA\subseteqB:
fA\subseteqA:
B\subseteqA\cupfB:
fB}\subseteqB
A \capfB\subseteqfA.
B \capfB\subseteqA.
Entirely RCA correct. Set A = B = N.
LIST 3.2.
fA\subseteqB:
A\subseteqfB:
B\subseteqA\cupfB. B\subseteqfB. No. Lemma 2.4.5.
fB}\subseteqB
A \capfB\subseteqfA. A\subseteqfA. No. Lemma 2.4.5.
B \capfB\subseteqA \cupfA.
```

```
LIST 3.2.*
# 0
fA\subseteqB:
A\subseteqfB:
fB}\subseteqB
B \capfB\subseteqA\cupfA.
Entirely RCA correct. Set A = fN, B = N.
LIST 3.3.
fA\subseteqB:
B}\subseteqA\cupfB
fB}\subseteqB
A \capfB\subseteqfA.
B \capfB\subseteqA\cupfA.
Entirely RCA correct. Set A = B = N.
LIST 4.
A\subseteqfB:
B\subseteqA U fB. B \subseteq fB. No. Lemma 2.4.5.
fB\subseteqB\cupfA.
A \capfB\subseteqfA. A\subseteqfA. No. Lemma 2.4.5.
B \capfA\subseteqA.
B \capfB\subseteqA\cupfA.
LIST 4.*
# 0
A}\subseteqfB
fB\subseteqB U fA.
B \capfA\subseteqA.
B \capfB}\subseteqA\cupfA
Entirely RCA correct. Set A = fN, B = N.
LIST 5.
B}\subseteqA\cupfB
fB\subseteqB\cupfA.
A \capfB}\subseteqfA
B \capfA\subseteqA.
B \capfB\subseteqA \cupfA.
```

Entirely RCA R_{0} correct. Set $A=B=N$.
THEOREM 2.4.6. EBRT in $A, B, f A, f B, \subseteq$ on ($S D, I N F$) and (ELG \cap $S D, I N F)$ have the same correct formats. EBRT in $A, B, f A, f B, \subseteq$ on (SD,INF) and (ELG $\cap \mathrm{SD}, I N F)$ are RCA_{0} secure.

Proof: We have presented an $R^{\prime} A_{0}$ classification of EBRT in $A, B, f A, f B, \subseteq$ on ($S D, I N F$), (ELG $\cap S D, I N F)$ in the sense of the tree methodology of section 2.1. All of the documentation works equally well on (SD,INF) and (ELG $\cap \mathrm{SD}, I N F)$, and we have remained within RCA_{0}. QED

THEOREM 2.4.7. There are at most 18 maximally α correct α formats, where α is EBRT in $A, B, f A, f B, \subseteq$ on (SD,INF), (ELG \cap SD,INF).

Proof: Here is the list of numerical labels of terminal vertices in the $R_{C A}$ classification of EBRT in $A, B, f A, f B, \subseteq$ on (SD,INF), (ELG \cap SD,INF) given above:
1.1.1.*
1.1.2.*
1.1.3.
1.2.1.*
1.2.2.
1.3.1.*
1.3.2.
1.4.*
1.5.
2.1.1.*
2.1.2.
2.2 .
3.1.1.*
3.1.2.
3.2.*
3.3.
4.*
5.

The count is 18. Apply Theorem 2.1.5. QED

