2.3. EBRT, IBRT in A, fA, fU.

We redo section 2.2 for the signature A,fA,fU, with the same five BRT settings (SD,INF), (ELG \cap SD,INF), (ELG,INF), (EVSD,INF), (MF,INF).

After we treat these five BRT settings, we then treat the five corresponding unary BRT settings (SD[1], INF), (ELG[1]) \cap SD[1], INF), (ELG[1], INF), (ELG[1], INF), (ELG[1], INF). These are the same except that we restrict to the 1-ary functions only. There is quite a lot of difference between the unary settings and the multivariate settings; this was not the case in section 2.2, with just A, fA.

We begin with EBRT in A, fA, fU. The 8 A, fA, fU pre elementary inclusions are as follows (see Definition 1.1.35).

A \cap fA \cap fU = \emptyset . A \cup fA \cup fU = \cup . A \subseteq fA \cup fU. fA \subseteq A \cup fU. fU \subseteq A \cup fA. A \cap fA \subseteq fU. A \cap fU \subseteq fA. fA \cap fU \subseteq A.

The 6 A, fA, fU elementary inclusions are as follows (see Definition 1.1.36).

 $A \cap fA = \emptyset$. $A \cup fU = U$. $A \subseteq fU$. $fU \subseteq A \cup fA$. $A \cap fU \subseteq fA$. $fA \subseteq A$.

We will use Theorem 2.2.1, and the Complementation Theorem from section 1.3. In fact, we need the following strengthening of the Complementation Theorem.

THEOREM 2.3.1. Let $f \in SD$ and $B \in INF$. There exists $A \in INF$, $A \subseteq B$, such that $A \cap fA = \emptyset$ and $B \subseteq A \cup fA$. Moreover, this is provable in RCA_0 .

Proof: Let f,B be as given. We inductively define A \subseteq B as follows. Suppose the elements of A from 0,1,...,n-1 have been defined, n \ge 0. We put n in A if and only if n \in B and

n is not the value of f at arguments from A less than n. Then A is as required, using f \in SD. QED

THEOREM 2.3.2. For all $f \in EVSD$ there exists $A \in INF$ such that $A \cap fA = \emptyset$, $A \cup fN = N$. Moreover, this is provable in RCA_0 .

Proof: Let $f \in EVSD$ be k-ary. Let n be such that $|x| \ge n \to f(x) \ge |x|$. We define A inductively. First put $[0,n] \setminus fN$ in A. For m > n, put m in A if and only if m = f(x) for no |x| < m. Then $[n+1,\infty) \subseteq A \cup fA$. Also $[0,n] \subseteq A \cup fA$. Hence A U fN = N. Suppose $m \in A \cap fA$. If $m \le n$ then by construction, $m \in [0,n] \setminus fN$, contradicting $m \in fA$. Hence m > n. Let m = f(x), $x \in A^k$. If $|x| \ge m$ then $f(x) > |x| \ge m$, which is a contradiction. Hence |x| < m, and so $m \notin A$ by construction. This contradicts $m \in A$. QED

THEOREM 2.3.3. Let $k \ge 2$. There exists k-ary $f \in ELG \cap SD$ such that $N \setminus fN = \{0\}$. There exists k-ary $f \in ELG$ such that fN = N.

Proof: For all $n \ge 1$, let $f_n \colon [2^n, 2^{n+1})^k \to [2^{n+1}, 2^{n+2})$ be onto. Let f be the union of the f_n extended as follows. For x not yet defined, set f(x) = 1 if |x| = 0; 2 if |x| = 1; 3 if |x| = 2; 2|x| if $|x| \ge 3$. Then $fN = N\setminus\{0\}$ and $f \in ELG \cap SD$. Let g be the union of the f_n extended as follows. For x not yet defined, set f(x) = 0 if |x| = 0; 1 if |x| = 1; 2 if |x| = 2; 3 if |x| = 3; 2|x| if $|x| \ge 4$. Then fN = N and $f \in ELG$. QED

SETTINGS: (SD, INF), (ELG ∩ SD, INF), (ELG, INF), (EVSD, INF), (MF, INF).

A, fA, fU FORMAT OF CARDINALITY 0 EBRT

The empty format is obviously correct, for all five BRT settings.

A, fA, fU FORMATS OF CARDINALITY 1 EBRT

- 1.1. A \cap fA = \emptyset .
- 1.2. A \cup fU = U. Correct on all five. Set A = N.
- 1.3. A ⊆ fU.
- 1.4. $fU \subseteq A \cup fA$. Correct on all five. Set A = N.
- 1.5. A \cap fU \subseteq fA. Correct on all five. Set A = N.

- 1.6. $fA \subseteq A$. Correct on all five. Set A = N.
- A, fA, fU FORMATS OF CARDINALITY 2 EBRT
- 2.1. A \cap fA = \emptyset , A \cup fU = \cup .
- 2.2. A \cap fA = \emptyset , A \subseteq fU.
- 2.3. A \cap fA = \emptyset , fU \subseteq A \cup fA.
- 2.4. A \cap fA = \emptyset , A \cap fU \subseteq fA. Equivalent on all five to A \cap fU = \emptyset . Incorrect on all five. Theorem 2.3.3.
- 2.5. A \cap fA = \emptyset , fA \subseteq A. Equivalent on all five to fA = \emptyset . Incorrect on all five using any f.
- 2.6. A U fU = U, A \subseteq fU. Equivalent on all five to fU = U. Incorrect on all five. Set rng(f) \neq N.
- 2.7. A \cup fu = u, fu \subseteq A \cup fA. Correct on all five. Set A = N.
- 2.8. A U fU = U, A \cap fU \subseteq fA. Correct on all five. Set A = N.
- 2.9. A U fU = U, fA \subseteq A. Correct on all five. Set A = N.
- 2.10. $A \subseteq fU$, $fU \subseteq A \cup fA$.
- 2.11. A \subseteq fU, A \cap fU \subseteq fA. Equivalent on all five to A \subseteq fA. Incorrect on all five. Set f(x) = 2x+1.
- 2.12. $A \subseteq fU$, $fA \subseteq A$.
- 2.13. fU \subseteq A \cup fA, A \cap fU \subseteq fA. Correct on all five. Set A = N.
- 2.14. $fU \subseteq A \cup fA$, $fA \subseteq A$. Correct on all five. Set A = N.
- 2.15. A \cap fU \subseteq fA, fA \subseteq A. Correct on all five. Set A = N.

A, fA, fU FORMATS OF CARDINALITY 3 EBRT

- 3.1. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU. Incorrect on all five. Contains 2.6.
- 3.2. A \cap fA = \emptyset , A \cup fU = U, fU \subseteq A \cup fA. Equivalent to A \cap fA = \emptyset , A \cup fA = U on all five.
- 3.3. A \cap fA = \emptyset , A \cup fU = U, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.4.
- 3.4. A \cap fA = \emptyset , A \cup fU = U, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A U fA.
- 3.6. A \cap fA = \emptyset , A \subseteq fU, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.11.
- 3.7. A \cap fA = \emptyset , A \subseteq fU, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 3.8. A \cap fA = \emptyset , fU \subseteq A \cup fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.4.

- 3.9. A \cap fA = \emptyset , fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 3.10. A \cap fA = \emptyset , A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 3.11. A U fU = U, A \subseteq fU, fU \subseteq A U fA. Incorrect on all five. Contains 2.6.
- 3.12. A \cup fU = U, A \subseteq fU, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.6.
- 3.13. A U fU = U, A \subseteq fU, fA \subseteq A. Incorrect on all five. Contains 2.6.
- 3.14. A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA. Correct on all five. Set A = N.
- 3.15. A U fU = U, fU \subseteq A U fA, fA \subseteq A. Correct on all five. Set A = N.
- 3.16. A U fu = u, A \cap fu \subseteq fA, fA \subseteq A. Correct on all five. Set A = N.
- 3.17. A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.11.
- 3.18. $A \subseteq fU$, $fU \subseteq A \cup fA$, $fA \subseteq A$.
- 3.19. A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.11.
- 3.20. fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Correct on all five. Set A = N.

A, fA, fU FORMATS OF CARDINALITY 4 EBRT

- 4.1. $A \cap fA = \emptyset$, $A \cup fU = U$, $A \subseteq fU$, $fU \subseteq A \cup fA$.
- Incorrect on all five. Contains 2.6.
- 4.2. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU, A \cap fU \subseteq fA.

Incorrect on all five. Contains 2.6.

- 4.3. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 4.4. A \cap fA = \emptyset , A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA.

Incorrect on all five. Contains 2.4.

4.5. A \cap fA = \emptyset , A \cup fU = U, fU \subseteq A \cup fA, fA \subseteq A.

Incorrect on all five. Contains 2.5.

4.6. A \cap fA = \emptyset , A \cup fU = U, A \cap fU \subseteq fA, fA \subseteq A.

Incorrect on all five. Contains 2.5.

4.7. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA, A \cap fU \subseteq fA.

Incorrect on all five. Contains 2.11.

- 4.8. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 4.9. A \cap fA = \emptyset , A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 4.10. A \cap fA = \emptyset , fU \subseteq A \cup fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.

- 4.11. A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.6.
- 4.12. A U fU = U, A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 2.6.
- 4.13. A U fU = U, A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.6.
- 4.14. A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Correct on all five. Set A = N.
- 4.15. A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.11.

A, fA, fU FORMATS OF CARDINALITY 5 EBRT

- 5.1. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.6.
- 5.2. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 5.3. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 5.4. A \cap fA = \emptyset , A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 5.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 5.6. A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.6.

A, fA, fU FORMATS OF CARDINALITY 6 EBRT

6.1. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.

We now list all of the formats whose status has not been determined. We use any stated equivalences that hold on all five.

- 1.1. A \cap fA = \emptyset .
- 1.3. $A \subseteq fU$.
- 2.1. A \cap fA = \emptyset , A \cup fU = \cup .
- 2.2. A \cap fA = \emptyset , A \subseteq fU.
- 2.3. A \cap fA = \emptyset , fU \subseteq A \cup fA.
- 2.10. $A \subseteq fU$, $fU \subseteq A \cup fA$.
- 2.12. $A \subseteq fU$, $fA \subseteq A$.
- 3.2. A \cap fA = \emptyset , A \cup fA = \cup .
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA.
- 3.18. $A \subseteq fU$, $fU \subseteq A \cup fA$, $fA \subseteq A$.

We now settle the status of each of these formats on the various settings.

EBRT in A, fA, fU on (SD, INF), $(ELG \cap SD, INF)$

- 1.1. A \cap fA = \emptyset . Correct on both. See Theorem 2.2.1.
- 1.3. $A \subseteq fU$. Correct on both. Set A = fN.
- 2.1. A \cap fA = \emptyset , A U fU = U. Correct on both. The Complementation Theorem (section 1.3).
- 2.2. A \cap fA = \emptyset , A \subseteq fU. Correct on both. Theorem 2.2.1.
- 2.3. A \cap fA = \emptyset , fU \subseteq A U fA. Correct on both. The Complementation Theorem.
- 2.10. $A \subseteq fU$, $fU \subseteq A \cup fA$. Correct on both. Set A = fN.
- 2.12. A \subseteq fU, fA \subseteq A. Correct on both. Set A = fN.
- 3.2. A \cap fA = \emptyset , A \cup fA = U. Correct on both. Complementation Theorem.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A U fA. Correct on both. Theorem 2.3.1 with B = fU.
- 3.18. A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Correct on both. Set A = fN.

EBRT in A, fA, fU on (ELG, INF), (EVSD, INF)

- 1.1. A \cap fA = \emptyset . Correct on both. See Theorem 2.2.1.
- 1.3. $A \subseteq fU$. Correct on both. Set A = fN.
- 2.1. A \cap fA = \emptyset , A \cup fU = U. Correct on both. Theorem 2.3.2.
- 2.2. A \cap fA = \emptyset , A \subseteq fU. Correct on both. Theorem 2.2.1.
- 2.3. A \cap fA = \emptyset , fU \subseteq A \cup fA. Incorrect on both. Set f(x) = 2x.
- 2.10. $A \subseteq fU$, $fU \subseteq A \cup fA$. Correct on both. Set A = fN.
- 2.12. $A \subseteq fU$, $fA \subseteq A$. Correct on both. Set A = fN.
- 3.2. A \cap fA = \emptyset , A \cup fA = U. Incorrect on both. Set f(x) = 2x.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA. Incorrect on both. Set f(x) = 2x.
- 3.18. A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Correct on both. Set A = fN.

From the above, we see a difference between (SD, INF) and (EVSD, INF) with regard to 2.3, 3.2, 3.5.

EBRT in A, fA, fU on (MF, INF)

- 1.1. A \cap fA = \emptyset . Incorrect. Set f(x) = x.
- 1.3. A \subseteq fU. Incorrect. Set f(x) = 0.

- 2.1. A \cap fA = \emptyset , A U fU = U. Incorrect. Set f(x) = x.
- 2.2. A \cap fA = \emptyset , A \subseteq fU. Incorrect. Set f(x) = x.
- 2.3. A \cap fA = \emptyset , fU \subseteq A \cup fA. Incorrect. Set f(x) = x.
- 2.10. A \subseteq fU, fU \subseteq A U fA. Incorrect. Set f(x) = 0.
- 2.12. A \subseteq fU, fA \subseteq A. Correct on both. Set A = fN. Incorrect. Set f(x) = 0.
- 3.2. A \cap fA = \emptyset , A U fA = U. Incorrect. Set f(x) = x.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A U fA. Incorrect. Set f(x) = x.
- 3.18. A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Incorrect. Set f(x) = 0.

THEOREM 2.3.4. EBRT in A, fA, fU on (SD, INF), (ELG \cap SD, INF) have the same correct formats. So do EBRT in A, fA, fU on (ELG, INF), (EVSD, INF). This is not true of EBRT in A, fA, fU on any distinct pair of settings among (SD, INF), (ELG, INF), (MF, INF). EBRT in A, fA on all five settings, is RCA₀ secure.

Proof: Immediate from the above tabular classifications and their documentation. Format 2.3 provides a difference between A, fA, fU on (SD[1], INF) and (ELG[1], INF), and on (SD, INF) and (MF, INF). Format 1.3 proves a difference between A, fA, fU on (ELG, INF) and (MF, INF). QED

We now turn to IBRT in A, fA, fU on the same five BRT settings.

We will use the Thin Set Theorem (variant) from section 2.2, as well as Theorem 2.2.1, and previous results of this section.

SETTINGS: (SD, INF), (ELG \cap SD, INF), (ELG, INF), (EVSD, INF), (MF, INF).

A, fA, fU FORMAT OF CARDINALITY 0 IBRT

The empty format is obviously correct, for all five BRT settings.

A, fA, fU FORMATS OF CARDINALITY 1 IBRT

- 1.1. A \cap fA = \emptyset . Incorrect on all five. Set A = N.
- 1.2. A \cup fu = u.
- 1.3. $A \subseteq fU$.
- 1.4. $fU \subseteq A \cup fA$.

- 1.5. A \cap fU \subseteq fA.
- 1.6. $fA \subseteq A$.

A, fA, fU FORMATS OF CARDINALITY 2 IBRT

- 2.1. A \cap fA = \emptyset , A \cup fU = U. Incorrect on all five. Contains 1.1.
- 2.2. A \cap fA = \emptyset , A \subseteq fU. Incorrect on all five. Contains 1.1.
- 2.3. A \cap fA = \emptyset , fU \subseteq A U fA. Incorrect on all five. Contains 1.1.
- 2.4. A \cap fA = \emptyset , A \cap fU \subseteq fA. Incorrect on all five. Contains 1.1.
- 2.5. A \cap fA = \emptyset , fA \subseteq A. Incorrect on all five. Contains 1.1.
- 2.6. A U fU = U, A \subseteq fU. Equivalent on all five to fU = U.
- 2.7. A U fU = U, fU \subseteq A U fA. Equivalent on all five to A U fA = U. Incorrect on all five. Thin Set Theorem (variant).
- 2.8. A U fu = u, A \cap fu \subseteq fA.
- 2.9. A U fU = U, fA \subseteq A.
- 2.10. A \subseteq fU, fU \subseteq A U fA. Incorrect on all five. Suppose fN \neq N. Set A = N. Suppose fN = N. Thin Set Theorem (variant).
- 2.11. A \subseteq fU, A \cap fU \subseteq fA. Equivalent on all five to A \subseteq fA.
- 2.12. $A \subseteq fU$, $fA \subseteq A$.
- 2.13. fU \subseteq A \cup fA, A \cap fU \subseteq fA. Equivalent on all five to fU = fA.
- 2.14. fU \subseteq A \cup fA, fA \subseteq A. Equivalent on all five to fU \subseteq A. Incorrect on all five.
- 2.15. A \cap fU \subseteq fA, fA \subseteq A.

A, fA, fU FORMATS OF CARDINALITY 3 IBRT

- 3.1. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU. Incorrect on all five. Contains 1.1.
- 3.2. A \cap fA = \emptyset , A \cup fU = U, fU \subseteq A \cup fA. Incorrect on all five. Contains 1.1.
- 3.3. A \cap fA = \emptyset , A U fU = U, A \cap fU \subseteq fA. Incorrect on all five. Contains 1.1.
- 3.4. A \cap fA = \emptyset , A U fU = U, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA. Incorrect on all five. Contains 1.1.

- 3.6. A \cap fA = \emptyset , A \subseteq fU, A \cap fU \subseteq fA. Incorrect on all five. Contains 1.1.
- 3.7. A \cap fA = \emptyset , A \subseteq fU, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 3.8. A \cap fA = \emptyset , fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 1.1.
- 3.9. A \cap fA = \emptyset , fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 3.10. A \cap fA = \emptyset , A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 3.11. A U fU = U, A \subseteq fU, fU \subseteq A U fA. Incorrect on all five. Contains 2.7.
- 3.12. A U fU = U, A \subseteq fU, A \cap fU \subseteq fA. Equivalent on all five to fU = U, A \subseteq fA.
- 3.13. A \cup fU = U, A \subseteq fU, fA \subseteq A. Equivalent on all five to fU = U, fA \subseteq A.
- 3.14. A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.7.
- 3.15. A U fU = U, fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 2.7.
- 3.16. A U fu = u, A \cap fu \subseteq fA, fA \subseteq A.
- 3.17. A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.10.
- 3.18. A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 2.10.
- 3.19. A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Equivalent on all five to fA = A.
- 3.20. fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.14.

A, fA, fU FORMATS OF CARDINALITY 4 IBRT

- 4.1. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA.
- Incorrect on all five. Contains 1.1.
- 4.2. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU, A \cap fU \subseteq fA.

Incorrect on all five. Contains 1.1.

- 4.3. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 4.4. A \cap fA = \emptyset , A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 1.1.
- 4.5. A \cap fA = \emptyset , A \cup fU = U, fU \subseteq A \cup fA, fA \subseteq A.

Incorrect on all five. Contains 1.1.

4.6. A \cap fA = \emptyset , A \cup fU = U, A \cap fU \subseteq fA, fA \subseteq A.

Incorrect on all five. Contains 1.1.

4.7. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 1.1.

- 4.8. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 4.9. A \cap fA = \emptyset , A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 4.10. A \cap fA = \emptyset , fU \subseteq A \cup fA, A \cap fU \subseteq fA, fA \subseteq A.

Incorrect on all five. Contains 1.1.

- 4.11. A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.7.
- 4.12. A U fU = U, A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 2.7.
- 4.13. A U fU = U, A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Equivalent on all five to fU = U, fA = A.
- 4.14. A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.7.
- 4.15. A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.10.

A, fA, fU FORMATS OF CARDINALITY 5 IBRT

- 5.1. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 1.1.
- 5.2. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU, fU \subseteq A \cup fA, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 5.3. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 5.4. A \cap fA = \emptyset , A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 5.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 1.1.
- 5.6. A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.7.

A, fA, fU FORMATS OF CARDINALITY 6 IBRT

6.1. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 1.1.

We now list all of the formats whose status has not been determined. We use any stated equivalences that hold on all five.

- 1.2. A U fU = U.
- 1.3. A ⊆ fU.
- 1.4. fU ⊆ A U fA.
- 1.5. A \cap fU \subseteq fA.

- 1.6. $fA \subseteq A$.
- 2.6. fU = U.
- 2.8. A U fu = u, A \cap fu \subseteq fA.
- 2.9. A U fU = U, fA \subseteq A.
- 2.11. $A \subseteq fA$.
- 2.12. $A \subseteq fU$, $fA \subseteq A$.
- 2.13. fU = fA.
- 2.15. A \cap fu \subseteq fA, fA \subseteq A.
- 3.12. fU = U, $A \subseteq fA$.
- 3.13. fU = U, $fA \subseteq A$.
- 3.16. A U fu = u, A \cap fu \subseteq fA, fA \subseteq A.
- 3.19. fA = A.
- 4.13. fU = U, fA = A.

We now determine the status of the above formats on the five settings.

IBRT in A, fA, fU on (SD, INF), (ELG \cap SD, INF)

- 1.2. A U fU = U. Incorrect on both. Set A = $N\setminus\{0\}$.
- 1.3. $A \subseteq fU$. Incorrect on both. Set A = N.
- 1.4. $fU \subseteq A \cup fA$. Incorrect on both. Theorem 2.2.1.
- 1.5. A \cap fU \subseteq fA. Incorrect on both. Set A = [min(fU), ∞).
- 1.6. $fA \subseteq A$. Incorrect on both. Theorem 2.2.1.
- 2.6. fU = U. Incorrect on both.
- 2.8. A U fU = U, A \cap fU \subseteq fA. Incorrect on both. Contains 1.2.
- 2.9. A U fU = U, fA \subseteq A. Incorrect on both. Contains 1.6.
- 2.11. A \subseteq fA. Incorrect on both. Set A = N.
- 2.12. A \subseteq fU, fA \subseteq A. Incorrect on both. Contains 1.3.
- 2.13. fU = fA. Incorrect on both. See 1.4.
- 2.15. A \cap fU \subseteq fA, fA \subseteq A. Incorrect on both.

Contains 1.6.

- 3.12. fU = U, $A \subseteq fA$. Incorrect on both. Contains 2.6.
- 3.13. fU = U, $fA \subseteq A$. Incorrect on both. Contains 2.6.
- 3.16. A U fU = U, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on both. Contains 1.6.
- 3.19. fA = A. Incorrect on both. See 1.6.
- 4.13. fU = U, fA = A. Incorrect on both. Contains 2.6.

IBRT in A, fA, fU on (ELG, INF), (EVSD, INF)

- 1.2. A U fu = U. Correct on both. Theorem 2.3.3.
- 1.3. A \subseteq fU. Correct on both. Theorem 2.3.3.
- 1.4. $fU \subseteq A \cup fA$. Incorrect on both. Theorem 2.2.1.
- 1.5. A \cap fU \subseteq fA. Incorrect on both. Set A = $[n,\infty)$, where n is a sufficiently large element of fU.

- 1.6. $fA \subseteq A$. Incorrect on both. Theorem 2.2.1.
- 2.6. fU = U. Correct on both. Theorem 2.3.3.
- 2.8. A U fU = U, A \cap fU \subseteq fA. Incorrect on both. Contains 1.5.
- 2.9. A U fU = U, fA \subseteq A. Incorrect on both. Contains 1.6.
- 2.11. A \subseteq fA. Incorrect on both. Theorem 2.2.1.
- 2.12. A \subseteq fU, fA \subseteq A. Incorrect on both. Contains 1.6.
- 2.13. fU = fA. Incorrect on both. Use Theorem 2.2.1 with D
- = fN. Obtain infinite A where fN $\neg \subseteq$ A U fA.
- 2.15. A \cap fU \subseteq fA, fA \subseteq A. Incorrect on both. Contains 1.6.
- 3.12. fU = U, $A \subseteq fA$. Incorrect for both. Contains 2.11.
- 3.13. fU = U, $fA \subseteq A$. Incorrect for both. Contains 1.6.
- 3.16. A U fU = U, A \cap fU \subseteq fA, fA \subseteq A. Incorrect for both. Contains 1.6.
- 3.19. fA = A. Incorrect for both. See 1.6.
- 4.13. fU = U, fA = A. Incorrect for both. See 1.6.

Note the difference between (SD, INF) and (ELG, INF). E.g., 1.3 is incorrect on (SD, INF) but correct on (ELG, INF).

IBRT in A, fA, fU on (MF, INF)

- 1.2. A \cup fU = U. Correct. Set f(x) = x.
- 1.3. A \subseteq fU. Correct. Set f(x) = x.
- 1.4. $fU \subseteq A \cup fA$. Correct. Set f(x) = 0.
- 1.5. A \cap fU \subseteq fA. Correct. Set f(x) = x.
- 1.6. $fA \subseteq A$. Correct. Set f(x) = x.
- 2.6. fU = U. Correct. Set f(x) = x.
- 2.8. A U fu = u, A \cap fu \subseteq fA. Correct. Set f(x) = x.
- 2.9. A U fU = U, fA \subseteq A. Correct. Set f(x) = x.
- 2.11. A \subseteq fA. Correct. Set f(x) = x.
- 2.12. A \subseteq fU, fA \subseteq A. Correct. Set f(x) = x.
- 2.13. fU = fA. Correct. Set f(x) = 0.
- 2.15. A \cap fU \subseteq fA, fA \subseteq A. Correct. Set f(x) = x.
- 3.12. fU = U, $A \subseteq fA$. Correct. Set f(x) = x.
- 3.13. fU = U, $fA \subseteq A$. Correct. Set f(x) = x.
- 3.16. A U fu = u, A \cap fu \subseteq fA, fA \subseteq A. Correct. Set f(x) = x.
- 3.19. fA = A. Correct. Set f(x) = x.
- 4.13. fU = U, fA = A. Correct. Set f(x) = x.

THEOREM 2.3.5. For IBRT in A, fA, fU on (SD, INF) and (ELG \cap SD, INF), the only correct format is \emptyset . This is not true of IBRT in A, fA on (ELG, INF), (EVSD, INF), (MF, INF). IBRT in A, fA, fU on (ELG, INF) and (EVSD, INF) have the same correct formats. IBRT in A, fA, fU on (ELG, INF) and on (MF, INF) have

different correct formats. IBRT in A,fA,fU on each of (SD,INF), (ELG \cap SD,INF), (ELG,INF), (EVSD,INF) is RCA₀ secure. IBRT in A,fA,fU on (MF,INF) is ACA' secure, but not ACA₀ secure. Every correct format in A,fA,fU on (MF,INF) is RCA₀ correct. We can replace ACA' here by RCA₀ + Thin Set Theorem.

Proof: The first four claims are immediate from the given tabular classifications. For the fifth claim, it suffices to verify that the incorrectness of formats 2.7, 2.10, 3.11, 3.14, 3.15, 3.17, 3.18, 4.11, 4.12, 4.14, 4.15, 5.6 on these four settings is provable in RCA $_0$. These are the places where we have used Thin Set Theorem. In fact, it suffices to show incorrectness of 2.7 and 2.10 only, within RCA $_0$. But 2.7 and 2.10 each contain 1.4, which was shown to be incorrect in all four settings by Theorem 2.2.1. IBRT in A, fA, fU on (MF, INF) is ACA' secure since we only use the Thin Set Theorem (variant), which is provable in ACA'. Note that all arguments for IBRT correctness in these settings are very explicit, easily conducted in RCA $_0$. The last claim is by Theorem 2.2.3. QED

THEOREM 2.3.6. Let $k \ge 2$. EBRT in A,fA,fU on SD[k], (ELG \cap SD)[k], ELG[k], EVSD[k], MF[k], and IBRT in A,fA,fU on SD[k], (ELG \cap SD)[k], ELG[k], EVSD[k], are RCA₀ secure. IBRT in A,fA,fU on MF[k] is ACA₀ secure. EBRT and IBRT in A,fA on SD[k], (ELG \cap SD)[k], ELG[k], EVSD[k], MF[k] have the same correct formats as EBRT and IBRT in SD, ELG \cap SD, ELG, EVSD, MF, respectively.

Proof: An examination of the arguments immediately reveals that all of the incorrectness determinations given for EBRT, and all of the correctness determinations given for IBRT, involve unary and binary functions only. We can obviously pad these unary functions as k-ary functions. It is clear that the Thin Set Theorem (variant) for any fixed $k \geq 1$ is provable in ACA0, since it relies on Ramsey's theorem for a fixed exponent. QED

We now classify EBRT and IBRT in A,fA,fU on (SD[1],INF), (ELG[1] \cap SD[1],INF), (ELG[1],INF), (EVSD[1],INF), (MF[1],INF). Much of the work is the same, but there are substantial differences that are embodied in the following results.

THEOREM 2.3.7. Let $f \in ELG[1]$. Then N\fN is infinite.

Proof: Let c be a real constant > 1. Let t ≥ 1 be such that for all n \ge t, f(n) \ge cn. We show that N\fN is infinite. Note that we are using only the lower bound provided by membership in ELG.

Let $r \ge 0$ and s > (r+t+1)/(1-1/c). Then $f^{-1}[r,s] \subseteq [0,s/c]$ U [0,t]. Hence $f^{-1}[r,s]$ has at most s/c+1+t+1=t+2+s/c elements. Hence f assumes at most t+2+s/c values in [r,s]. But by elementary algebra, t+2+s/c < s-r+1. Hence f must assume fewer than s-r+1 values in [r,s]. Hence f omits a value in [r,s]. Since r is arbitrary and s can be taken to be a function of r (t,c are fixed), we see that f omits infinitely many values. QED

Contrast Theorem 2.3.7 with Theorem 2.3.3.

LEMMA 2.3.8. No element of EVSD[1] is surjective.

Proof: Let $f \in EVSD$. Let n be such that f is strictly dominating on $[n,\infty)$. Then $f^{-1}[0,n] \subseteq [0,n-1]$. By counting, there exists $0 \le i \le n$ such that $i \notin fN$. QED

Contrast Lemma 2.3.8 with Theorem 2.3.3.

SETTINGS: (SD[1], INF), $(ELG[1] \cap SD[1], INF)$, (ELG[1], INF), (MF[1], INF).

A, fA, fU FORMAT OF CARDINALITY 0 EBRT

The empty format is obviously correct, on all five.

A, fA, fU FORMATS OF CARDINALITY 1 EBRT

- 1.1. A \cap fA = \emptyset .
- 1.2. A \cup fU = U. Correct on all five. Set A = N.
- 1.3. A ⊆ fU.
- 1.4. $fU \subseteq A \cup fA$. Correct on all five. Set A = N.
- 1.5. A \cap fU \subseteq fA. Correct on all five. Set A = N.
- 1.6. $fA \subseteq A$. Correct on all five. Set A = N.

A, fA, fU FORMATS OF CARDINALITY 2 EBRT

- 2.1. A \cap fA = \emptyset , A \cup fU = \cup .
- 2.2. A \cap fA = \emptyset , A \subseteq fU.

- 2.3. A \cap fA = \emptyset , fU \subseteq A U fA.
- 2.4. A \cap fA = \emptyset , A \cap fU \subseteq fA. Equivalent on all five to A \cap fU = \emptyset .
- 2.5. A \cap fA = \emptyset , fA \subseteq A. Equivalent on all five to fA = \emptyset . Incorrect on all five. Use any f.
- 2.6. A U fU = U, A \subseteq fU. Equivalent on all five to fU = U. Incorrect on all five. Set rng(f) \neq N.
- 2.7. A U fU = U, fU \subseteq A U fA. Correct on all five. Set A = N.
- 2.8. A \cup fu = u, A \cap fu \subseteq fA. Correct on all five. Set A = N.
- 2.9. A U fU = U, fA \subseteq A. Correct on all five. Set A = N.
- 2.10. $A \subseteq fU$, $fU \subseteq A \cup fA$.
- 2.11. A \subseteq fU, A \cap fU \subseteq fA. Equivalent on all five to A \subseteq fA. Incorrect on all five. Set f(x) = 2x+1.
- 2.12. $A \subseteq fU$, $fA \subseteq A$.
- 2.13. fU \subseteq A \cup fA, A \cap fU \subseteq fA. Correct on all five. Set A = N.
- 2.14. $fU \subseteq A \cup fA$, $fA \subseteq A$. Correct on all five. Set A = N.
- 2.15. A \cap fU \subseteq fA, fA \subseteq A. Correct on all five. Set A = N.

A, fA, fU FORMATS OF CARDINALITY 3 EBRT

- 3.1. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU. Incorrect on all five. Contains 2.6.
- 3.2. A \cap fA = \emptyset , A \cup fU = U, fU \subseteq A \cup fA. Equivalent to A \cap fA = \emptyset , A \cup fA = U on all five.
- 3.3. A \cap fA = \emptyset , A \cup fU = U, A \cap fU \subseteq fA. Equivalent to A \cap fU = \emptyset , A \cup fU = U on all five. Equivalent to A = U\fU on all five.
- 3.4. A \cap fA = \emptyset , A \cup fU = U, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A U fA.
- 3.6. A \cap fA = \emptyset , A \subseteq fU, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.11.
- 3.7. A \cap fA = \emptyset , A \subseteq fU, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 3.8. A \cap fA = \emptyset , fU \subseteq A \cup fA, A \cap fU \subseteq fA. Equivalent to A \cap fA = \emptyset , fU \subseteq fA, A \cap fU = \emptyset . Incorrect on all five. Set f(x) = 2x+1.
- 3.9. A \cap fA = \emptyset , fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 3.10. A \cap fA = \emptyset , A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.

- 3.11. A U fU = U, A \subseteq fU, fU \subseteq A U fA. Incorrect on all five. Contains 2.6.
- 3.12. A \cup fU = U, A \subseteq fU, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.6.
- 3.13. A U fU = U, A \subseteq fU, fA \subseteq A. Incorrect on all five. Contains 2.6.
- 3.14. A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA. Correct on all five. Set A = N.
- 3.15. A U fU = U, fU \subseteq A U fA, fA \subseteq A. Correct on all five. Set A = N.
- 3.16. A U fU = U, A \cap fU \subseteq fA, fA \subseteq A. Correct on all five. Set A = N.
- 3.17. A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.11.
- 3.18. $A \subseteq fU$, $fU \subseteq A \cup fA$, $fA \subseteq A$.
- 3.19. A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.11.
- 3.20. fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Correct on all five. Set A = N.

A, fA, fU FORMATS OF CARDINALITY 4 EBRT

4.1. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA.

Incorrect on all five. Contains 2.6.

- 4.2. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.6.
- 4.3. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 4.4. A \cap fA = \emptyset , A \cup fU = U, fU \subseteq A \cup fA, A \cap fU \subseteq fA. Equivalent to A = U\fU on all five. Same as 3.3 on all five.
- 4.5. A \cap fA = \emptyset , A \cup fU = U, fU \subseteq A \cup fA, fA \subseteq A.

Incorrect on all five. Contains 2.5.

4.6. A \cap fA = \emptyset , A \cup fU = U, A \cap fU \subseteq fA, fA \subseteq A.

Incorrect on all five. Contains 2.5.

4.7. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA, A \cap fU \subseteq fA.

Incorrect on all five. Contains 2.11.

- 4.8. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 4.9. A \cap fA = \emptyset , A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 4.10. A \cap fA = \emptyset , fU \subseteq A \cup fA, A \cap fU \subseteq fA, fA \subseteq A.

Incorrect on all five. Contains 2.5.

4.11. A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA.

Incorrect on all five. Contains 2.6.

- 4.12. A U fU = U, A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 2.6.
- 4.13. A U fU = U, A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.6.
- 4.14. A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Correct on all five. Set A = N.
- 4.15. A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.11.

A, fA, fU FORMATS OF CARDINALITY 5 EBRT

- 5.1. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA. Incorrect on all five. Contains 2.6.
- 5.2. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 5.3. A \cap fA = \emptyset , A \cup fU = U, A \subseteq fU, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 5.4. A \cap fA = \emptyset , A U fU = U, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 5.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.
- 5.6. A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.6.

A, fA, fU FORMATS OF CARDINALITY 6 EBRT

6.1. A \cap fA = \emptyset , A U fU = U, A \subseteq fU, fU \subseteq A U fA, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on all five. Contains 2.5.

We now list all of the formats whose status has not been determined. We use any stated equivalences that hold on all five.

- 1.1. A \cap fA = \emptyset .
- 1.3. A ⊆ fU.
- 2.1. A \cap fA = \emptyset , A \cup fU = \cup .
- 2.2. A \cap fA = \emptyset , A \subseteq fU.
- 2.3. A \cap fA = \emptyset , fU \subseteq A \cup fA.
- 2.4. A \cap fU = \emptyset .
- 2.12. $A \subseteq fU$, $fA \subseteq A$.
- 3.2. A \cap fA = \emptyset , A \cup fA = \cup .
- 3.3. $A = U \setminus fU$.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A U fA.
- 3.18. $A \subseteq fU$, $fU \subseteq A \cup fA$, $fA \subseteq A$.

We now settle the status of each of these formats on the various settings.

EBRT in A, fA, fU on (SD[1], INF), $(ELG[1] \cap SD[1], INF)$

- 1.1. A \cap fA = \emptyset . Correct on both. Theorem 2.2.1.
- 1.3. $A \subseteq fU$. Correct on both. Set A = fN.
- 2.1. A \cap fA = \emptyset , A \cup fU = U. Correct on both.

Complementation Theorem.

- 2.2. A \cap fA = \emptyset , A \subseteq fU. Correct on both. Theorem 2.2.1.
- 2.3. A \cap fA = \emptyset , fU \subseteq A U fA. Correct on both.

Complementation Theorem.

- 2.4. A \cap fU = \emptyset . Incorrect on (SD[1], INF). Set f(x) = x+1. Correct on (ELG[1] \cap SD[1], INF). Theorem 2.3.7.
- 2.12. A \subseteq fU, fA \subseteq A. Correct on both. Set A = fN.
- 3.2. A \cap fA = \emptyset , A \cup fA = U. Correct on both. Complementation Theorem.
- 3.3. A = U\fU. Incorrect on (SD[1], INF). Set f(x) = x+1. Correct on (ELG[1] \cap SD[1], INF). Theorem 2.3.7.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA. Correct on both. Theorem 2.3.1 with B = fN.

EBRT in A, fA, fU on (ELG[1], INF), (EVSD[1], INF)

- 1.1. A \cap fA = \emptyset . Correct on both. Theorem 2.2.1.
- 1.3. $A \subseteq fU$. Correct on both. Set A = fN.
- 2.1. A \cap fA = \emptyset , A U fU = U. Correct on both. Theorem 2.3.2.
- 2.2. A \cap fA = \emptyset , A \subseteq fU. Correct on both. Theorem 2.2.1.
- 2.3. A \cap fA = \emptyset , fU \subseteq A U fA. Incorrect on both. Set f(x) = 2x.
- 2.4. A \cap fU = \emptyset . Incorrect on (EVSD[1], INF). Set f(x) =
- x+1. Correct on (ELG[1], INF). Theorem 2.3.7.
- 3.2. A \cap fA = \emptyset , A U fA = U. Incorrect on both. Set f(x) = 2x.
- 3.3. A = N\fu. Incorrect on (EVSD[1], INF). Set f(x) = x+1. Correct on (ELG[1], INF). Theorem 2.3.7.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A \cup fA. Incorrect on both. Set f(x) = 2x.
- 3.18. A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Correct on both. Set A = fN.

EBRT in A, fA, fU on (MF[1], INF)

- 1.1. A \cap fA = \emptyset . Incorrect. Set f(x) = x.
- 1.3. A \subseteq fU. Incorrect. Set f(x) = 0.
- 2.1. A \cap fA = \emptyset , A U fU = U. Incorrect. Set f(x) = x.

- 2.2. A \cap fA = \emptyset , A \subseteq fU. Incorrect. Set f(x) = x.
- 2.3. A \cap fA = \emptyset , fU \subseteq A \cup fA. Incorrect. Set f(x) = x.
- 2.4. A \cap fU = \emptyset . Incorrect. Set f(x) = x.
- 2.12. A \subseteq fU, fA \subseteq A. Incorrect. Set f(x) = 0.
- 3.2. A \cap fA = \emptyset , A U fA = U. Incorrect. Set f(x) = x.
- 3.3. A = N\fU. Incorrect. Set f(x) = x.
- 3.5. A \cap fA = \emptyset , A \subseteq fU, fU \subseteq A U fA. Incorrect. Set f(x) = x.
- 3.18. A \subseteq fU, fU \subseteq A U fA, fA \subseteq A. Incorrect. Set f(x) = 0.

THEOREM 2.3.9. EBRT in A,fA,fU on the ten BRT settings (SD,INF), (ELG \cap SD,INF), (ELG,INF), (EVSD,INF), (MF,INF). (SD[1],INF), (ELG[1] \cap SD[1],INF), (ELG[1],INF), (EVSD[1],INF), (MF[1],INF), are RCA₀ secure. They also have different correct formats, with the following exceptions. (SD,INF), (ELG \cap SD,INF), (SD[1],INF) have the same; (ELG,INF), (EVSD,INF), (EVSD[1],INF) have the same; (MF,INF), (MF[1],INF) have the same. In particular, (SD[1],INF), (ELG[1] \cap SD[1],INF), (ELG[1],INF), (EVSD[1],INF),

Proof: Our entire analysis of EBRT in this section takes place in RCA_0 . To compare the multivariate settings with the unary settings, we have only to examine where we use a function that is not unary for an incorrectness determination in the multivariate setting.

(SD,INF), (SD[1],INF). In 2.4, 3.3, 4.4, we use Theorem 2.3.3, which involves functions that are not unary. However, we can instead use f(x) = x+1, which lies in SD[1].

(EVSD,INF), (EVSD[1],INF). In 2.4, 3.3, 4.4, we use Theorem 2.3.3, which involves functions that are not unary. However, we can instead use f(x) = x+1, which lies in EVSD[1].

(MF,INF), (MF[1],INF). In 2.4, 3.3, 4.4, we use Theorem 2.3.3, which involves functions that are not unary. However, we can instead use f(x) = x+1, which lies in MF[1].

It suffices to verify that EBRT in A,fA,fU pairwise differ on

(SD, INF). (ELG, INF).

(MF, INF). (ELG[1] \cap SD[1], INF). (ELG[1], INF)

(ELG[1] \cap SD[1], INF) and (ELG[1], INF) both differ from (SD, INF), (ELG, INF), (MF, INF) at 2.4. (ELG[1] \cap SD[1], INF) and (ELG[1], INF) differ at 2.3. From Theorem 2.3.4, we know that (SD, INF), (ELG, INF), (MF, INF) differ. QED

We now come to IBRT in the five unary settings. First note that in the earlier table of formats of cardinalities 0-6 on IBRT in A,fA,fU, compiled earlier, the only determinations were of incorrectness. Obviously those determinations still apply. So we can jump ahead to where we list the formats that remain undetermined:

- 1.2. A U fU = U.
- 1.3. A ⊆ fU.
- 1.4. $fU \subseteq A \cup fA$.
- 1.5. A \cap fU \subseteq fA.
- 1.6. $fA \subseteq A$.
- 2.6. fU = U.
- 2.8. A U fu = u, A \cap fu \subseteq fA.
- 2.9. A U fU = U, fA \subseteq A.
- 2.11. $A \subseteq fA$.
- 2.12. $A \subseteq fU$, $fA \subseteq A$.
- 2.13. fU = fA.
- 2.15. A \cap fu \subseteq fA, fA \subseteq A.
- 3.12. fU = U, $A \subseteq fA$.
- 3.13. fU = U, $fA \subseteq A$.
- 3.16. A U fu = u, A \cap fu \subseteq fA, fA \subseteq A.
- 3.19. fA = A.
- 4.13. fU = U, fA = A.

We now determine the status of the above formats on the five unary settings.

IBRT in A, fA, fU on (SD[1], INF), $(ELG[1] \cap SD[1], INF)$

Since the only correct format for IBRT in A,fA,fU on (SD[1],INF), (ELG[1] \cap SD[1],INF) is \emptyset , the only correct format for IBRT in A,fA,fU on (SD,INF), (ELG \cap SD,INF) is \emptyset .

IBRT in A, fA, fU on (ELG[1], INF), (EVSD[1], INF)

1.2. A U fU = U. Incorrect on both. Lemma 2.3.8.

- 1.3. A \subseteq fU. Incorrect on both. Lemma 2.3.8.
- 1.4. $fU \subseteq A \cup fA$. Incorrect on both. Theorem 2.2.1.
- 1.5. A \cap fU \subseteq fA. Incorrect on both. FIX!!! Use Theorem
- 2.2.1 with D = fN. Obtain infinite A disjoint from fA, where fN $\neg \subseteq$ A U fA. If A \cap fN \subseteq fA then fN \subseteq fA.
- 1.6. $fA \subseteq A$. Incorrect on both. Theorem 2.2.1.
- 2.6. fU = U. Incorrect on both. Lemma 2.3.8.
- 2.8. A U fU = U, A \cap fU \subseteq fA. Incorrect on both. Contains 1.5.
- 2.9. A U fU = U, fA \subseteq A. Incorrect on both. Contains 1.6.
- 2.11. A \subseteq fA. Incorrect on both. Theorem 2.2.1.
- 2.12. A \subseteq fU, fA \subseteq A. Incorrect on both. Contains 1.6.
- 2.13. fU = fA. Incorrect on both. Use Theorem 2.2.1 with D = fU.
- 2.15. A \cap fU \subseteq fA, fA \subseteq A. Incorrect on both. Contains 1.6.
- 3.12. fU = U, $A \subseteq fA$. Incorrect on both. Contains 2.11.
- 3.13. fU = U, $fA \subseteq A$. Incorrect on both. Contains 1.6.
- 3.16. A U fU = U, A \cap fU \subseteq fA, fA \subseteq A. Incorrect on both. Contains 1.6.
- 3.19. fA = A. Incorrect on both. See 1.6.
- 4.13. fU = U, fA = A. Incorrect on both. See 1.6.

We now see that in IBRT on SD[1], INF), (ELG[1] \cap SD[1], INF), (ELG[1], INF), (EVSD[1], INF), every format is incorrect.

IBRT in A, fA, fU on (MF[1], INF)

- 1.2. A U fU = U. Correct. Set f(x) = x.
- 1.3. A \subseteq fU. Correct. Set f(x) = x.
- 1.4. $fU \subseteq A \cup fA$. Correct. Set f(x) = 0.
- 1.5. A \cap fU \subseteq fA. Correct. Set f(x) = x.
- 1.6. $fA \subseteq A$. Correct. Set f(x) = x.
- 2.6. fU = U. Correct. Set f(x) = x.
- 2.8. A U fU = U, A \cap fU \subseteq fA. Correct. Set f(x) = x.
- 2.9. A U fu = u, fA \subseteq A. Correct. Set f(x) = x.
- 2.11. A \subseteq fA. Correct. Set f(x) = x.
- 2.12. A \subseteq fU, fA \subseteq A. Correct. Set f(x) = x.
- 2.13. fU = fA. Correct. Set f(x) = 0.
- 2.15. A \cap fU \subseteq fA, fA \subseteq A. Correct. Set f(x) = x.
- 3.12. fU = U, $A \subseteq fA$. Correct. Set f(x) = x.
- 3.13. fU = U, $fA \subseteq A$. Correct. Set f(x) = x.
- 3.16. A U fu = u, A \cap fu \subseteq fA, fA \subseteq A. Correct. Set f(x) = x.
- 3.19. fA = A. Correct. Set f(x) = x.
- 4.13. fU = U, fA = A. Correct. Set f(x) = x.

THEOREM 2.3.10. IBRT in A, fA, fU on (SD, INF), (ELG \cap SD, INF), (SD[1], INF), (ELG[1] \cap SD[1], INF), (ELG[1], INF), (EVSD[1], INF), (SD[1], INF), (ELG[1] \cap SD[1], INF) have only the correct format \varnothing . IBRT in A, fA, fU on (MF, INF) and (MF[1], INF) have the same correct formats. IBRT in A, fA, fU on (SD[1], INF), (ELG[1] \cap SD[1], INF), (ELG[1], INF), (EVSD[1], INF), (MF[1], INF) are RCA₀ secure.

Proof: By inspection. Also, Thin Set Theorem (variant) is provable in RCA_0 by Lemma 2.2.4 QED

Note that by Theorem 2.3.10, there are exactly five different behaviors of the ten BRT settings (SD,INF), (ELG \cap SD,INF), (ELG,INF), (EVSD,INF), (MF,INF). (SD[1],INF), (ELG[1] \cap SD[1],INF), (ELG[1],INF), (EVSD[1],INF), (MF[1],INF) under EBRT in A,fA,fU. By Theorem 2.3.10, there are three under IBRT in A,fA,fU.