2.2. EBRT, IBRT in $A, f A$.

This section is intended to be a particularly gentle introduction to BRT classification theory. It is wholly subsumed by section 2.3 .

Recall the five main BRT settings introduced at the beginning of this Chapter: (SD,INF), (ELG,INF), (MF,INF), (ELG \cap SD,INF), (EVSD,INF).

We begin with the BRT fragments $\alpha=$

$$
\text { EBRT in } A, f A \text { on these five } B R T \text { settings. }
$$

As discussed in sections 1.1 and 2.1, classification of these BRT fragments amounts to a determination of the true α assertions, which take the form

1) $(\forall f \in V)(\exists A \in K)(\varphi)$
where φ is an α equation (since we are in the environment EBRT).

As discussed in sections 1.1 and 2.1, we work, equivalently, with the α statements, which take the form

$$
\left.1^{\prime}\right) \quad(\forall f \in V)(\exists A \in K)(S)
$$

where S is an α format, interpreted conjunctively.
Recall that in EBRT, S is correct if and only if l') holds. S is incorrect if and only if 1') fails.

In this case of EBRT in $A, f A$, the number of elementary inclusions is 4, and the number of formats is 16.

Since 16 is so small, we might as well list all of the formats S. It is most convenient to list the formats S in increasing order of their cardinality - which is 0-4.

The four A,fA elementary inclusions are as follows. See Definition 1.1.36. (These do not depend on the BRT environment or BRT setting).
$A \cap f A=\varnothing$.
$A \cup f A=U$.
$A \subseteq f A$.

$f A \subseteq A$.

According to Definition 1.1.13 of the universal set U in BRT settings, we see that on our five BRT settings, U is N.

Before beginning this tabular EBRT classification, we organize the nontrivial mathematical facts that we will use.

THEOREM 2.2.1. Let $f \in \operatorname{EVSD}$ and $E \subseteq A \subseteq N$, where E is finite, A is infinite, and $E \cap f E=\varnothing$. Also let $D \subseteq N$ be infinite. There exists infinite B such that $E \subseteq B \subseteq A, B \cap$ $f B=\varnothing$, and neither A nor D are subsets of $B \cup f B$. Moreover, this is provable in RCA_{0}.

Proof: Let f, E, A, D be as given. Let $n \in D$ be such that $n>\max (E \cup f E)$, and $|x| \geq n \rightarrow f(x)>|x|$. Let $t>n, t \in$ A. We define an infinite strictly increasing sequence n_{1} < $\mathrm{n}_{2} . .$. by induction as follows.

Define $n_{1}=\min \{m \in A: m>t\}$. Suppose $n_{1}<\ldots<n_{k}$ have been defined, $k \geq 1$. Define n_{k+1} to be the least element of A that is greater than n_{k} and all elements of $f(E \cup$ $\left\{n_{1}, \ldots, n_{k}\right\}$).

Let $B=E \cup\left\{n_{1}, n_{2}, \ldots\right\} \subseteq A$. Clearly $B \cap f B=\varnothing$. Also $n, t \notin$ B, and so A, D are not subsets of $B \cup f B$. QED

In the applications of Theorem 2.2.1 to the tabular EBRT classification below, we can ignore E,A,D. We just use that for all $f \in \operatorname{EVSD}$, there exists infinite $B \subseteq N$ such that $B \cap$ $f B=\varnothing$.

Here is the other fact that we need.
COMPLEMENTATION THEOREM. For all $f \in \operatorname{SD}$ there exists $A \in$ INF such that $f A=N \backslash A$.

We proved the Complementation Theorem in section 1.3 within $R C A_{0}$.

A,fA FORMAT OF CARDINALIY 0
EBRT
The empty format is obviously correct, on all five BRT settings.

A,fA FORMATS OF CARDINALITY 1
EBRT
1.1. $A \cap f A=\varnothing$.
1.2. $A \cup f A=U$. Correct on all five. Set $A=N$.
1.3. $A \subseteq f A$. Incorrect on all five. Set $f(x)=2 x+1$.
1.4. fA \subseteq A. Correct on all five. Set $A=N$.

A,fA FORMATS OF CARDINALITY 2
EBRT
2.1. $A \cap f A=\varnothing, A \cup f A=U$. Equivalent to $f A=U \backslash A$ on all five.
2.2. $A \cap f A=\varnothing, A \subseteq f A$. Incorrect on all five. Contains
1.3.
2.3. $A \cap f A=\varnothing, f A \subseteq A$. Incorrect on all five.
2.4. $A \cup f A=U, A \subseteq f A$. Incorrect on all five. Contains 1.3.
2.5. $A \cup f A=U, f A \subseteq A$. Correct on all five. Set $A=U$. 2.6. $A \subseteq f A, f A \subseteq A$. Incorrect on all five. Contains 1.3.

A,fA FORMATS OF CARDINALITY 3
EBRT
3.1. $A \cap f A=\varnothing, A \cup f A=U, A \subseteq f A$. Incorrect on all five. Contains 1.3.
3.2. $A \cap f A=\varnothing, A \cup f A=U, f A \subseteq A$. Incorrect on all five. Contains 2.3.
3.3. $A \cap f A=\varnothing, A \subseteq f A, f A \subseteq A$. Incorrect on all five. Contains 1.3.
3.4. $A \cup f A=U, A \subseteq f A, f A \subseteq A$. Incorrect on all five. Contains 1.3.

A,fA FORMAT OF CARDINALITY 4
EBRT
4.1. $A \cap f A=\varnothing, A \cup f A=U, A \subseteq f A, f A \subseteq A$. Incorrect on all five. Contains 1.3.

We now list all of the formats whose status has not been determined. We use any stated equivalences that hold on all five.
1.1. $A \cap f A=\varnothing$. 2.1. $\mathrm{fA}=\mathrm{U} \backslash \mathrm{A}$.

We now indicate the status of $1.1,1.2$, for EBRT in $A, f A$ on each of our five main BRT settings.

We heavily use the fact that every function in our five main BRT settings, with the exception of MF, has infinite range.

EBRT in A,fA on (SD,INF)/(ELG \cap SD,INF)
1.1. $A \cap f A=\varnothing$. Correct on both. See Theorem 2.2.1. 2.1. $f A=U \backslash A$. Correct on both. The Complementation Theorem.

EBRT in A,fA on (ELG,INF)/(EVSD,INF)
1.1. $A \cap f A=\varnothing$. Correct on both. See Theorem 2.2.1. 2.1. $f A=U \backslash A$. Incorrect on both. Let $f(x)=0$ if $x=0$; $2 x+1$ otherwise.

EBRT in $A, f A$ on (MF,INF)
1.1. $A \cap f A=\varnothing$. Incorrect. Let $f(x)=x$. 2.1. $\mathrm{fA}=\mathrm{U} \backslash \mathrm{A}$. Incorrect. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}$.

We now make a table from our findings. + indicates that the format along left column is α correct, where α is EBRT in A,fA on the setting across the top row. - indicates otherwise.

EBRT in $A, f A$ on: ($\mathrm{SD}, \mathrm{INF}$) (ELG $\cap \mathrm{SD}, I N F)$ (ELG,INF) (EVSD,INF) (MF,INF)

\varnothing	+	+	+	+	+
$\mathrm{A} \cap \mathrm{fA}=\varnothing$	+	+	+	+	-
$A \cup f A=U$	+	+	+	+	+
$\mathrm{A} \subseteq \mathrm{fA}$	-	-	-	-	-
$\mathrm{fA} \subseteq \mathrm{A}$	+	+	+	+	+
$\mathrm{A} \cap \mathrm{fA}=\varnothing, \mathrm{A} \cup \mathrm{fA}=\mathrm{U}$	+	+	-	-	-
$A \cap f A=\varnothing, A \subseteq f A$	-	-	-	-	-
$A \cap f A=\varnothing, \mathrm{fA} \subseteq \mathrm{A}$	-	-	-	-	-
$A \cup f A=U, A \subseteq f A$	-	-	-	-	-
$A \cup f A=U, f A \subseteq A$	+	+	+	+	+
$A \subseteq f A, f A \subseteq A$	-	-	-	-	-
$A \cap f A=\varnothing, A \cup f A=U, A \subseteq f A$	-	-	-	-	-
$A \cap f A=\varnothing, A \cup f A=U, f A \subseteq A$	-	-	-	-	-
$A \cap f A=\varnothing, A \subseteq f A, f A \subseteq A$	-	-	-	-	-
$A \cup f A=U, A \subseteq f A, f A \subseteq A$	-	-	-	-	-
$A \cap f A=\varnothing, A \cup f A=U, A \subseteq f A, f A$	A	-	-	-	-

THEOREM 2.2.2. EBRT in $A, f A$ on (SD,INF), (ELG $\cap S D, I N F)$ have the same correct formats (or, equivalently, true statements, or true assertions). So do EBRT in A,fA on (ELG,INF), (EVSD,INF). This is not true of EBRT in A,fA on
any distinct pair of settings among
(SD,INF), (ELG,INF), (MF,INF). EBRT in A,fA on all five
settings, is $R^{2} A_{0}$ secure.
Proof: Immediate from the above tabular classifications and their documentation. This uses the observation that Theorem 2.2.1 and the Complementation Theorem are provable in $R C A_{0}$. The counterexamples are very explicit. QED

We now come to IBRT in $A, f A$ on the same five BRT settings. We investigate the assertions

$$
\text { 2) } \quad(\forall f \in V)(\exists A \in K)(\varphi)
$$

where φ is an α inequation (since we are in the environment IBRT).

As discussed in sections 1.1 and 2.1, we work, equivalently, with the α statements, which take the form

$$
\left.2^{\prime}\right) \quad(\exists f \in V)(\forall A \in K)(S)
$$

where S is an α format, interpreted conjunctively.
Recall that in IBRT, S is correct if and only if 2') holds. S is incorrect if and only if 2') fails.

We again start with the same four A,fA elementary inclusions, as these do not depend on the environment.

Before beginning this tabular EBRT classification, we organize the nontrivial facts that we will use. Recall the Thin Set Theorem from section 1.4.

THIN SET THEOREM. For all $f \in \operatorname{MF}$ there exists $A \in$ INF such that $\mathrm{fA} \neq \mathrm{N}$.

We also need the following variant.
THIN SET THEOREM (variant). For all $f \in \operatorname{MF}$ there exists $A \in$ INF such that $A \cup f A \neq N$.

Proof: We derive this variant from the Thin Set Theorem (over RCA_{0}). Let $\mathrm{f}: \mathrm{N}^{\mathrm{k}} \rightarrow \mathrm{N}$. Define $\mathrm{g}: \mathrm{N}^{k+1} \rightarrow \mathrm{~N}$ by $g\left(x_{1}, \ldots, x_{k+1}\right)=f\left(x_{1}, \ldots, x_{k}\right)$ if $x_{k} \neq x_{k+1} ; x_{k}$ otherwise. By the Thin Set Theorem, let $A \in I N F, g A \neq N$. Then $g A=A \cup f A$ \neq N. QED

By the above proof, it is clear that the Thin Set Theorem and the Thin Set Theorem (variant) are provably equivalent in $R C A_{0}$.

The system ACA' (see Definition 1.4.1) is sufficient to prove the Thin Set Theorem. Here are the four A,fA elementary inclusions.
$A \cap f A=\varnothing$
$A \cup f A=U$.
$A \subseteq f A$.
$f A \subseteq A$.

A,fA FORMAT OF CARDINALIY 0
IBRT

The empty format is obviously correct, on all five BRT settings.

A,fA FORMATS OF CARDINALITY 1
IBRT
1.1. $A \cap f A=\varnothing$. Incorrect on all five. Set $A=N$. 1.2. A $\cup f A=U$. Incorrect on all five. Thin Set Theorem (variant).
1.3. $\mathrm{A} \subseteq \mathrm{fA}$.
1.4. fA \subseteq A.

A,fA FORMATS OF CARDINALITY 2
IBRT
2.1. $A \cap f A=\varnothing, A \cup f A=U$. Incorrect on all five. Contains 1.1.
2.2. $A \cap f A=\varnothing, A \subseteq f A$. Incorrect on all five. Contains 1.1 .
2.3. $A \cap f A=\varnothing, f A \subseteq A$. Incorrect on all five. Contains 1.1
2.4. $A \cup f A=U, A \subseteq f A$. Incorrect on all five. Contains 1.2 .
2.5. $A \cup f A=U, f A \subseteq A$. Incorrect on all five. Contains 1.2 .
2.6. $A \subseteq f A, f A \subseteq A . E q u i v a l e n t$ to $f A=A$ on all five.

A,fA FORMATS OF CARDINALITY 3
IBRT
3.1. $A \cap f A=\varnothing, A \cup f A=U, A \subseteq f A$. Incorrect on all five. Contains 1.1.
3.2. $A \cap f A=\varnothing, A \cup f A=U, f A \subseteq A$. Incorrect on all
five. Contains 1.1 .
3.3. $A \cap f A=\varnothing, A \subseteq f A, f A \subseteq A$. Incorrect on all five. Contains 1.1.
3.4. $A \cup f A=U, A \subseteq f A, f A \subseteq A$. Incorrect on all five. Contains 1.2.

A,fA FORMAT OF CARDINALITY 4
IBRT
$A \cap f A=\varnothing, A \cup f A=U, A \subseteq f A, f A \subseteq A$. Incorrect on all five. Contains 1.1.

These are the only formats whose status has not been determined. We use equivalences that hold on all five.
1.3. $A \subseteq f A$.
1.4. fA \subseteq A.
2.6. $\mathrm{fA}=\mathrm{A}$.

We now indicate the status of 1.3, 1.4, 1.6, for IBRT in $A, f A$ on each of our five main BRT settings.

IBRT in $A, f A$ on (SD,INF), (ELG \cap
SD,INF), (ELG,INF), (EVSD,INF)
1.3. $A \subseteq f A$. Incorrect on all four. Theorem 2.2.1.
1.4. fA \subseteq A. Incorrect on all four. Theorem 2.2.1.
2.6. fA $=A$. Incorrect on all four. Theorem 2.2.1.

IBRT in $A, f A$ on (MF,INF)
1.3. $A \subseteq f A$. Correct. Set $f(x)=x$.
1.4. fA \subseteq A. Correct. Set $f(x)=x$.
2.6. fA $=A$. Correct. Set $f(x)=x$.

Recall that the instances of 2^{\prime}) are in dual form. I.e., they are the negations of the IBRT in A,fA assertions. In particular, the Thin Set Theorem and the Thin Set Theorem (variant) are assertions in IBRT in A,fA on (MF,INF), and therefore negations of statements in IBRT in $A, f A$ on (MF, INF).

We now make a table from our findings. + indicates that the format along left column is α correct, where α is IBRT in

A,fA on the setting across the top row. - indicates otherwise.

IBRT in $A, f A$ on: (SD,INF) (ELG $\cap \operatorname{SD}, I N F)$ (ELG,INF) (EVSD,INF) (MF,INF)

\varnothing	+	+	+	+	+
$A \cap f A=\varnothing$	-	-	-	-	-
$A \cup f A=U$	-	-	-	-	-
$A \subseteq f A$	-	-	-	-	+
$f \mathrm{~A} \subseteq \mathrm{~A}$	-	-	-	-	+
$A \cap f A=\varnothing, A \cup f A=U$	-	-	-	-	-
$A \cap f A=\varnothing, A \subseteq f A$	-	-	-	-	-
$A \cap f A=\varnothing, \mathrm{fA} \subseteq \mathrm{A}$	-	-	-	-	-
$A \cup f A=U, A \subseteq f A$	-	-	-	-	-
$\mathrm{A} \cup \mathrm{f} A=\mathrm{U}, \mathrm{fA} \subseteq \mathrm{A}$	-	-	-	-	-
$A \subseteq f A, f A \subseteq A$	-	-	-	-	+
$A \cap f A=\varnothing, A \cup f A=U, A \subseteq f A$	-	-	-	-	-
$A \cap f A=\varnothing, A \cup f A=U, f A \subseteq A$	-	-	-	-	-
$A \cap f A=\varnothing, A \subseteq f A, f A \subseteq A$	-	-	-	-	-
$A \cup f A=U, A \subseteq f A, f A \subseteq A$		-	-	-	-
$A \cap f A=\varnothing, A \cup f A=U, A \subseteq f A, f A$	A	-	-	-	-

THEOREM 2.2.3. For IBRT in $A, f A$ on (SD,INF), (ELG $\cap S D, I N F)$, (ELG,INF), (EVSD,INF), the only correct format is \varnothing. This is not true of $I B R T$ in $A, f A$ on ($M F, I N F$). IBRT in $A, f A$ on each of $(S D, I N F),(E L G \cap S D, I N F),(E L G, I N F),(E V S D, I N F)$ is $R C A_{0}$ secure. IBRT in $A, f A$ on ($M F, I N F$) is ACA' secure, but not $A C A_{0}$ secure. Every correct format in $A, f A$ on (MF,INF) is $R^{\prime} A_{0}$ correct. We can replace ACA' here by $R C A_{0}+$ Thin Set Theorem.

Proof: The first two claims are immediate from the given tabular classifications. For the third claim, it suffices to verify that the incorrectness of $1.1,1.2,1.3,1.4,2.6$ on these four settings is provable in $R C A_{0}$. For 1.1 , this is trivial. For 1.3, 1.4, 2.6, this is from the provability of Theorem 2.2.1 in RCA_{0}. For 1.2 , this is also from the provability of Theorem 2.2.1 in RCA_{0}.

For the fourth claim, note that all correctness
determinations in IBRT in $A, f A$ on (MF,INF) were given in $R^{\prime \prime} A_{0}$, and all incorrectness determinations in $\alpha=$ IBRT in $A, f A$ on (MF,INF) were given in $R_{C A}+$ Thin Set Theorem (variant). Thus α is $R_{C A}+$ Thin Set Theorem (variant) secure, and hence ACA' secure. Since the incorrectness of 1.2 in α is equivalent, over $R C A_{0}$, to Thin Set Theorem (variant), α is not $A C A_{0}$ secure. This is because of the unprovability of the Thin Set Theorem in $A^{\prime C A}$ (see [FSOO], [CGHJ05]).

For the fifth claim, α is $R_{C A}+$ Thin Set Theorem secure, because of the proof given above of Thin Set Theorem (variant) from Thin Set Theorem (over $R C A_{0}$). QED

An interesting issue is the effect of the arity of the functions. The classes SD, ELG $\cap \operatorname{SD}$, ELG, EVSD, and MF use functions of every arity $k \geq 1$.

LEMMA 2.2.4. The Thin Set Theorem (variant) for exponent 1 is provable in $R C A_{0}$.

Proof: Let $f: N \rightarrow N . \operatorname{If}\{n: f(n)=0\}$ is infinite then set A $=\{n: f(n)=0\}$. If not, let $n>0$ be such that f is nonzero on $[n, \infty)$. Set $A=[n, \infty)$. Then $A \cup f A \neq N$. QED

DEFINITION 2.2.1. For $k \geq 1$, let $\operatorname{SD}[k]$, (ELG $\cap S D$) Ck$]$, ELG[k], EVSD[k], MF[k] be the restrictions of $S D, E L G \cap S D$, ELG, EVSD, MF to functions whose domain is N^{k}.

THEOREM 2.2.5. Let $k \geq 1$. EBRT in $A, f A$ on $S D[k],(E L G \cap$ $S D)[k], \operatorname{ELG}[k], \operatorname{EVSD}[k], M F[k]$, and IBRT in $A, f A$ on $S D[k]$, (ELG $\cap S D)[k], E L G[k], E V S D[k]$, are $R C A$ $A, f A$ on $M F[k]$ is $A C A_{0}$ secure. IBRT in $A, f A$ on $M F[1]$ is $R_{C A}$ secure. EBRT and IBRT in $A, f A$ on $S D[k],(E L G \cap S D)[k]$, ELG[k], EVSD[k], MF[k] have the same correct formats as EBRT and IBRT in SD, ELG \cap SD, ELG, EVSD, MF, respectively.

Proof: An examination of the arguments immediately reveals that all of the incorrectness determinations given for EBRT involve unary functions only, and all of the correctness determinations given for IBRT also involve unary functions only. We can obviously pad these unary functions as k-ary functions. IBRT in $A, f A$ on $M F[k]$ is $A C A A_{0}$ secure since the Thin Set Theorem (variant) is provable in $A C A_{0}$ for k-ary functions, using the infinite Ramsey theorem for k-tuples. By Lemma 2.2.4, IBRT in $A, f A$ on $M F[1]$ is $R C A_{0}$ secure. QED

